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bstract

In the present paper we study the immiscible two-phase flow in porous media using the lattice Boltzmann model proposed by He et al. [X. He,
. Zhang, S. Chen, G.D. Doolen, Phys. Fluids 11 (1999) 1143–1152]. By considering a set of appropriate boundary conditions for the density
istribution function defined in that model, we account for the effect of wettability at solid–fluid interfaces and capillarity in the pores where the
uid–fluid interfaces reside. Different contact angles of the fluid–fluid interface at solid walls can be realized by taking appropriate values for the
ensity distribution function at the solid sites of the porous domain. It is shown that the steady state contact angle is a linear function of the density
alue assigned to the solid sites.

The model is then applied to the study of viscous coupling effects in immiscible two-phase flow in irregular pore networks, with respect to the
verall wetting saturation, the viscosity ratio and the wetting angle. Our results show that when the wetting fluid is less viscous than the non-wetting
uid then the apparent relative permeability of the non-wetting phase may take values greater than unity due to the “lubricating” effect of the
etting films that cover the solid walls. The proposed model is an ideal tool for modeling immiscible two-phase flow in porous media, due both
o its ability to incorporate complicated boundary conditions at the pore walls and also capture the physical aspects of the flow in the bulk and the
nterfaces. Furthermore, the width of the fluid–fluid interfaces is kept less than 3–4 lattice units allowing for simulations in relatively low resolution
orous lattices.
 2006 Elsevier B.V. All rights reserved.
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. Preliminaries

The flow of a single Newtonian fluid through an isotropic
orous medium is macroscopically described by Darcy’s law;

= −λ�P
�

(1)

here u is the superficial velocity of the fluid, defined as u = Q/A,

the volumetric flux of the fluid, A the cross-section of the

ore sample,�P/� the pressure gradient and λ a proportionality
onstant known as mobility and defined by λ= k/μ.
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μ is the dynamic viscosity of the fluid and k is the perme-
bility of the porous medium which is independent of the fluid
roperties [2,3].

Darcy’s law is also used to describe the simultaneous flow of
wo immiscible fluids in porous media. Under the assumption
hat each fluid moves through its own channel which is bounded
y the solid walls only (negligible area of the fluid–fluid inter-
ace) and/or that the shear stress exerted from one fluid to the
ther at the fluid–fluid interfaces is negligibly small (Fig. 1a),
hen the superficial velocity of each fluid is described by;

˜ i = −ki(Sw)∇Pi, where i = w, nw (2)

μi

here ki is the effective permeability of fluid i defined by ki = kkr,i

nd kr,i the relative permeability of fluid i. The subscripts w and
w denote the wetting and the non-wetting phase, respectively.

mailto:yiotis@ipta.demokritos.gr
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Fig. 1. Different phase distribution patterns during the immiscible two-phase
flow in 2D pore networks. The figure is reproduced from Ref. [3]. (a) Each fluid
moves in separate channels (pores). (b) Both fluids move in the same pores. (c)
Both fluids move in the same pores but each fluid wets different portions of the
s
d

U
k
t
t
i

i
c
C
t
t
n
[
o
t
d

p
s
a
t
s

(
fl

u

T
k
c

p
s
t
e
a
e

c
e

p

P

a
[

s
a
a
t
v

u

a

Q

fl
t
H
d
t
a
fl
a
i
f
m
t
r
t
t

2

olid walls. (d) Both fluids move in the same pores but the non-wetting fluid is
iscontinuous.

nder the assumptions described above the relative permeability
r,i, and thus the effective permeability ki, are both a function of
he phase saturation Sw (the pore volume fraction occupied by
he wetting phase), only. The relative permeability of each fluid
takes values in the region 0 ≤ kr,i ≤ 1.

The condition of negligible drag at the fluid–fluid interfaces
s satisfied when the flow rate and the fluid viscosities are suffi-
iently small (namely, for small values of the capillary number
a = uμ/γ , where γ is the fluid–fluid interfacial tension), when

he movement of the interface is controlled by capillarity and
he wetting phase is contained mostly in small pores while the
on-wetting phase occupies preferably larger pores (Fig. 1a)
3]. The same condition is also satisfied when the contact angle
f fluid–fluid interface with the solid walls is close to 90◦, so
hat the fluid–fluid interfaces are mostly vertical to the flow
irection.

In most typical applications of immiscible flow through
orous media, both fluids co-exist in most pores and there is
trong viscous coupling between them. The wetting fluid moves
long the solid surface and the non-wetting phase is not in con-
act with the solid but it flows in the central part of the void space
urrounded by the wetting fluid (Fig. 1b and d).

Several authors have proposed a modification of Darcy’s law
Eq. (2)) in order to account for momentum transfer across
uid–fluid interfaces and viscous coupling effects [4,5];
˜ i = −kii
μi

∇Pi − kij

μj
∇Pj, where i, j = w, nw and i �= j

(3)

s
a
m
h
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he permeability parameters are defined as kii = kkr,ii and
ij = kkr,ij. When kij = kji = 0 the above equations reduce to the
onventional uncoupled expressions of Darcy’s law (Eq. (2)).

The permeability parameter kii in Eq. (3) is equal to the
ermeability parameter in Eq. (2) and is function of the fluid
aturation only. This parameter shows the relationship between
he flow rate and the pressure gradient in phase i that would
xist if the other phase j was solid. This assumption is valid only
t intermediate saturations and under the conditions discussed
arlier (low capillary numbers, large contact angles).

The coupled permeability parameter kij accounts for viscous
oupling effects and depends on saturation among other param-
ters.

Eq. (3) along with an expression the for the local capillary
ressure at equilibrium Pc;

nw − Pw = Pc(Sw) (4)

re used to describe immiscible two-phase flow in porous media
3].

However, the coupled Eq. (3) can be expressed in a much
impler form (very similar to the uncoupled Eq. (2)) by defining
n apparent relative permeability for each fluid kr,i,app, which is
function of Sw, but also a function of the Capillary number Ca,

he viscosity ratioM = μnw/μw and ∇Pj . Then, the superficial
elocities of the fluids are;

˜ i = −kkr,i,app(Sw, Ca,M,∇Pj)
μi

∇Pi, where i = w, nw

(5)

nd the flow rates are

i = −Aui, where i = w, nw (6)

In this paper we study the effect of momentum transfer across
uid–fluid interfaces on the apparent relative permeabilities of

he wetting and non-wetting phases using the LB model by
e et al. [1]. We propose a set of appropriate boundary con-
itions at the solid sites for the density distribution function of
he LB model, in order to account for the effect of wettability
t solid–fluid interfaces and capillarity in the pores where the
uid–fluid interfaces reside. It is shown that different contact
ngles of the fluid–fluid interface at solid surfaces can be real-
zed by assigning appropriate values for the density distribution
unction at the solid sites of the porous domain. We use this
odel to study the effect of the viscosity ratio M and the con-

act angle θ on the apparent relative permeability curves. Our
esults show that the modified LB model can qualitatively cap-
ure viscous coupling effects and model the “lubricating” effect
hat arises when the viscosity ratio is M > 1.

