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Abstract

In the present paper we study the immiscible two-phase flow in porous media using the lattice Boltzmann model proposed by He et al. [X. He,
R. Zhang, S. Chen, G.D. Doolen, Phys. Fluids 11 (1999) 1143-1152]. By considering a set of appropriate boundary conditions for the density
distribution function defined in that model, we account for the effect of wettability at solid—fluid interfaces and capillarity in the pores where the
fluid—fluid interfaces reside. Different contact angles of the fluid—fluid interface at solid walls can be realized by taking appropriate values for the
density distribution function at the solid sites of the porous domain. It is shown that the steady state contact angle is a linear function of the density
value assigned to the solid sites.

The model is then applied to the study of viscous coupling effects in immiscible two-phase flow in irregular pore networks, with respect to the
overall wetting saturation, the viscosity ratio and the wetting angle. Our results show that when the wetting fluid is less viscous than the non-wetting
fluid then the apparent relative permeability of the non-wetting phase may take values greater than unity due to the “lubricating” effect of the
wetting films that cover the solid walls. The proposed model is an ideal tool for modeling immiscible two-phase flow in porous media, due both
to its ability to incorporate complicated boundary conditions at the pore walls and also capture the physical aspects of the flow in the bulk and the
interfaces. Furthermore, the width of the fluid—fluid interfaces is kept less than 3—4 lattice units allowing for simulations in relatively low resolution
porous lattices.
© 2006 Elsevier B.V. All rights reserved.
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1. Preliminaries

The flow of a single Newtonian fluid through an isotropic
porous medium is macroscopically described by Darcy’s law;

LAP 0
U=—rA—
¢

where u is the superficial velocity of the fluid, defined as u = Q/A,
QO the volumetric flux of the fluid, A the cross-section of the
pore sample, A P/ the pressure gradient and A a proportionality
constant known as mobility and defined by A =k/u.

* Corresponding author. Tel.: +30 210 6503407, fax: +30 210 6525004.
E-mail address: yiotis @ipta.demokritos.gr (A.G. Yiotis).

0927-7757/$ — see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.colsurfa.2006.12.045

W is the dynamic viscosity of the fluid and k is the perme-
ability of the porous medium which is independent of the fluid
properties [2,3].

Darcy’s law is also used to describe the simultaneous flow of
two immiscible fluids in porous media. Under the assumption
that each fluid moves through its own channel which is bounded
by the solid walls only (negligible area of the fluid—fluid inter-
face) and/or that the shear stress exerted from one fluid to the
other at the fluid—fluid interfaces is negligibly small (Fig. 1a),
then the superficial velocity of each fluid is described by;

~ ki(Sw)
il =
i

where k; is the effective permeability of fluid i defined by k; = kk,.;
and k,; the relative permeability of fluid i. The subscripts w and
nw denote the wetting and the non-wetting phase, respectively.

VP;, where i =w,nw 2)
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Fig. 1. Different phase distribution patterns during the immiscible two-phase
flow in 2D pore networks. The figure is reproduced from Ref. [3]. (a) Each fluid
moves in separate channels (pores). (b) Both fluids move in the same pores. (c)
Both fluids move in the same pores but each fluid wets different portions of the
solid walls. (d) Both fluids move in the same pores but the non-wetting fluid is
discontinuous.

Under the assumptions described above the relative permeability
ki, and thus the effective permeability k;, are both a function of
the phase saturation Sy, (the pore volume fraction occupied by
the wetting phase), only. The relative permeability of each fluid
i takes values in the region 0 <k,; <1.

The condition of negligible drag at the fluid—fluid interfaces
is satisfied when the flow rate and the fluid viscosities are suffi-
ciently small (namely, for small values of the capillary number
Ca=upuly, where y is the fluid—fluid interfacial tension), when
the movement of the interface is controlled by capillarity and
the wetting phase is contained mostly in small pores while the
non-wetting phase occupies preferably larger pores (Fig. 1a)
[3]. The same condition is also satisfied when the contact angle
of fluid—fluid interface with the solid walls is close to 90°, so
that the fluid—fluid interfaces are mostly vertical to the flow
direction.

In most typical applications of immiscible flow through
porous media, both fluids co-exist in most pores and there is
strong viscous coupling between them. The wetting fluid moves
along the solid surface and the non-wetting phase is not in con-
tact with the solid but it flows in the central part of the void space
surrounded by the wetting fluid (Fig. 1b and d).

