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Abstract. In this paper we present numerical results obtained with a pore-network model
for the drying of porous media that accounts for various processes at the pore scale.
These include mass transfer by advection and diffusion in the gas phase, viscous flow
in the liquid and gas phases and capillary effects at the liquid–gas interface. We extend
our work by studying the effect of capillarity-induced flow in macroscopic liquid films
that form at the pore walls as the liquid–gas interface recedes. A mathematical model
that accounts for the effect of films on the drying rates and phase distribution patterns
is presented. It is shown that film flow is a major transport mechanism in the drying of
porous materials, its effect being dominant when capillarity controls the process, which is
the case in typical applications.
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1. Introduction

Drying of porous media is a subject of significant scientific and applied
interest. It is involved in the industrial drying of products such as food,
paper, textile, wood, ceramics, granular and building materials, etc. Drying
is also involved in distillation and vaporization processes associated with
soil remediation (Ho and Udell, 1995), as well as in the recovery of volatile
oil components from reservoirs by gas injection (Le Gallo et al., 1997).

In general, a single- or multi-component liquid phase gradually evap-
orates during drying and is removed from the porous structure via com-
bined heat and mass transfer. Traditional descriptions of the process rely
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on phenomenological approaches, in which the porous medium is a contin-
uum, the dependent variables, like moisture content, are volume-averaged
quantities and the relation of fluxes to gradients is through empirical coeffi-
cients. Such approaches essentially ignore the effect of the pore microstruc-
ture which is of key importance for a quantitative understanding of the
process. Drying is a two phase flow process that involves many pore-scale
mechanisms, for example the motion of individual gas–liquid menisci resid-
ing in the pore space, diffusion in the gas phase (for a single-component
liquid) and the liquid phase (for a multi-component liquid), viscous flow in
both phases, capillarity and liquid flow through connected films. All these
mechanisms need to be accounted for at the pore scale.

Pore-network approaches are used extensively in recent years to model
various processes in porous materials such as drying, immiscible two- and
three-phase flow, solution gas-drive and many other (Li and Yortsos, 1995a;
Valavanides and Payatakes, 2001; van Dijke et al., 2001). Pore network
models describe processes at the pore- and pore-network scale and they
offer better understanding of the physics involved in these processes than
macroscopic continuum models that were used in the past.

Several studies used a pore-network approach to model drying in porous
media in recent years. Key to these approaches is the consideration of mass
transfer, elements of which were described by Li and Yortsos (1995b) and
Jia et al. (1999), among others. Various pore-network models with spe-
cific applications to drying were proposed originally by Nowicki et al.,
and more recently in a series of papers by Prat and co-workers. Nowicki
et al. (1992) presented a numerical simulation of the process at the pore-
network level without expanding further on the particular patterns and
regimes obtained or on the associated effects on drying rates. Prat’s stud-
ies represent the first attempt to characterize theoretically drying patterns
and their rate of change in porous structures. Prat (1995) studied drying
patterns assuming capillary control, neglecting viscous effects and consider-
ing mass transfer only by quasi-static diffusion. Laurindo and Prat (1996,
1998) also provided a macroscopic assessment of the importance of liquid
films that form at the pore walls as the liquid–gas interface recedes. Based
on percolation patterns (Wilkinson and Willemsen, 1983) and isothermal
conditions, they computed drying rates by solving a quasi-static diffusion
equation in the gas phase. Prat and Bouleux (1999) focused on diffusional
mass transfer and the effect of gravity on the front structure, but also com-
mented on viscous effects.

In earlier experiments using horizontal glass-bead packs (Shaw, 1987),
viscous forces were found to be important for explaining the formation
of an evaporating front (separating continuous liquid from gas) of a finite
size. More generally, we expect that advection and viscous effects will have
an impact on patterns and drying rates. Existing pore-network models
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address mostly slow drying, controlled by capillarity and/or gravity and by
diffusion, ignoring advection and/or viscous effects. They also neglect the
role of liquid films in the process.

In the first part of this paper we present numerical results from a pore
network simulator for the drying of porous media that accounts for all
major mechanisms at the pore scale but ignores the effect of liquid films.
We study mechanisms that have not been accounted for before such as vis-
cous flow in both the gas and the liquid phases and the effect of viscous
flow on the movement of the liquid–gas interface. A detailed description of
this first part, including mathematical formulation, the algorithm and more
extensive results can be found in a recent publication of the present authors
(Yiotis et al., 2001). In the second part of the paper, the presence of liquid
films is considered. We model capillarity-driven liquid flow in a 2D pore
network and propose a mathematical model that accounts for viscous flow
in the liquid films as well as all the other mechanisms presented earlier.
This part is a detailed description of the study by Yiotis et al. (2003) (pub-
lished elsewhere as a brief report) and an extension of that work.