. Multiphase lattice Boltzmann models in porous media

Two-phase flow in porous media is a subject of significant

cientific and industrial interest. It is involved in processes such
s underground water flows, oil recovery, soil remediation and
any more. In recent years, lattice Boltzmann models (LBM)

ave been used to simulate two phase flow in porous media [6,7],
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nd more complex two-phase processes such as viscous fin-
ering in Hele–Shaw cells (Shaffman–Taylor instabilities) [8],
ayleigh–Taylor instabilities [9,10], Kelvin–Helmholtz insta-
ilities [11] and the dynamics of liquid bubbles under gravity
12] among others. Such works demonstrate that the lattice
oltzmann method (LBM) is a powerful tool for the compu-

ational modeling of multiphase flow problems (see [13–16] for
review of the LB method and applications).

The LBM is a discrete method based upon the continuous
oltzmann equation. It considers a typical volume element of
uid to be composed of a collection of particles that are rep-
esented by a particle velocity distribution function for each
uid component at each grid point. The fluid particles can col-

ide with each other as they move, possibly under applied body
orces. The rules governing the collisions are designed such that
he time-average motion of the particles is consistent with the
avier–Stokes equation of motion and the continuity equation.
Lattice Boltzmann (LB) models evolved form lattice gas (LG)

odels [17]. In Lattice Gas approaches the fluid is modeled by
iscrete particles moving on predefined trajectories at constant
elocities. When two particles meet, they collide following pre-
efined collision rules and trajectories. The local density and
elocity is calculated by averaging the number of particles and
heir velocities over a large spatial volume. However, this scheme
roduces high local fluctuations in macroscopic quantities due
o the discrete nature of the colliding particles and requires much
emporal and spatial averaging to obtain accurate velocities and
ressure fields. This drawback of LG models has been over-
ome by the consideration of particle distributions instead of
ingle particles at each lattice site.

The growing popularity of LB models is due to the fact that
hey provide the means to simulate flows through and around
omplex solid surfaces, such as buildings, landscapes and porous
aterials. The boundary conditions at the solid surfaces are eas-

ly implemented in LB models through collision rules of the
uid particles with the surfaces.

Another advantage of LB models is that they are straight-
orward to parallelize (see for example [18]) since all variables
n the discretized algorithm depend solely on nearest-neighbor
nformation. Parallel LB models can be implemented in mod-
rn supercomputers with several hundreds of processors to
imulate large-scale problems such as airflow around automo-
iles and airplanes, underground water and petroleum reservoir
ows.

Several LB models have been applied to the study of multi-
hase flow through porous media. We briefly discuss the most
ommon of these models and highlight their strengths and weak-
esses when applied in porous domains. We show that the model
y He et al. [1] is ideal for modeling immiscible two-phase flows
n porous domains.

.1. Gunstensen et al. model
A two-phase flow LB model was originally introduced by
unstensen et al. [19] based on the red-or-blue Lattice Gas

cheme proposed by Rothman and Keller [20]. In the Rothman
nd Keller model the fluid particles were colored either blue or

t
i
s
i
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ed and the collision rules were modified to obtain surface ten-
ion between the fluids. These collision rules send particles of
ne color to neighboring sites containing other particles of the
ame color. Gunstensen et al. [19] designed a two-step two-phase
ollision rule that produced a locally anisotropic pressure tensor
ear the interface. At the first step of the model, a perturba-
ion is added to the particle distribution near an interface, which
eproduced the correct surface-tension dynamics. This addition
roduces surface tension at interfaces while retaining the adher-
nce to the Navier Stokes equation in homogeneous regions. In
he second step the mass is recolored to achieve zero diffusivity
f one color into the other. He and Doolen [21] showed that it is
ifficult to incorporate microscopic interactions quantitatively in
he Gunstensen model due to the heuristic modeling of particle
nteractions.

.2. Shan–Chen model

Shan and Chen [22,23] proposed a LB model for multiphase
ow by introducing a non-local interaction force between parti-
les at neighboring lattice sites. The local momentum modified
y the particle interaction forces is not conserved locally. How-
ver, the global momentum conservation is exactly satisfied
hen boundary effects are excluded. The SC model is capable
f simulating both miscible and immiscible flows. The authors
eported small anomalous velocities (also referred to as “spuri-
us” velocities) in the interface region, which they attributed to
he discrete nature of the model.

Several researchers have applied this model to multiphase
ow in porous domains [6,7,24]. Their results were qualitatively
imilar to experimental data, although they did not offer good
uantitative predictions. The authors argued that large lattices
re required to model flow along the films of the wetting phase
hat form on the pore walls and obtain accurate results when
he saturation of the wetting phase is less than 60%. These poor
uantitative results should be also attributed to the fact that the
nterface in the Shan–Chen model is not sharp but it spans across
everal lattice units and that the porosity and lattice size were
oth small in these simulations.

.3. Free energy model

A thermodynamically consistent two-phase LB model was
rst introduced by Swift et al. [25,26]. In this model the collision
ules were chosen such that the equilibrium state corresponds to
n input free energy and the bulk flow in governed by continuity,
he Navier–Stokes equation and a convection-diffusion equation.
wift et al. introduced a constraint for the second momentum of

he equilibrium distribution function where the pressure tensor is
efined in terms of the equilibrium free energy of the fluid mix-
ure. The model produces interfaces with a thickness of only two
attice units, which makes it ideal for modeling flows in porous

edia where the pore size may be only a few lattice units due

o computational limitations. The original “free-energy” model
s not Galilean invariant for the viscous terms in the macro-
copic Navier–Stokes equation (except for the case of binary
deal fluids [21]). Several works made significant progress by
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educing the lack of Galilean invariance of the model to order u2

27,28].

.4. He–Shan–Doolen model

More recently, a thermodynamically consistent LB model for
he simulation of two-phase flow in the nearly incompressible
imit under isothermal conditions was proposed by He et al.
1,10,29]. The interfacial dynamics, such as phase segregation
nd surface tension, are modeled by incorporating molecular
nteractions and an index function is used to track interfaces
etween different phases. The particle distribution function
hich is used in other LB models is replaced with a pressure
istribution function. This change allowed for the implementa-
ion of Equations of State (EOS) in the model. The approach
as based on a variation of the continuous Boltzmann equa-

ion that combined Enskog’s theory for dense fluids and the
ean-field theory for long-range molecular interaction. This
odel can describe non-ideal gas and dense fluids and was tested

ver several complex flows that produced Rayleigh–Taylor and
elvin–Helmholtz instabilities at the interface. The obtained

esults agree well with theoretical predictions [1,10]. Recently,
ee and Lin [12] proposed a collection of consistent discretiza-

ion strategies to further stabilize the model by He et al. at high
ensity and viscosity ratios.