Several authors have proposed a modification of Darcy’s law
(Eq. (2)) in order to account for momentum transfer across
fluid—fluid interfaces and viscous coupling effects [4,5];

il = —EVPZ- — kiVPj,
i W

where i, j = w,nwandi # j
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The permeability parameters are defined as k;;=kk,; and
kij=kkyj;. When k;;=kj; =0 the above equations reduce to the
conventional uncoupled expressions of Darcy’s law (Eq. (2)).

The permeability parameter k;; in Eq. (3) is equal to the
permeability parameter in Eq. (2) and is function of the fluid
saturation only. This parameter shows the relationship between
the flow rate and the pressure gradient in phase i that would
exist if the other phase j was solid. This assumption is valid only
at intermediate saturations and under the conditions discussed
earlier (low capillary numbers, large contact angles).

The coupled permeability parameter k;; accounts for viscous
coupling effects and depends on saturation among other param-
eters.

Eq. (3) along with an expression the for the local capillary
pressure at equilibrium P;

in_PWZPc(Sw) (4)

are used to describe immiscible two-phase flow in porous media
[3].

However, the coupled Eq. (3) can be expressed in a much
simpler form (very similar to the uncoupled Eq. (2)) by defining
an apparent relative permeability for each fluid &;;; app, Which is
a function of Sy, but also a function of the Capillary number Ca,
the viscosity ratio M = jtnw/itw and V P;. Then, the superficial
velocities of the fluids are;

_kkr,i,app(Sw, Ca, M, VP]-)

i = VP;, where i =w,nw
Hi
5
and the flow rates are
Q; = —Au;, where i =w,nw (6)

In this paper we study the effect of momentum transfer across
fluid—fluid interfaces on the apparent relative permeabilities of
the wetting and non-wetting phases using the LB model by
He et al. [1]. We propose a set of appropriate boundary con-
ditions at the solid sites for the density distribution function of
the LB model, in order to account for the effect of wettability
at solid—fluid interfaces and capillarity in the pores where the
fluid—fluid interfaces reside. It is shown that different contact
angles of the fluid—fluid interface at solid surfaces can be real-
ized by assigning appropriate values for the density distribution
function at the solid sites of the porous domain. We use this
model to study the effect of the viscosity ratio M and the con-
tact angle 6 on the apparent relative permeability curves. Our
results show that the modified LB model can qualitatively cap-
ture viscous coupling effects and model the “lubricating” effect
that arises when the viscosity ratio is M > 1.

2. Multiphase lattice Boltzmann models in porous media

Two-phase flow in porous media is a subject of significant
scientific and industrial interest. It is involved in processes such
as underground water flows, oil recovery, soil remediation and
many more. In recent years, lattice Boltzmann models (LBM)
have been used to simulate two phase flow in porous media [6,7],
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and more complex two-phase processes such as viscous fin-
gering in Hele-Shaw cells (Shaffman—Taylor instabilities) [8],
Rayleigh—Taylor instabilities [9,10], Kelvin—-Helmholtz insta-
bilities [11] and the dynamics of liquid bubbles under gravity
[12] among others. Such works demonstrate that the lattice
Boltzmann method (LBM) is a powerful tool for the compu-
tational modeling of multiphase flow problems (see [13—16] for
areview of the LB method and applications).

The LBM is a discrete method based upon the continuous
Boltzmann equation. It considers a typical volume element of
fluid to be composed of a collection of particles that are rep-
resented by a particle velocity distribution function for each
fluid component at each grid point. The fluid particles can col-
lide with each other as they move, possibly under applied body
forces. The rules governing the collisions are designed such that
the time-average motion of the particles is consistent with the
Navier—Stokes equation of motion and the continuity equation.

Lattice Boltzmann (LB) models evolved form lattice gas (LG)
models [17]. In Lattice Gas approaches the fluid is modeled by
discrete particles moving on predefined trajectories at constant
velocities. When two particles meet, they collide following pre-
defined collision rules and trajectories. The local density and
velocity is calculated by averaging the number of particles and
their velocities over a large spatial volume. However, this scheme
produces high local fluctuations in macroscopic quantities due
to the discrete nature of the colliding particles and requires much
temporal and spatial averaging to obtain accurate velocities and
pressure fields. This drawback of LG models has been over-
come by the consideration of particle distributions instead of
single particles at each lattice site.