2. Pore-Network Modeling of Drying without the Presence of Liquid Films

We consider the isothermal drying of a fractured porous medium initially
saturated with a volatile liquid. The liquid is trapped in the pore space due
to capillary forces and may vaporize as a result of an injected purge gas
flowing primarily in the fractures. This process is applied to enhance oil
recovery from reservoirs (Stubos and Poulou, 1999).

The actual overall problem is quite complex, requiring the consideration
of the network of fractures and the medium continuum, gas flow and mass
transfer in the fracture network and the multi-dimensional mass transfer
from the medium continuum to the fracture network. For simplicity, we
consider a 2D square pore network with all but one boundaries imperme-
able to flow and mass transfer (Figure 1).

At any time during the process, evaporation of the liquid at the
liquid–gas interface leads to the receding of the liquid front (denoted as
evaporating interface (I) or percolation front (P) in Figure 1), leaving
behind disconnected clusters of liquid and liquid films, the size and loca-
tion of which change continuously with time. In general, three different
spatial regions can be identified:

(i) a far-field (from the fracture) region consisting of the initial liquid (con-
tinuous liquid cluster, CC);

(ii) a region where the liquid phase is disconnected and consists of individ-
ual liquid clusters of variable sizes (disconnected clusters, DC); and

(iii) a near-field (to the fracture) region consisting primarily of the contin-
uous gas phase, with the liquid phase in the form of pendular rings,



66 A. G. YIOTIS ET AL.

Figure 1. Schematic representation of a drying process in a 2D matrix driven by the
injection of a purge gas through a fracture along the upper size of the matrix.

corner films or thin films on the solid surface, the thickness of which
is progressively reduced towards a “totally dry” regime.

In Figure 1, the fracture running along the upper side of the 2D net-
work is represented as a 1D chain of pore bodies and throats. The two
ends of the fracture are open to flow and mass transfer. The network con-
sists of spherical pore bodies connected through cylindrical pore throats.
Pore bodies serve as containers for either of the two phases and it is
assumed that they have no capillary or flow resistance. Therefore, when a
liquid–gas interface lies within a pore body, the pressures of both phases
are taken to be equal and the interface recedes without any capillary forces
restraining its movement. The throats serve as conductors of the flow and
mass transfer and they act as capillary barriers.

Initially the network is saturated by a single-component liquid (hexane).
The fracture, however, contains only air at the beginning of the drying pro-
cess. A purge gas (air) is injected at a constant volumetric rate from one
end of the fracture. The concentration of the liquid component vapors is
assumed to be zero at the entrance and the exit of the fracture at all times.
The gas injection results to a pressure gradient along the fracture, which
eventually develops inside the pore network as well. As a result of the gas
flow, the liquid evaporates initially at the interface pore throats along the
fracture. Vapor flows by advection and diffusion to the exit of the fracture.

Mass transfer of the vapor in the gas phase obeys the convection-diffu-
sion equation

∂C

∂t
+u ·∇C =D∇2C (1)
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where C is the vapor concentration, D is the diffusion coefficient and u is
the gas-phase velocity vector.

Both in the liquid and gas phases the fluxes Q between adjacent pores
are computed by Poiseuille-law type flow resistances, where the viscosity µ

is taken constant

Qij =
(

Pi −Pj

�

)
πr4

ij

8µ
(2)

∑
j

Qij =0 (3)

where P is the pressure at the center of each pore, rij is the throat radius
between pores i and j and � is the distance between pore centers.

Liquid menisci that reside at interface throats recede due to evapora-
tion of the liquid and the gas invades the adjacent liquid pores. We assume
that the menisci recede instantly because throats have no volume. At every
liquid cluster, at least one liquid pore empties at any time during drying
while all other liquid menisci may remain stationary due to capillary forces.
A pore is invaded when the pressure difference across its throats exceeds
the capillary pressure threshold 2γ /r, where γ is the surface tension. If the
pressure difference is not sufficiently large and all menisci of a cluster are
pinned then the pore where the pressure difference is closer to its throats’
capillary pressure threshold is invaded.

The problem is mainly characterized by two dimensionless parameters,
a diffusion-based capillary number, CaD, and a Peclet number, Pe, in addi-
tion to the various geometrical parameters of the pore network

CaD = DµlCe

γ �ρl
(4)

Pe= Vf�

d
(5)

where Ce is the equilibrium concentration of the vapor, Vf is the mean
velocity of the purge gas in the fracture and the liquid phase is denoted
by subscript l. The capillary number expresses the ratio of viscous to cap-
illary forces, based on a diffusion-driven velocity, while the Peclet number
expresses the ratio of inertial to diffusion forces. We note that liquid films
are neglected in this formulation. The details of the algorithm followed for
the numerical solution of the problem can be found in Yiotis et al. (2001).