In this study, we consider two-phase flow in irregular pore net-
orks using the He et al. model [1], where the interface thickness

s maintained between 3 and 4 lattice units. By considering a set
f appropriate boundary conditions for the particle distribution
unction at solid sites we account for the effect of wettability
t solid–fluid interfaces. We show that different contact angles
an be realized by taking appropriate density values at the pore
alls. The minimum pore size in our simulations is 10 lattice
nits in 3D simulations and 20 lattice units in 2D simulations,
n order to reduce the effect of interface thickness in our results
30]. We study the effect of the viscosity ratio M and the con-
act angle θ on the apparent relative permeability curves. Our
esults show that the modified LB model can qualitatively cap-
ure viscous coupling effects and model the “lubricating” effect
hat arises when the viscosity ratio is M > 1.

. Model description

In this section we briefly discuss the lattice Boltzmann model
roposed by He et al. [1,29]. We first describe how the LB model
ccounts for particle interactions in non-ideal gases and dense
uids, and then we show how the model is extended to account
or two-phase flow by considering an appropriate Equation of
tate. We finally propose a set of boundary condition for the
ensity distribution function at the solid sites to account for the
ffect of wettability.

.1. Single phase model for non-ideal gases and dense

uids

The Boltzmann equation with the Bhatnagar-Gross-Krook
BGK) collision approximation [31] which applies for rare gases

v
c

−

icochem. Eng. Aspects  300 (2007) 35–49

eads;

∂f

∂t
+ ξ̃ · ∂f

∂r̃
+ F̃ · ∂f

∂ξ̃
= −1

τ
(f − f eq) (7)

here F̃ is an external force (body force), i.e., gravity, ξ̃ the local
elocity vector of the fluid particles, r the position vector of the
articles and f is the particle density distribution function, which
ollows a Maxwell–Boltzmann distribution at thermodynamic
quilibrium;

eq(r̃, ξ̃) = ρ(r̃)

[
m

2πkT (r̃)

]3/2

exp

(
−m(ξ̃ − ũ(r̃))

2

2kT (r̃)

)
(8)

˜ is the macroscopic velocity vector of the fluid.
He et al. [29] proposed a LB model for non-ideal gases (long

istance molecular interactions). They argued that the same forc-
ng term F, which was used to account for body forces could also
ccount for particle interactions, such as Van der Waals forces.

They accounted for both the intermolecular attractions in non-
deal gases and the exclusion volume of molecules in dense
uids. Using a mean field approximation they found that the
ttractive force as a function of fluid density is;

˜ attr = −∇(−2aρ − κ∇2ρ) (9)

hen the overall molecular volume of a fluid becomes com-
arable with the volume of the fluid container, then the space
vailable for the motion of each molecule is reduced signifi-
antly. The collision probability is significantly different from
he collision probability in a rare gas due to the volume excluded
y the molecules.

Chapman and Cowling (chap. 16, Eq. 16.32.4) [32] showed
hat for dense fluids the collision operator in Eq. (7) should be

odified to account for the total volume of molecules and the
ollowing term should be added to the collision term of the LB
quation

f eqbρχ(ξ̃ − ũ0) · ∇ ln(ρ2χ) (10)

here b is a function of the molecular volume (given by
= 2πσ3/3m, where σ is the effective diameter of the molecule
nd m is the mass of a single molecule). χ is the increase in col-
ision probability due to the increase in fluid density. χ is equal
o 1 for rare gases and greater than 1 for dense fluids.

For dense fluids the volume of the molecules becomes com-
arable to the volume occupied by the gas. Therefore, the space
here the center of a molecule is allowed to lie is reduced and

he collision probability is increased. This is called the exclusion
olume effect and leads to an increase in the collision probabil-
ty by the factor χ, which is a function of position. The factor χ
s an increasing function of the local density ρ.

The above term accounts only for binary collisions between
ard spheres (the same as in rare gases where the BGK approxi-
ation holds). These collisions are also instantaneous. The space
olume occupied by the molecules increases significantly the
ollision probability.

By taking that ∂f/∂ξ̃ ≈ ∂f eq/∂ξ̃ = −f eq(m(ξ̃ − ũ)/kT ) =
f eq((ξ̃ − ũ)/RT ) and by adding the exclusion volume term



: Ph

(

e

w

F

a
e
p

b
i

3

p
i
t
m
a
i
s
T
t
f
a
[
m
c

t
b
b

f

F

F

w
t
r

s
c

b

p

t

ψ

N
d
(
l
I
t
s

d
t
d
m

a

t
v
w
f
(
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10) to the collision operator, Eq. (7) reads;

∂f

∂t
+ ξ̃ · ∂f

∂r̃
= −1

τ
(f − f eq) − f eqbρχ(ξ̃ − ũ) · ∇ ln(ρ2χ)

+ f eq F̃ · (ξ̃ − ũ)

RT
(11)

By combining Eqs. (9) and (11), the continuous Boltzmann
quation for non-ideal gases and dense fluids reads;

∂f

∂t
+ ξ̃ · ∂f

∂r̃
= −1

τ
(f − f eq) + f eq F̃

′ · (ξ̃ − ũ)

RT
(12)

here

˜ ′ = ρ∇(2αρ + κ∇2ρ) − bρ2RTχ∇ ln(ρ2χ) (13)

The first term of Eq. (13) comes from the intermolecular
ttraction and the second term comes from the exclusion-volume
ffect. The parameters α and b are related to the intermolecular
air-wise potential.

This expression for the forcing term, which was first proposed
y He et al. [29], will be used in this study to account for the
nteraction of the fluid particles with the pore walls.

.2. Two-phase model

Based on the above single phase model, He et al. [1] pro-
osed a lattice Boltzmann model for two phase flow in the nearly
ncompressible limit by considering a pressure distribution func-
ion along with the density distribution function of other LB

odels. The consideration of a pressure distribution function
llows for appropriate EOS to be implemented in the LB model
n order to describe two-phase flow dynamics. The bulk den-
ity of the fluids remains approximately constant in this model.
he interfacial dynamics, such as phase segregation and surface

ension, are modeled through molecular interactions. The inter-
acial thickness is maintained at 3–4 lattice units without any
rtificial “recoloring” step (like in the Gunstensen et al. model
19]). This makes it ideal for modeling two-phase flow in porous
edia where the pore size can be only a few lattice units due to

omputational limitations.
Using a mean-field approximation for intermolecular attrac-

ion and following the treatment of the exclusion-volume effect
y Enskog, the effective molecular attraction force is described
y Eq. (13).