We present here two runs on a 50 × 50 pore network that are charac-
teristic of the two limiting regimes that develop in this process. In the first
run the gas flow rate through the fracture is very low and the process is
characterized by a very low value for the Peclet number (Pe = 0.66 – run
15) (Figures 2 and 4). In this case capillary forces are dominant and mass
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transfer occurs primarily by diffusion. In the second run the purge gas is
injected at a very high flow rate leading to a very high value of the Peclet
number (Pe = 331 – run 4) (Figures 3 and 5). In this case viscous forces
dominate at the liquid–gas interface while mass transfer occurs primarily
by advection.

In the low Peclet number case, viscous forces are not sufficiently strong
and the capillary pressure variation is negligible at the perimeter of liquid
clusters. Assuming the absence of liquid films that could provide hydrau-
lic conductivity between macroscopically disconnected liquid clusters (DCs)
and the continuous liquid cluster (CC), every cluster takes the pattern of

Figure 2. Phase distribution patterns for a low Peclet number (Pe = 0.66 – run 15).
The process follows Invasion Percolation rules at all times. Air is white and liquid
hexane is black.

Figure 3. Phase distribution patterns for a high Peclet number (Pe = 331 – run 4).
At early stages the process follows Invasion Percolation in a Stabilizing Gradient
rules. Later on patterns become Invasion Percolation-like. Air is white and liquid
hexane is black.
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Figure 4. Concentration contours for a low Peclet number case (Pe = 0.66 – run 15).
The snapshots correspond to the phase distribution patterns shown in Figure 2.
Darker colors indicate lower vapor concentration.

Figure 5. Concentration contours for the high Peclet number case (Pe = 331 – run
4). The snapshots correspond to the phase distribution patterns shown in Figure 3.
Darker colors indicate lower vapor concentration.

Invasion Percolation (IP), in which the next throat to be invaded by the gas
is that with the smallest capillary threshold (here, the one with the largest
size) among all perimeter throats of that cluster (Figure 2). In the related
study of Li and Yortsos (1995a, b) this process was termed local percola-
tion.

Clusters closer to the open boundary are subject to a faster evaporation,
compared to those further away, and are emptied faster (Figure 4). The end
result is the development of gradients in the size of the isolated liquid clus-
ters, with clusters closer to the fracture having smaller size. These gradients
reflect mass transfer, rather than viscous effects. Clearly, however, the over-
all pattern would be a function of the drying rates, namely of the value of
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the Pe. We must note that under this regime of local percolation, different
clusters may have different-size throats being invaded at the same time.

In the high Peclet number case the process is controlled by viscous
forces and capillarity is negligible at early times (Figure 3). Pore throats
closer to the inlet of the fracture, where the gas is injected, are subject to
stronger viscous effects than pore throats away form the fracture. Phase dis-
tribution patterns deviate substantially from IP and almost follow a piston-
like displacement (PD). The receding of the CC has some of the properties
of IPSG in a fracture-matrix system. Under these conditions, the capillary
resistance of a throat is negligible, and the pattern is exclusively determined
by mass transfer considerations, much like in the dissolution of a solid. The
rate of generation of DCs and their size are smaller and the liquid phase
consists mostly of a CC. As the liquid–gas interface recedes in the pore
network away from the fracture, viscous forces become weaker and the pro-
cess gradually becomes of IP type, namely controlled by capillarity.

Concentration contours for these two limiting cases are shown in
Figure 4 for the low Peclet number case and Figure 5 for the high Peclet
number case. The concentration contours are smoother in the first case
because mass transfer is controlled by diffusion. In the second case, the
concentration contours are very steep close the liquid–gas interface and the
vapor concentration is very low close to the fracture.

Typical drying curves for the process are presented in Figure 6. The high
Peclet number case (Pe = 331) shows a clear constant rate period (CRP) for
the drying rate that lasts approximately as long the CC remains in contact
with the fracture. This CRP is much shorter for lower values of the Peclet
number (i.e. Pe = 132) because the CC recedes form the fracture sooner
(with respect to the liquid recovery volume). However, the overall drying
rate is much shorter in the high Peclet number case as expected. More
results and discussion including cases of intermediate Peclet numbers are
shown in Yiotis et al. (2001).

Figure 6. Drying curves for various Peclet numbers.
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3. The Effect of Liquid Films

In this section we study the role of wetting films in the context of drying.
The objective is to determine if film flows can be a significant mechanism
of drying as purported to be in the experiments cited below. A 2D pore-
network model, very similar to the one described above, is used for the rep-
resentation of the porous medium. In this case however we consider that
the velocity of the purge gas in the fracture is very low and that viscous
forces due to flow in the gas phase on the liquid–gas interface are negligi-
ble. Our focus is on the effect of viscous flow through the liquid films that
develop at the corners of the pore network.