The terms in Eq. (13) can be conveniently rearranged as
ollows in order to implement the forcing term in Eq. (7);

˜ ′ = 2αρ∇ρ + κρ∇∇2ρ − bρ2RTχ∇(2 ln(ρ) + ln(χ))

= α∇ρ2 + κρ∇∇2ρ − bρ2RTχ

(
2

ρ
∇ρ + 1

χ
∇χ
)

= κρ∇∇2ρ − ∇(bρ2RTχ− αρ2) (14)
The intermolecular force F′ can then be expressed as;

˜ ′ = −∇ψ + F̃s = −∇ψ + κρ∇∇2ρ (15)
ysicochem. Eng. Aspects 300 (2007) 35–49 39

here Fs is the force associated with the surface tension and ψ
he function of the density given by ψ = bρ2RTχ−αρ2 and is
elated to the pressure by P =ψ(ρ) + ρRT.

By considering an appropriate EOS to describe the macro-
copic pressure as a function of the local density, the LB model
an simulate two-phase flow.

Assuming that the pressure of non-ideal fluids is described
y the Carnahan–Starling EOS [33];

= ρ2RT
4 − 2ρ

(1 − ρ)3 − aρ2 + ρRT (16)

hen

(ρ) = ρ2RT
4 − 2ρ

(1 − ρ)3 − aρ2 (17)

ote that for α> 10.601RT, Eq. (16) has three roots that pro-
uce the same pressure p. Two of them are mechanically stable
dp/dV < 0) and one is unstable (dp/dV > 0). The unstable root
ies between the two stable roots and induces phase separation.
f the temperature exceeds the critical value T ≥ a/10.601R then
he intermolecular attraction is weak and the fluid exists in a
ingle stable phase (supercritical).

He et al. argued that the direct solution of Eq. (12) is difficult
ue to the calculation of the intermolecular force. To overcome
his problem they proposed a new pressure distribution function
efined as g = fRT +ψ(ρ)Γ (0), where Γ (ũ) is a function of the
acroscopic velocity u.
The evolution equation for g is;

Dg

Dt
= RT

Df

Dt
+ Γ (0)

Dψ(ρ)

Dt
(18)

The material derivative for incompressible fluids is;

Dψ(ρ)

Dt
= ∂ψ(ρ)

∂t
+ (ξ̃ − ũ) · ∇ψ(ρ) = (ξ̃ − ũ) · ∇ψ(ρ) (19)

nd finally;

Dg

Dt
= −g− geq

λ
+ (ξ̃ − ũ) ·

[Γ (ũ)(F̃s + G̃) − (Γ (ũ) − Γ (0))∇ψ(ρ)] (20)

He et al. used Eq. (12) to calculate the density field only, so
hey removed the forces which have no effect on mass conser-
ation. They retained however the intermolecular force �ψ(ρ)
hich is essential in phase separation. They introduced an index

unction ϕ which also satisfies Eq. (16) and they discretized Eq.
12) for the index function f;

The discrete LB model by He et al. reads;
= fi(x̃, t) − fi(x̃, t) − fi (x̃, t)

τ

−2τ − 1

τ

(ẽi − ũ) · ∇ψ(ϕ)

RT
Γi(ũ)δt (21)



4 Physicochem. Eng. Aspects  300 (2007) 35–49

a

w

t

ϕ

a
s

p

ρ

d
ϕ

ρ

w
d

3

n
m
a
w
s
c
a
m
i

c
l
p
r
W
d
o
i
a
a

s

F
t

s
s
w
o
e
f
t

s
l
a
s
p
t
e
l
t
the system changes from liquid-wet (upper left part of Fig. 3) to
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nd the discretized Eq. (20) is;

gi(x̃+ ẽiδt, t + δt)

= gi(x̃, t) − gi(x̃, t) − g
eq
i (x̃, t)

τ
− 2τ − 1

τ
(ẽi − ũ) ·

[Γi(ũ)(F̃s + G̃) − (Γi(ũ) − Γi(0))∇ψ(ρ)]δt (22)

here ẽi = ξ̃i.
The local index functionϕ is calculated form the first momen-

um of the distribution function f,

(x, y, z) =
∑
i

fi(x, y, z) (23)

nd the pressure and velocity are calculated from the first and
econd momentums of the distribution function g, respectively;

(x, y, z) =
∑
i

gi(x, y, z) − 1

2
ũ(x, y, z) · ∇ψ(ρ)δt (24)

(x, y, z)RT ũ(x, y, z) =
∑
i

ẽigi(x, y, z) + RT

2
(F̃s + G̃)δt

(25)

Different density values can be realized through a linear
ependence of the phase density ρwith the phase index function
;

(ϕ) = ρlow + ϕ − ϕlow

ϕhigh − ϕlow
(ρhigh − ρlow) (26)

here ρlow, ρhigh, ϕlow, ϕhigh are the low and high values of
ensity and the phase index function, respectively.

.3. Capillary effects

The original LB model developed by He et al. [1] does
ot account for intermolecular forces between fluid and solid
olecules at the fluid–solid interface. The bounce-back bound-

ry condition is applied to all fluid particles when they collide
ith a solid wall. The bounce-back boundary condition con-

erves the momentum of the fluid particles prior to and after the
ollision with the pore walls. Although this scheme is first-order
ccurate with respect to the particle speed, it is used in most LB
odels due to its simplicity and because only nearest-neighbor

nformation is required at each site of the computational domain.
In this paper we extend this LB model to the more general

ase of a three-phase system including a solid in contact with a
iquid and its vapors (Fig. 2). For a complete description of this
roblem both the pair-wise intermolecular potentials and their
ange are required. We follow the assumption by Rowlinson and

idom [34] that the solid is made up of rigid molecules of given
ensity. We should note here that this is a only a crude estimate
f the true chemical constitution of the solid and it is adopted
n our approach in order to take advantage of the mean field

pproximation for the intermolecular potential by Rowlinson
nd Widom [34].

Based on this assumption, we account for attracting (adhe-
ive) forces between fluid particles and molecules of the solid

F
t
e
s
f

ig. 2. Schematic representation of the interfacial tensions at the intersection of
he liquid–gas, gas–solid and liquid–solid interfaces.

urface by assigning an “effective” value for the density of the
olid sites in the range between ρgas and ρliq, depending on
hose phase’s molecules are attracted stronger by the molecules
f the solid surface. The density assigned to the solid lattice sites
nters the calculations through Eq. (15) for the force due to sur-
ace tension Fs. This boundary condition can be used to modify
he contact angle of the interface at the solid surface.

The effect of the assigned effective density value is demon-
trated by considering a square ‘droplet’ of the liquid phase
ocated between two parallel solid plates (Fig. 3). The upper
nd bottom sides of the droplet are in direct contact with the
olid plates and the other two sides are in contact with the gas
hase. A value in the range between ρgas and ρliq is assigned
o the solid sites (solid density) and the system is left to reach
quilibrium. Fig. 3 shows the equilibrium contact angle of the
iquid–gas interfaces for various values of the solid density. As
he value for the solid density ρs is changed from ρliq to ρgas,
ig. 3. Effect of the normalized solid density D = (ρs − ρgas)/(ρliq − ρgas) on
he wetting angle for a liquid droplet located between two parallel plates at
quilibrium. The system changes from strongly liquid-wet (upper left image) to
trongly gas-wet (lower right image) as the density of the solid walls decreases
rom ρliq to ρgas. The size of the computational domain is 300 × 300. κ = 10−5.
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ig. 4. Wetting angle (◦) vs. the normalized solid density D = (ρs − ρgas)/
ρliq − ρgas). The wetting angle exhibits a linear dependence on the solid density.
0−2 ≤ κ≤ 10−5.

The contact angle exhibits a linear dependence to the normal-
zed solid density;

= ρs − ρgas

ρliq − ρgas
(27)

s shown in Fig. 4.
Approaches similar to the one described above are also used

y Bekri and Adler [35] for the Gunstensen LB model and also
n the original LB model by Shan and Chen [22] through the
uid–solid interaction potential.

When the solid surface is very long compared to the size
f the liquid bubble and when D = 1, namely when the solid is
trongly water-wet, we expect that the liquid bubble will soon
ecome very thin and will eventually break-up so that both solid

lates are fully covered by a liquid film. The thickness of the
iquid film is the same on both plates. The evolution of such a
ubble is shown in Fig. 5.

ig. 5. Evolution of a liquid bubble (colored red) located between two parallel
lates when the solid is strongly liquid-wet (D → 1) and the size of the bubble is
mall compared to the length of the solid surface. The size of the computational
omain is 100 × 100. D = 0.75 and κ = 0.1. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of the
rticle.)
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ig. 6. Schematic of immiscible two phase flow between parallel plates. The
etting phase flows along the solid walls, while the non-wetting phase occupies

he central region of the flow.

. Viscous coupling during co-current flow in a 2D
hannel

In immiscible two-phase flow in porous media, the wetting
hase typically covers the surface of the solid where it flows
n the form of films (Figs. 1b and 5). The non-wetting phase is
ot in direct contact with the solid surface but it flows between
he films of the wetting phase. The velocity of the non-wetting
hase through the pores is affected by the viscosity ratio of the
uids defined as M =μnw/μw.

This is better demonstrated through the following study
f immiscible two-phase co-current flow through two parallel
lates. The length of the plates is infinite in the direction of the
ow and periodic boundary conditions apply at the sides ver-

ical to the direction of the flow. No-slip boundary conditions
pply at the plates. Both fluids have the same kinematic viscos-
ty ν but different densities ρ which produces different dynamic
iscosities μ= ρν.

For a given value of the wetting saturation Sw, we take the
etting phase flowing along the parallel plates in the region
< |x| < L (namely, in two films with same thickness L–a), and

he non-wetting phase flowing in the central region 0 < |x| < a,
here Sw = (L − a)/L = (1 − a)/L and Snw = a/L (Fig. 6).
We study the velocity profile at a cross-section vertical to

he direction of the flow. Assuming a Poiseuille-type flow, the
nalytical solution for the velocity profile between the parallel
lates is;

(x) = �P

2�ηw
(L2 − x2)

= F

2νwρw
(L2 − x2) in the wetting phase region,

< |x| < L, (28)

nd

(x) = �P

2�ηw
(L2 − a2) + �P

2�ηnw
(a2 − x2)

= F

2νwρw
(L2 − a2) + F

2νnwρnw
(a2 − x2)
n the non-wetting phase region, 0 < |x| < a, (29)

here νw, νnw, ρw, ρnw are the kinematic viscosities and den-
ities of the wetting and non-wetting phases, respectively. The
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Fig. 7. Steady state velocity profile perpendicular to the direction of the flow
when the more viscous fluid is the wetting phase. M = 0.1, F = 1.0 e−10, v = 0.1,
ρw = 0.25, ρnw = 0.02514, and κ = 0.
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The relative permeabilities of both phases as a function of
the wetting saturation Sw are shown in Fig. 10. The LB model
shows that the relative permeability of the wetting phase is inde-
2 A.G. Yiotis et al. / Colloids and Surfaces A:

ressure gradient in the direction of the flow is taken equal to F,
.e.,ΔP/� = F . The pressure gradient is the same in both phases
ut the dynamic viscosity produces different average velocities
n each phase. So the average volumetric rate is different in each
hase.

The relative permeability of each phase is defined in terms
f the superficial velocity of the fluid particles across a cross-
ection perpendicular to the flow direction (y);

r,w(Sw) =
∫ L
|x|=a vw dx∫ L
|x|=0 vw dx

, kr,nw =
∫ a
|x|=0 vnw dx∫ L
|x|=0 vnw dx

(30)

It can be easily shown using Eqs. (28)–(30) that the relative
ermeabilities as a function of the wetting saturation is given by
see the Appendix for more details)

kr,w = 1

2
S2

w(3 − Sw),

kr,nw = Snw

[
3

2
M + S2

nw

(
1 − 3

2
M

)]
(31)

q. (31) shows that the relative permeability of the wetting
hase between two parallel plates is a function of the wetting
aturation Sw only. However, the relative permeability of the
on-wetting phase is a function of both the wetting saturation
nd the viscosity ratio M.

When M � 1, namely when the viscosity of the wetting phase
s much larger than the viscosity of the non-wetting phase then
r,nw = S3

nw = (1 − Sw)3 and the relative permeability is always
ess than 1. When M > 1, then the relative permeability of the
on-wetting phase is a function of both Sw and M, and it may
ake values greater than 1 (see Fig. 10).

.1. Relative permeabilities when M < 1

Using the LB model presented in the previous section we
olve for the velocity profile in the slit in order to calculate the
elative permeabilities of both phases as a function of the wetting
aturation and the viscosity ratio M.

We first consider the case where M < 1, namely when the
iscosity of the wetting phase is greater than the viscosity of the
on-wetting phase. Fig. 7 shows the velocity profile for M = 0.1.
lthough both phases are subject to the same pressure gradient,

he non-wetting phase accelerates faster than the wetting phase
ecause it is less viscous. The velocity profile calculated with the
B model is in very good agreement with the analytical solution.

Fig. 8 shows the relative permeabilities as a function of
he wetting phase saturation. The relative permeability of both
hases is less than 1 when M < 1, as expected from Eq. (31).