Flow through macroscopic films has been analyzed in the context of
imbibition by many authors (Lenormand and Zarcone, 1984; Lenormand,
1992; Dullien et al., 1989; Constantinides and Payatakes, 2000). Lenor-
mand (1992) described in detail the expected mechanisms due to film flow
in imbibition. Dullien et al. (1989) reported flow along surface microchan-
nels that provide hydraulic connectivity between macroscopically isolated
liquid regions during immiscible displacement in packed glass beads with
rough surfaces. This was found to be negligible in the case of smooth
glass beads. Dillard and Blunt (2000) examined mass transfer from liquid
films in dissolution processes, while Blunt et al. (2002) presented a detailed
review of flow through films in the context of three-phase flow.

In the context of drying, past experimental work has emphasized the
existence and speculated on the role of film flow (Shaw, 1987; Laurindo
and Prat, 1998; Tsimpanogiannis et al., 1999). In a series of experiments
Shaw (1987) found that, under comparable conditions, the drying front
in a cell containing packed beads moved one order of magnitude faster
than when the cell was empty. Shaw attributed this “unorthodox” result
to liquid counterflow through films which form along particle contacts,
and argued that it is the dominant mechanism for the drying of porous
materials. Laurindo and Prat (1998) performed drying experiments in two-
dimensional etched-glass micromodels and compared their results with pre-
dictions from a pore-network simulator, which did not contain films. The
experimental rates were found to be about six times higher than the numer-
ical. These authors also attributed the flow enhancement to wetting liquid
films and presented a simplified model for the associated transport mecha-
nism. Liquid films were described in the form of a bundle of microcapillar-
ies on the pore surface. However, no quantitative models for film flow were
developed in these studies.

3.1. problem formulation

We consider the isothermal evaporation of a single-component liquid in a
porous medium one side of which is open to the environment. The latter
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is kept dry through the flow of a purge gas, while all other three sides are
impermeable to fluid flow and mass transfer. The porous medium is again
represented by a 2D square lattice of pores connected through throats with
square cross-section. The radii of the throats, hence the corresponding cap-
illary thresholds, are distributed randomly. In the presence of films, at any
stage of drying, the pore space can be characterized by three kinds of pores
(close-ups in Figure 7): pores L, fully occupied by liquid, pores G, fully
occupied by gas, and pores F, occupied by gas but also containing liquid
films. The existence of pores of type F is the distinguishing feature of this
work, compared to previous (Prat, 1995; Laurindo and Prat, 1998; Prat
and Bouleux, 1999; Tsimpanogiannis et al., 1999; Yiotis et al., 2001, Plo-
urde and Prat, 2003). Our focus is on thick films, e.g. which form in the
corners of polygonal pores, and where flow is driven by capillary pressure
gradients. Here, we will account for viscous effects both in the films (F
pores), as well as in the continuous liquid phase (region L). Mass trans-
fer in the gas phase is assumed only by diffusion, which is usually valid in
drying problems (Prat, 1995; Laurindo and Prat, 1996, 1998).

Due to the applied concentration gradients, the liquid evaporates along
the liquid–gas interfaces and the liquid vapors are transferred by diffusion
in the gas phase towards the dry end. During this process, the macroscopic
gas–liquid interfaces (denoted by P in Figure 7) recede, both in the contin-
uous and the discontinuous clusters.

3.2. liquid flow through macroscopic films in a single capillary

We first study the case of long capillary with square cross-section where
the liquid meniscus has just receded leaving behind liquid films at the four
corners of the capillary (Figure 8). The thickness of each liquid film can

Figure 7. Schematic of liquid and gas phase patterns, indicating the various types
of pores in drying used in this study.
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Figure 8. Liquid films along the corners of a capillary with square cross-section.

be parameterized by its radius of curvature r, which is a function of time
and distance. We assume that all four films have the same thickness at any
cross-section along the capillary. Assuming local capillary equilibrium at
the film interface, we have

Pc =Pg −Pl = γ

r
(6)

By neglecting variations in the gas pressure, we can take without loss, Pg =
0. Then, the pressure in the film, Pl, is

Pl =−γ

r
(7)

According to Equation (7) the liquid pressure in the film is inversely
proportional to its thickness. Any gradient in the film thickness along the
capillary results in a pressure gradient along the liquid films. A capillarity-
induced flow develops along the film from the cross-section where the film
is thicker (Figure 9(a)) towards the cross-section where the film is thinner
(Figure 9(b)).