.2. Relative permeabilities when M > 1

When M > 1, the velocity of the non-wetting phase is signif-

cantly affected by the saturation of the wetting phase. Fig. 9
hows the velocity profile for M = 10. In this case the viscosity
f the wetting phase is smaller than the viscosity of the non-
etting phase. The agreement between the analytical solution

F
w
ρ

ig. 8. Calculated relative permeabilities for the wetting and non-wetting phases
n a slit when M = 0.1. Also shown the analytical solutions for both phases.

nd numerical results obtained using the LB model by He et al.
s very satisfactory.
ig. 9. Steady state velocity profile perpendicular to the direction of the flow
hen the less viscous fluid is the wetting phase. M = 10, F = 1.0 e−10, v = 0.1,

w = 0.25, ρnw = 0.02514, and κ = 0.
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Fig. 10. Calculated relative permeabilities for the wetting and non-wetting
phases in a slit when M = 10. Also shown the analytical solutions for both phases.
The permeability of the non-wetting phase in a slit where both phases coexist
is typically greater than the relative permeability of the single phase flow of
the non-wetting phase (S = 1) due to the “lubricating” effect of the wetting
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blocks with a probability Sw for the wetting phase and 1 − Sw
for the non-wetting phase, where Sw is the wetting saturation.

The pore network is subject to periodic boundary conditions
in all directions. We calculate the steady state superficial velocity
nw

hase at the solid walls [36]. The relative permeability of the wetting phase is
ot affected by the viscosity ratio M.

endent of the viscosity ratio. The relative permeability of the
on-wetting phase is typically greater than the absolute perme-
bility of the single-phase flow of the non-wetting component
owing between two parallel plates for low to intermediate
alues of the wetting fluid saturation. This is the well-known
lubricating” effect [36], which is captured very satisfactorily
y our simulations. The numerical results are in good agreement
ith the analytical solution.
Fig. 11 shows the relative permeabilities for M = 0.1, M = 1,
= 3 and M = 10. The error of the LB simulations is less than

5% for all values of M. The maximum error appears for very
ow and very high values of Sw, while for intermediate values
he error is practically negligible.

The relative permeability of the wetting phase is practi-

ally independent of the viscosity ratio as expected (Eq. (31)).
owever, the relative permeability of the non-wetting phase

s strongly dependent on the viscosity ratio M. When M � 1,
amely when the viscosity of the wetting phase is much larger

ig. 11. Calculated relative permeabilities for the wetting and non-wetting
hases in a slit for various values of the viscosity ratio M. F = 1.0 e−10, v = 0.1,
nd κ = 0.
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han the viscosity of the non-wetting phase then kr,nw = S3
nw =

1 − Sw)3 and the relative permeability is always less than 1.
hen M > 1, then the relative permeability of the non-wetting

hase is a function of both Sw and M, and it may take values
reater than 1 (Fig. 10).

. Flow through pore networks

The simplified Poiseuille-type flow considered in the previ-
us section offers some insight in viscous coupling in a single
hannel. In this section we consider the more complicated prob-
em of two-phase flow in a porous medium. The porous medium
s represented by 2D and 3D pore networks of N2 square or

3 cubic solid and void (pore space) blocks. The size of each
lock is nd lattice units (�x) and so the size of the computational
omain is Ld = (N × n)d lattice units, where d is the dimension-
lity of the pore network. The blocks are randomly distributed
n space so that the probability of finding a void block at each
ne of the Nd positions in the network is equal to ε, where ε is
he porosity of the network. The probability of finding a solid
lock is 1 − ε.

Initially, we consider that the liquid and gas phases also reside
n blocks of size nd lattice units distributed at random in the void
ig. 12. Schematic of the domain decomposition in our algorithm. The compu-
ational domain for each processor is shown in white color. At the boundaries of
he computational subdomains, the data calculated at the previous time step is
tored in dummy subdomains (where no calculations take place), shown in grey
olor. The dummy subdomains serve as boundary conditions for the local cal-
ulations at the current time step. The computational domain (two-dimensional
rrays) is decomposed in the y-direction in order to take advantage of Fortran’s
olumn-major storage of multi-dimensional array elements.
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ties. The apparent relative permeabilities are calculated through
the average velocity of each phase at steady state as discussed
in Section 4. The average (superficial) velocity of the flow typ-
ically reaches a steady state value after 300,000 �t, as shown in
4 A.G. Yiotis et al. / Colloids and Surfaces A:

f each phase in order to estimate the relative permeabilities as
function of the wetting saturation and the viscosity ratio M.

The lattice Boltzmann model described in Section 3 is
arallelized for implementation on distributed memory com-
uters using the Message Passing Interface (MPI) libraries
see Pacheco [37] for a review of MPI programming). The
omputational domain (two- and three-dimensional arrays) is
ecomposed in the y-direction in 2D pore networks and in the
-direction in 3D pore networks in order to take advantage
f Fortran’s column-major storage of multi-dimensional array
lements. This scheme ensures that array elements exchanged
cross processors with MPI are located in continuous memory
locks (Fig. 12).

The numerical simulations terminated when the average
elocity of both phases reached a steady state. This typically
equired more than 300,000 time steps for a body force of

= 10−7.

. Results and discussion

A series of numerical simulations were performed in a 2D
ore network with porosity ε= 0.77 and a 3D pore network with
orosity ε= 0.53 for various values of the initial wetting satura-
ion Sw and fixed values of the wetting angle θ. The porosity was
elected to be greater than 0.6 in 2D and greater than 0.3 in 3D, so
hat the network is percolating in all directions. For the 2D simu-
ations, the dimension of the computational grid was 400 × 400
attice units (L = 400�x) and the size of each block of solid or
oid was 20 × 20 lattice units (n = 20�x). Thus, the dimension of
he pore network was 20 × 20 blocks (N = 20). For the 3D simu-
ations, the computational domain was 100 × 100 × 100 lattice
nits (L = 100�x) and the size of each block of solid or void
as 10 × 10 × 10 lattice units (n = 10�x). The size of the pore
etwork was 10 × 10 × 10 blocks (N = 10).

The immiscible flow through the pore network is charac-
erized by three dimensionless numbers; the viscosity ratio

=μnw/μw, the Reynolds number Re = ud/ν and the capillary
umber Ca, which expresses the ratio of viscous forces to cap-
llary forces in any pore and is usually defined as Ca = uμ/γ .

The maximum gas velocity in our simulations was
= 10−3(�x/�t) in the higher porosity 2D pore networks when

he saturation of the less viscous phase was 100%. The applied
ody force was G = 10−7(�x/�t2) in 2D and G = 10−6(�x/�t2) in
D pore networks.

The kinematic viscosity is ν = (1/3)(τ− (1/2))(�x2/�t). The
imensionless relaxation time was selected τ = 0.8, therefore
= 0.1(�x2/�t).The maximum Reynolds number in our simu-

ations was Re = un/ν = 0.2. This ensures that the flow rate is
ufficiently low so that Darcy’s law is valid in our pore network
2], but, at the same time, sufficiently high so that there is strong
iscous coupling between the two phases.

The capillary number Ca is obtained from our simulation
y taking the ratio of the body forces to the interfacial forces

a = G/Fs = 10−7/4.25 × 10−5 = 0.002 in 2D and Ca = 0.02

n 3D. These are relatively high values of Ca, where the
ovement of the interface is controlled by viscous forces

38].
F
s

Fig. 13. Parallel speedup of our LB algorithm.

Our typical production runs were performed on 10–20 CPUs
or 300,000 to 1,000,000 �t. Each numerical simulation required
pproximately 4–32 h, depending on the dimensionality of the
ore network and the number of available CPUs.

The parallel speedup of our algorithm is shown in Fig. 13.
he speedup is defined as S(p) = t(serial)/t(p) where t(serial) is

he execution time of the serial code and t(p) is the execution
ime of the parallel code on p CPU’s. The parallel efficiency E of
ur LB code is greater than 0.8 on 20 CPU’s and drops to 0.625
n 40 CPU’s. The parallel efficiency is defined as E(p) = S(p)/p.

.1. Wetting phase viscosity is less than non-wetting phase
iscosity (M > 1)

We first consider the case where the viscosity of the wetting
hase is less than the viscosity of the non-wetting phase, namely
> 1. The normalized solid density defined by Eq. (27) is taken

qual to D = 0.05. As described in Section 3, this produces a
ontact angle θ = 175◦.

A series of numerical simulations were performed for various
alues of the initial wetting saturation Sw, in order to calculate
hase distribution patterns and the apparent relative permeabili-
ig. 14. Convergence of the superficial velocity of the wetting phase in our 2D
imulations with respect to the elapsed time steps �t. G = 1.0 e−7, and ε= 0.77.
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Fig. 15. Phase distribution patterns in 2D pore networks at different times (t = 0,
100,000, 200,000, 300,000�t) when the wetting phase is the less viscous phase
(blue color) M = 10 at Sw = 0.2. The more viscous phase is shown in red color.
D = 0.05, θ = 175◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4. The wetting phase is not
spanning and its permeability is equal to zero, while the non-wetting phase is
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Fig. 16. Phase distribution patterns in 2D pore networks at different times (t = 0,
100,000, 200,000, 300,000�t) when the wetting phase is the less viscous phase
(blue color) M = 10 at Sw = 0.6. The more viscous phase is shown in red color.
D = 0.05, θ = 175◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4. The non-wetting phase is
still spanning most of the time, but also a significant amount of the non-wetting
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greater than one over a significant range of Sw. This is in agree-
panning the whole network. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of the article.)

ig. 14. However, the variance of the numerical values increases
ignificantly as the wetting saturation increases. This should
e attributed to the wetting phase being less viscous than the
on-wetting phase.

Fig. 15 shows the evolution of the phase distribution pat-
erns when the wetting saturation isSw = 0.2. The wetting phase
shown in blue color) covers the solid surface, while the non-
etting phase (shown in red color) forms a spanning cluster that
ows among the wetting phase films. The wetting phase is prac-

ically immobile and its permeability is equal to zero since the
olid blocks are not spanning the 2D pore network.

Fig. 16 shows the evolution of the phase distribution patterns
hen wetting phase saturation is Sw = 0.6. Both phases are now

panning at all times. The non-wetting phase also flows in large
lobs that detach from the continuous non-wetting phase.

At high wetting phase saturations, i.e., Sw = 0.8 in Fig. 17,
he wetting phase is continuous and the non-wetting phase
ecomes discontinuous. The non-wetting phase flows in the form
f small blobs. These blobs are significantly accelerated due to
he lubricating effect of the wetting gas phase that covers the
ore walls.

This is demonstrated in Fig. 18 that shows the apparent rel-
tive permeabilities for both phases with respect to the wetting

aturation when M > 1. For low to intermediate values of the
etting saturation, the relative permeability of the non-wetting
hase is significantly larger than 1 due to the lubricating effect.

m
t
w

hase flows in large blobs. (For interpretation of the references to colour in this
gure legend, the reader is referred to the web version of the article.)

Similar results are obtained from simulations in 3D pore net-
orks when M > 1. Fig. 19 shows the distribution of the wetting

nd non-wetting phases in the pore space when the wetting sat-
ration is Sw = 0.8. The non-wetting phase is flowing through
he pore-space in the form of large discontinuous blobs. Fig. 20
hows the relative permeability curves for both fluids. The appar-
nt permeability of the non-wetting phase is greater than 1 when
he wetting phase saturation is smaller than 0.7 and exhibits

maximum at approximately Sw ≈ 0.5 for the specific pore
tructure.

Non-wetting phase permeabilities exceeding single phase
ermeabilities have been measured by Odeh [36] indicating
ubrication by a thin wetting phase film covering the pore walls
Fig. 21). However, this phenomenon has not been studied in
etail and the relevant literature is very limited.

Goode and Ramakrishnan [39] produced relative permeabili-
ies of the non-wetting phase greater than 1 using a pore network

odel when M > 1. Ehrlich [40] also produced similar results
sing a bundle of capillary tubes model. He showed lubrication
f oil by water located in the corners of the irregularly shaped
ubes due to viscous coupling at the liquid–liquid interface.
or M =μoil/μwater > 1, the oil apparent relative permeability is
ent with the results obtained in this study. Ehrlich also showed
hat water relative permeability shows little sensitivity to M, as
e will also demonstrate in the next section.
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Fig. 17. Phase distribution patterns in 2D pore networks at different times (t = 0,
100,000, 200,000, 300,000�t) when the wetting phase is the less viscous phase
(blue color) M = 10 at Sw = 0.8. The more viscous phase is shown in red color.
D = 0.05, θ = 175◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4. The wetting phase is now
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Fig. 18. Relative permeabilities in 2D pore networks when M = 10. D = 0.05,
θ = 175◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4. The relative permeability of the
non-wetting phase is greater than 1 for intermediate values of the wetting sat-
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panning the entire network and the non-wetting phase flows in the form of small
lobs. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of the article.)

.2. Wetting phase viscosity is greater than non-wetting

hase viscosity (M < 1)

We also consider the case where the viscosity of the wetting
hase is greater than the viscosity of the non-wetting phase,

9
p
a
s

ig. 19. Phase distribution patterns in 3D pore networks of the wetting phase (left p
olid is not shown in these figures. D = 0.05, θ = 175◦, G = 1.0 e−7, ε= 0.53, and κ = 1
ration due to the “lubricating effect” at the pore walls and viscous coupling
etween the phases within the pores.

amely M < 1. The normalized solid density is taken equal to
= 0.65. This produces a contact angle θ = 55◦.
Fig. 22 shows the evolution of the phase distribution patterns

hen the saturation of the less viscous non-wetting phase is
nw = 0.2 and M = 0.1. The wetting phase (red) covers most of

he solid surface, while the non-wetting gas phase flows in the
orm of small blobs and is not spanning the pore network.