Several authors (Lenormand and Zarcone, 1984; Ransohoff and Radke,
1988; Zhou et al., 1997) have studied film flow along the corners of long
smooth capillaries with polygonal cross-sections. Assuming uni-directional

Figure 9. Evolution of the film radius that develops at the corners of a capillary
with square cross-section. Cross-section (a) is closer to the bulk liquid phase and
the films are thicker than in cross-section (b).
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(direction x) viscous flow, a Poiseuille-type law applies in these geometries,

Qx =−αr4

µl

∂Pl

∂x
(8)

where Qx is the volumetric flow rate and α is a dimensionless geometric
factor. By combining Equations (7) and (8), we obtain

Qx =−αγ r2

µl

∂r

∂x
(9)

Parameter α was determined previously for various model geometries
(Ransohoff and Radke, 1988, Dong and Chatzis, 1995). The latter authors
studied film flow in one corner of a capillary with a polygonal cross-section
and found the following expression

α = C∗

β
where C∗ =4

(
cos θ cos(π/4+ θ)

sin(π/4)
− (π/4− θ)

)
(10)

the shape factor C∗ being expressed in terms of the contact angle θ . The
dimensionless resistance β was earlier calculated by Ransohoff and Radke
(1988). In the case of a capillary with square cross-section and a perfect
wetting liquid (θ =0) we have C∗ =4−π , β =93.5 and α =0.0088. We note
that parameter α is of order 10−3.

We consider the mass balance for the evaporating liquid in the capillary

(4−π)
∂r2

∂t
=−∂Qx

∂x
−Qev (11)

where Qev is the evaporation rate. Assuming a simple diffusion model we
take

Qev =
(

2πrD

ρl

)
(Ce −C)

r0
(12)

where C is the average gas-phase mass concentration (mass per unit vol-
ume) of the evaporating liquid and r0 is the radius of curvature where the
films emanate. The particular details of film evaporation, particularly near
the tip of the film are very complex. Equation (12) is only a first-order
approximation, and the value of D acts as a lumped parameter to account
for many of the neglected phenomena.

Combining Equations (9), (11) and (12) leads to

∂r

∂t
= 2αγ

(4−π)µl

[
r
∂2r

∂x2
+2

(
∂r

∂x

)2
]

− πD

(4−π)ρl

(Ce −C)

r0
(13)
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For dimensionless notation, we introduce the diffusive time τ = Dt

r2
0

, a
rescaled radius of curvature, ρ = r

r0
, a rescaled axial distance, ξ = x

r0
, and

a dimensionless concentration ζ = C
Ce

based on which we write

(
(4−π)ρl

πCe

)
CaF

∂ρ

∂τ
=ρ

∂2ρ

∂ξ 2
+2

(
∂ρ

∂ξ

)2

+CaF (ζ −1) (14)

Here we introduced the capillary number in the form CaF = πDCe2µlβ

ρlC∗r0γ
. As

in other mass-transfer driven processes, this capillary number expresses the
ratio of the viscous forces due to flow driven by mass transfer to capillary
forces.

The mass balance in the gas phase reads

∂C

∂t
=D

∂2C

∂x2
+ 1

2
πrD

r3
0

(Ce −C) (15)

and in dimensionless notation,

∂ζ

∂τ
= ∂2ζ

∂ξ 2
+ 1

2
πρ(1− ζ ) (16)

Equations (14) and (16) are coupled and solved for the dimensionless film
thickness ρ and the dimensionless concentration ζ as a function of time τ

and capillary length ξ with the appropriate initial and boundary conditions.
We find that for realistic values of the capillary number CaF , a steady-
state profile for ρ and ζ is quickly established (Figure 10). This is consis-
tent with other diffusion-controlled problems in porous media (Witten and
Sanders, 1981; Peitgen and Saupe, 1988). In addition, the restriction of the
evaporation to a narrow region is a consequence of the exponential decay
of the concentration: Due to the confined pore geometry, the gas phase
becomes rapidly saturated, limiting evaporation to a narrow region near the
film tips, where the liquid flux is supplied by capillarity-driven film flow
(Yiotis et al., 2003).

Given that ζ =1 along the film region and that a steady-state profile for
ρ is quickly established, Equation (14) can be simplified as follows

ρ
∂2ρ

∂ξ 2
+2

(
∂ρ

∂ξ

)2

=0⇒ ∂2ρ3

∂ξ 2
=0 (17)

In the dry region, between the film tip and the open end of the capillary,
the film thickness is ρ = 0 and liquid vapors are transferred by diffusion
towards the open end of the capillary. Equation (16) becomes

∂2ζ

∂ξ 2
=0 (18)
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Figure 10. Steady-state profiles for the dimensionless film thickness ρ and vapor
concentration ζ along a single capillary. The film emanates at ξ =0.

We note that Equations (17) and (18) apply along the film and in the
totally dry part of the capillary, respectively. The mass balance at the film
tip reads

π

6CaF

∂ρ3

∂ξ
= ∂ζ

∂ξ
and ρ =0, ζ =1 (19)

Given that the location of film tip is unknown, we consider a simple trans-
formation that leads to a rather straightforward solution.

�≡ ρ3 + ζCaF

1+CaF

(20)

Function � satisfies Equations (17) and (18) in their domains and is con-
tinuous at the film tip. Equations (17) and (18) can be replaced by

∂2�

∂ξ 2
=0 (21)

The location of the film tip is calculated from the solution of Equation (21)
by applying the appropriate boundary conditions at the beginning of the
film and the open end of the capillary. Note that in our model the distance
of the film tip from the open end of the capillary actually determines the
effect of films in the drying process. The closer is the film tip to the open
end of the capillary the higher is the drying rate.

3.3. drying through macroscopic films in a pore network

The single-capillary physics described above are also expected to apply to
the general problem, where films exist in a network of pores connected
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through capillaries similar to the one considered above. As described in
Section 3.1, the gas region of such a network contains F pores adjacent
to capillaries that contain films (film region) and G pores adjacent to dry
capillaries (dry region) (Figure 7). Given that Equation (17) applies in the
film region of a single capillary, we can assume that the film thickness in
the film region of a 2D pore network is described by the following Laplace
equation

∇2ρ3 =0 (22)

Assuming a quasi-steady state in the concentration in dry region and
evaporation occurring where the films terminate, namely at the interface
I between pores F and G, the vapor concentration in the dry region is
described by the following Laplace equation

∇2ζ =0 (23)

The mass balance at the film tips where the liquid evaporates (interface I
in Figure 7) reads

π

6CaF

∂ρ3

∂n
= ∂ζ

∂n
and ρ =0, ζ =1 (24)

The film region is saturated with liquid vapors, ζ = 1, and the film thick-
ness is zero in the dry region, ρ =1.

Assuming that we know the location of the percolation front P at any
time, we can solve the full problem using the transformation proposed in
Section 3.2. Equations (22) and (23) become

∇2�=0(in regions G and F) (25)

We assume that the film thickness ρ is approximately constant at the per-
colation front P

�=1 at the percolation front P (26)

and that drying is driven by imposing ζ =0 at the open side of the network

�=0 at the open end of the network (27)

Using the above transformation, the solution of the Laplace equation (25)
can be used to determine the profiles of the film radius and the concentra-
tion, the rates of drying through each film, as well as the location of the
interface I, where the films terminate and evaporation occurs. Interface I is
located simply as the position where

�= CaF

CaF +1
(28)
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The location of the percolation front P is determined by solving for the liq-
uid fluxes in the liquid phase and films, simultaneously. In all pores occu-
pied fully by liquid (pores of type L), the viscous flow is described by
Poiseuille-type expressions. For these pores, the liquid mass balance at any
pore i reads in dimensionless notation

∑
j

(pi −pj)σ
4
ij =0 (29)

where j denotes a neighboring pore, σ is the normalized pore radius, and
we have normalized pressure drops with the characteristic value P ∗ = γ

r0
.

For pores at the perimeter P , however, the mass balance is different and
we need to further distinguish two cases.

If the pressure difference at a pore that belongs to the percolation front
is not sufficiently large for the gas phase in the neighboring pore to pene-
trate the connecting throat, the meniscus remains stationary. Because of the
films, however, there is always net liquid outflow from the liquid pore. The
mass balance at every such pore at the percolation front reads

∑
j

(pP −pj)σ
4
ij =−32α

3π
(1+CaF )

∑
F

∂�

∂ξ

∣∣∣∣
P

(30)

where the first sum denotes the liquid arriving at the perimeter pore P and
the last sum denotes the contributions from the films in pores of type F

draining the perimeter pore.
If the capillary pressure at a perimeter throat is sufficiently high, namely

if the following condition is satisfied

−pP >
1
σij

(31)

the adjacent pore is penetrated by the gas phase. As in Yiotis et al. (2001),
in such pores we assume that the capillary pressure is zero. Then, the cor-
responding mass balance reads in dimensionless notation

∑
j

pjσ
4
ij − 32α

3π
(1+CaF )

∑
F

∂�

∂ξ

∣∣∣∣
P

= 8µlQP

πr2
0 γ

(32)

where we have taken pP =0. QP is the flow rate at which the pore empties.
Equations (30) and (32) are solved for the pressure field in the liquid

phase and the flow rates QP that penetrated pores empty given the solu-
tion of the Laplace equation (25) in the gas phase that determines the liq-
uid fluxes through the liquid films at the perimeter of the liquid clusters.
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The gas saturation at every pore that has been penetrated by the gas
phase is calculated explicitly in time

�Si = �t

VP

·QP (33)

where VP is the pore volume, �t is the time step and QP is assumed con-
stant during the time step.