Fig. 23 shows the evolution of the phase distribution patterns
hen the gas saturation is Snw = 0.6 and M = 0.1. The wetting

iquid phase covers most of the solid surface and it flows in the
orm of large blobs that become detached form the solid walls.
ue to the relatively large value of the contact angle (close to
0◦), the solid walls are not entirely covered by the wetting

hase, as in Section 6.1. Both phases coexist in the pore channels
nd both are in contact with the solid surface, although the solid
urface is mostly covered by the more viscous wetting phase.

anel) and the non-wetting phase (right panel) when M = 10 and Sw = 0.8. The
0−4.
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Fig. 22. Phase distribution patterns in 2D pore networks at different times (t = 0,
100,000, 200,000, 300,000�t) when the wetting phase is the more viscous phase
(red color) M = 0.1 at Sw = 0.8. The less viscous non-wetting phase is shown in
blue color. D = 0.65, θ = 55◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of the article.)
ig. 20. Relative permeabilities when M = 10 in the 3D pore network. D = 0.05,
= 175◦, G = 1.0 e−7, ε= 0.53, and κ = 10−4.

The apparent relative permeabilities for both phases with
espect to the wetting saturation are shown in Fig. 24. The rela-
ive permeabilities of both phases are less than one, as expected
hen the wetting phase is more viscous than the non-wetting
hase. However, the relative permeability curve of the non-
etting phase is qualitatively different than the same curve for
= 0.1 for the flow between parallel plates (Section 4). This

hould be attributed to the fact that neither of the phases is
ery strongly wetting the solid and also to the presence of the
isordered porous medium.

Under the conditions assumed in this paper, namely relatively
igh Capillary numbers [38], both fluids co-exist in most pores
nd there is strong viscous coupling between them. The wetting
uid moves along the solid surface and the non-wetting phase is
ot generally in contact with the solid, but it flows in the central
art of the void surrounded by the wetting fluid.
The effect of viscous coupling on the apparent relative perme-
bility of the wetting phase is more significant within the pore
etwork than between the parallel plates examined in Section

ig. 21. Relative permeabilities of water and oil in low permeability sandstone
from Ref. [36]). For values of M > 1, the relative permeability of takes values
reater than 1.

Fig. 23. Phase distribution patterns at different times (t = 0, 100,000, 200,000,
300,000�t) when the wetting phase is the more viscous phase (red color) M = 0.1
at Sw = 0.4. The less viscous non-wetting phase is shown in blue color. D = 0.65,
θ = 55◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of the
article.)
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Fig. 24. Relative permeabilities in 2D pore networks when M = 0.1. D = 0.65,
θ = 55◦, G = 1.0 e−7, ε= 0.77, and κ = 10−4.
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ig. 25. Relative permeabilities for various values of M in the 2D pore network
onsidered in this study. G = 1.0 e−7, ε= 0.77, and κ = 10−4.

(compare Figs. 11 and 25). On the other hand, the lubricat-
ng effect on the non-wetting phase becomes less important in
he porous medium due to the disordered nature of the pore
pace. The relative permeability of the non-wetting phase does
ot exceed 1.2 in the pore network when M = 10, while for the
ow between parallel plates it takes values much greater than 1.

. Conclusions

In this study we consider two-phase flow in irregular square
nd cubic pore networks using the immiscible two-phase lattice
oltzmann model proposed by He et al. [1], where the interface

hickness is maintained between 3 and 4 lattice units. This unique
eature of the He et al. model makes it ideal for flows in pores
nd cavities with a size of only a few lattice units.

By considering a set of appropriate boundary conditions for
he index function, we account for the effect of wettability at
olid–fluid interfaces and capillary effects within the pore space.
t is shown that steady state contact angle is a linear function of
he density value assigned to the solid sites.

The proposed model is applied to study of the relative perme-

bilities with respect to the wetting saturation and the viscosity
atio in pore networks. We find that non-wetting phase perme-
bilities may exceed single phase permeabilities under certain
ow conditions (relatively high values of the Capillary num-

k

E
p

icochem. Eng. Aspects  300 (2007) 35–49

er and low contact angles), when viscous forces control the
ovement of the interface and when the wetting phase is less

iscous than the wetting phase. This indicates strong viscous
oupling between the phases flowing in the same pores and also
lubrication” by a thin wetting phase film covering the pore
alls.
To the best of our knowledge this is the first study that viscous

oupling in two-phase flow through porous media has been mod-
led using a LB approach. Our results show that the LB model
sed in this study is an ideal tool for modeling immiscible flow
n porous media, due both to its ability to incorporate compli-
ated boundary conditions at the pore walls and also capture the
hysical aspects of the flow in the bulk and the interfaces.
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ppendix A. Calculation of relative permeabilities for
mmiscible two phase flow between parallel plates

We consider the permeability of each phase in two phase flow
etween two parallel plates at distance 2L as shown in Fig. 9.
he length and depth of the plates are both infinite.

The relative permeability kr,i of each phase i at a fixed satura-
ion Si is defined as; kr,i = Qi(Si)/Qi(Si = 1), where Qi is the flow
ate of phase i.

We assume that the wetting phase is located over the plates
t a < |x| < L and the non-wetting phase is located at 0 < |x| < a.

The local velocity within the wetting phase reads

(x) = F

2νwρw
(L2 − x2) = FL2

2νwρw

(
1 − x2

L2

)
(A.1)

Assuming single phase flow of the wetting phase in the slit,
he flow rate of the wetting phase is

w,max = 2N
∫ L

x=0
u(x) dx = 2N

∫ L

x=0
u(x) dx

= 2N
FL2

2νwρw

∫ L

0

(
1 − x2

L2

)
dx = 2

3

NFL3

νwρw
(A.2)

here N is the depth of the plates.
The relative permeability at saturation Sw is

r,w = Qw(Sw)

Qw,max
= 1

Qw,max

∫ L

a

FL2

2νwρw

(
1 − x2

L2

)
dx (A.3)

iven that Sw = (L− a)/L = 1 − (a/L), Eq. (A.3) reads;
r,w =
2
S2

w(3 − Sw) (A.4)

q. (A.4) shows that the relative permeability of the wetting
hase is independent of the viscosity ratio M.
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The local velocity in the non-wetting phase is

(x) = F

2νwρw
(L2 − a2) + F

2νnwρnw
(a2 − x2) (A.5)

Assuming single phase flow of the non-wetting phase in the
lit, the flow rate of the non-wetting phase is

nw,max = 2

3

NFL3

νnwρnw
(A.6)

The relative permeability at saturation Snw = 1 − Sw is

r,nw = Qnw(1 − Sw)

Qnw,max
= 1

Qnw,max

∫ a

x=0

F

2νwρw
(L2 − a2) dx

+ 1

Qnw,max

∫ a

0

F

2νnwρnw
(a2 − x2) dx (A.7)

r,nw = Snw

[
3

2
M + S2

nw

(
1 − 3

2
M

)]
(A.8)

here M = νnwρnw/νwρw.
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