The algorithm used in our simulator is based on the work by Yiotis
et al. (2001) and can be summurized as follows: At any given time, pores
have one of the designations L, F or G (Figure 7). The L pores can be part
of the original liquid cluster (CC) or of the disconnected finite-size clus-
ters (DC). At every time step, the overall rate of evaporation from each
of the liquid clusters is evaluated using the Laplace equation (25). Pres-
sure fields in the liquid clusters are calculated with Equations (30) and (32)
and Partly Empty pores at the percolation front are emptied according to
Equation (30). The time step is selected such that it equals the minimum
time required to empty completely any of the available Partly Empty pores.
If at the current time no Partly Empty pores are available to any (or all) of
the clusters (namely if all pores are of the CE type, Yiotis et al., 2001), the
throat with the smallest capillary threshold in the perimeter of any given
cluster is invaded next, at which time the invaded pore becomes of the PE
type. To determine this throat, the liquid pressure is lowered uniformly in
space inside the cluster, until the capillary pressure exceeds for the first time
the smallest capillary threshold. Invasion must occur, since due to evapora-
tion there is a continuous loss of mass from the liquid clusters through film
flow. Then, the interfaces are updated, the equation for � is solved again,
the rates of flow through the film obtained and the process continues. All
calculations are done explicitly in time. The fields for the pressure and �

are computed using Successive Over-Relaxation.

3.4. numerical results and discussion

We performed a series of numerical simulations in 100×100 pore networks
for different values of CaF to study the effect of liquid films on the extent
of the liquid films, the phase distribution patterns and drying rates. The
pore network consists of spherical pores connected through throats with
square cross-section. All pores have the same radius 500 µm while the size
of the throats follows a random distribution between 170 and 270 µm. We
assume that the film flow occurs practically only in the throats that also act
as capillary barriers. Pores serve as containers of either of the two phases
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3.4.1. Phase Distribution Patterns
Equations (30) and (32) show that the pressure drop at the percolation
front P (at the perimeter of liquid clusters) scales as (1 + CaF ). For val-
ues of CaF less than order of 1 (which is the typical case in most physical
problems) we expect that the effect of the capillary number on the phase
distribution patterns is negligible. In that range, phase distribution patterns
follow Invasion Percolation rules. The left panel in Figure 11 shows two
snapshots of the percolation front for CaF = 10−4 that correspond to IP
patterns.

As the capillary number increases, the patterns eventually depart from
IP, particularly at the early times of the process. However, Figure 11 shows
that quite large capillary number values are needed for a noticeable effect
on the pattern. For example, the middle panel of Figure 11 shows that even
for CaF = 1 the pattern is almost identical to IP, except for a few small
differences at the start of the process. It takes larger values, of the order
of CaF = 10 (right panel of Figure 11), for the effect to be pronounced.
Then, the pressure drop at the front becomes relatively significant, and the
pattern exhibits the expected behavior of viscous “stabilization” (Tsimpan-
ogiannis et al., 1999), as Invasion Percolation in a Stabilizing Gradient
(IPSG)).

As drying progresses, the recovery rate diminishes due to the receding
of the percolation front. In the large CaF case, this results to a transi-
tion from IPSG patterns to capillary-dominated IP patterns. It follows that
under typical conditions and for all practical purposes, the drying front can
be accurately described as an IP front. This is in contrast to the behavior
of external drainage, where viscous effects on the pattern become important
for values of the capillary number as low as 10−3.

3.4.2. Extent of Liquid Films
The film properties are determined from the solution of the Laplace equa-
tion (25) for �. Figure 12 shows a snapshot of the iso-potential contours
of � around the percolation front of the liquid clusters. The patterns reflect
the solution of the Laplace equation around a fractal object, hence follow-
ing the fractal features at distances close to it, but becoming smooth at
a small distance away. Because of the assumed boundary condition �= 1
at the cluster perimeter, all clusters act as sinks, therefore there is no fluid
flow from one cluster to another.

For low values of CaF , which is typically the case, the films extend all
the way to the open boundary (where �=0). By contrast, when CaF is of
order 1, the films are short and the film tips (evaporation interface I) reside
closer to the liquid cluster interface P (where �=1).

Figure 13 shows the evolution of the film radius profiles for two values
of CaF . The film radius has the approximate profile ρ ∝ξ 1/3 where ξ is the
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Figure 11. Two snapshots of the drying front for Ca = 10−4 (left), Ca = 1 (middle)
and Ca =10 (right). Liquid-occupied pores are in red.

distance from the front, and which corresponds to the solution of Equa-
tion (25), as discussed above. The location of the film tips (interface I) is
the contour with the value � = CaF

CaF +1 . Figure 13 shows that at low CaF

(left panel), the films extend all the way to the open end, which is the place
where practically all evaporation occurs. When CaF is of order 1 or larger,
however, the films are shorter (right panel in Figure 13), and lead to the
formation of a completely dry region G, the extent of which increases with

Figure 12. Iso-contours of the solution of the Laplace equation around the liquid
clusters, for Ca =0.5, with boundary conditions �=1 at the front and �=0 at the
open end.
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time. Even though the film region is short and a fully-dry region has devel-
oped, the drying front is still of the IP type (as in the left panel). In the
O(1) case, the film tips mimic the protuberances of the drying front, being
closer to the open boundary if associated with a corresponding protuber-
ance. Films that end at such points will have a larger drying rate, since the
gradient of � (and of the concentration) there is larger, (Figure 14).

In the typical problem, where the capillary number is generally less than
O(1), we anticipate the existence of long films that drain liquid through the
above “wicking” action, and all the way to the open end where it subse-
quently evaporates. For instance, in the experiments in Laurindo and Prat
(1996, 1998) we have made the rough estimate CaF ∼ 10−4 suggesting that
liquid films (film region F in Figure 7) likely existed in all gas-invaded
pores in the experiments and that a completely dry region (gas region G
in Figure 7) did not develop, (Figure 13, left panel).

3.4.3. Drying Curves
Based on the analysis in Section 3.3 the overall drying rate at the open side
of the pore network is

Figure 13. Profiles of the rescaled film radii for CaF =10−4 (left) and CaF =1 (right)
at two different stages of the process. Liquid clusters are in black, the fully dry
region is in blue.
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Figure 14. Drying curves calculated with a numerical model that does not account
for the effect of liquid films and a model that accounts for liquid films for CaF =
0.1 under comparable conditions.

F = DCer
2
t

�

1+CaF

CaF

FD (34)

where rt is the average throat radius along the open boundary, FD =
− ∫

a0

∂�
∂n

da is the dimensionless drying rate and subscript 0 denotes the open

boundary. The dimensionless rate FD depends on the geometry of the
porous medium.

Equation (34) shows that the drying rate scales as CaF +1
CaF

. The drying
rate increases as CaF decreases and the film tips are closer to the open
boundary. At smaller values of CaF , capillarity helps to transport liquid
over larger distances and to keep the film extent longer. This is favored by
larger interfacial tension, larger values of the film thickness r0 at the perco-
lation front (where films emanate) and smaller viscosity and effective diffu-
sivity. It is readily shown that in the region of small CaF , the drying rate
scales as

F ∼ γ r0

µl
(35)

showing the dominant effect of capillarity in this region. Conversely, at val-
ues of CaF of order 1 and larger, the film extent is smaller, films do not
contribute substantially, and the drying rates are smaller. There we have
roughly,

F ∼ Dr2
t Ce

�
(36)

All previous pore-network models (Prat, 1995; Laurindo and Prat, 1996,
1998; Prat and Bouleux, 1999; Yiotis et al., 2001) correspond effectively to
such condition.
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Figure 14 shows a drying curve calculated using a pore-network model
that does not account for liquid films and a drying curve calculated with
our model for CaF =0.1 under comparable conditions. The presence of liq-
uid films increases the drying rate by approximately a factor of 10 even for
a relatively large value of CaF .

4. Conclusions

In this work, we first presented results from a 2D pore-network model
for isothermal drying in porous media that includes mechanisms like mass
transfer by advection and diffusion in the gas phase, viscous flow in liquid
and gas phases and capillary effects at the gas–liquid menisci in the pore
throats. In a further step, we proceeded to study the effect of capillarity-
driven flow in macroscopic liquid films during the drying process. A math-
ematical model that accounts for viscous flow both through the liquid films
and the bulk liquid phase was developed. Using a novel transformation, it
was found that film flow is a major transport mechanism, its effect being
dominant when capillarity controls the process, which is the case in typical
applications.

We have shown that capillarity-induced flow through the films that form
in cavities at the pore walls is favored by larger interfacial tension, larger
values of the film thickness at the percolation front (where the films ema-
nate) and smaller liquid viscosity. In typical drying problem the extent of
the liquid films is approximately proportional to the surface tension. The
liquid is transferred from the liquid clusters through the films towards the
film tips where it evaporates. The longer is the film region the closer to the
open boundary the liquid is transferred and the higher is the drying rate.
Our results are in qualitative agreement with previous experimental work
which shows accelerated drying when films contribute to flow.

The approach we followed was subject to several simplifying assump-
tions that may preclude the precise quantitative comparison with exper-
imental results. However, we believe that we have provided a good first
approximation to the complicated problem of film flow in drying processes.
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