The growing popularity of LB models is due to the fact that
they provide the means to simulate flows through and around
complex solid surfaces, such as buildings, landscapes and porous
materials. The boundary conditions at the solid surfaces are eas-
ily implemented in LB models through collision rules of the
fluid particles with the surfaces.

Another advantage of LB models is that they are straight-
forward to parallelize (see for example [18]) since all variables
in the discretized algorithm depend solely on nearest-neighbor
information. Parallel LB models can be implemented in mod-
ern supercomputers with several hundreds of processors to
simulate large-scale problems such as airflow around automo-
biles and airplanes, underground water and petroleum reservoir
flows.

Several LB models have been applied to the study of multi-
phase flow through porous media. We briefly discuss the most
common of these models and highlight their strengths and weak-
nesses when applied in porous domains. We show that the model
by He et al. [1] is ideal for modeling immiscible two-phase flows
in porous domains.

2.1. Gunstensen et al. model

A two-phase flow LB model was originally introduced by
Gunstensen et al. [19] based on the red-or-blue Lattice Gas
scheme proposed by Rothman and Keller [20]. In the Rothman
and Keller model the fluid particles were colored either blue or

red and the collision rules were modified to obtain surface ten-
sion between the fluids. These collision rules send particles of
one color to neighboring sites containing other particles of the
same color. Gunstensen etal. [19] designed a two-step two-phase
collision rule that produced a locally anisotropic pressure tensor
near the interface. At the first step of the model, a perturba-
tion is added to the particle distribution near an interface, which
reproduced the correct surface-tension dynamics. This addition
produces surface tension at interfaces while retaining the adher-
ence to the Navier Stokes equation in homogeneous regions. In
the second step the mass is recolored to achieve zero diffusivity
of one color into the other. He and Doolen [21] showed that it is
difficult to incorporate microscopic interactions quantitatively in
the Gunstensen model due to the heuristic modeling of particle
interactions.

2.2. Shan—Chen model

Shan and Chen [22,23] proposed a LB model for multiphase
flow by introducing a non-local interaction force between parti-
cles at neighboring lattice sites. The local momentum modified
by the particle interaction forces is not conserved locally. How-
ever, the global momentum conservation is exactly satisfied
when boundary effects are excluded. The SC model is capable
of simulating both miscible and immiscible flows. The authors
reported small anomalous velocities (also referred to as “spuri-
ous” velocities) in the interface region, which they attributed to
the discrete nature of the model.

Several researchers have applied this model to multiphase
flow in porous domains [6,7,24]. Their results were qualitatively
similar to experimental data, although they did not offer good
quantitative predictions. The authors argued that large lattices
are required to model flow along the films of the wetting phase
that form on the pore walls and obtain accurate results when
the saturation of the wetting phase is less than 60%. These poor
quantitative results should be also attributed to the fact that the
interface in the Shan—Chen model is not sharp but it spans across
several lattice units and that the porosity and lattice size were
both small in these simulations.

2.3. Free energy model

A thermodynamically consistent two-phase LB model was
first introduced by Swift et al. [25,26]. In this model the collision
rules were chosen such that the equilibrium state corresponds to
an input free energy and the bulk flow in governed by continuity,
the Navier—Stokes equation and a convection-diffusion equation.
Swift et al. introduced a constraint for the second momentum of
the equilibrium distribution function where the pressure tensor is
defined in terms of the equilibrium free energy of the fluid mix-
ture. The model produces interfaces with a thickness of only two
lattice units, which makes it ideal for modeling flows in porous
media where the pore size may be only a few lattice units due
to computational limitations. The original “free-energy” model
is not Galilean invariant for the viscous terms in the macro-
scopic Navier—Stokes equation (except for the case of binary
ideal fluids [21]). Several works made significant progress by
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reducing the lack of Galilean invariance of the model to order u>
[27,28].

2.4. He—Shan—Doolen model

More recently, a thermodynamically consistent LB model for
the simulation of two-phase flow in the nearly incompressible
limit under isothermal conditions was proposed by He et al.
[1,10,29]. The interfacial dynamics, such as phase segregation
and surface tension, are modeled by incorporating molecular
interactions and an index function is used to track interfaces
between different phases. The particle distribution function
which is used in other LB models is replaced with a pressure
distribution function. This change allowed for the implementa-
tion of Equations of State (EOS) in the model. The approach
was based on a variation of the continuous Boltzmann equa-
tion that combined Enskog’s theory for dense fluids and the
mean-field theory for long-range molecular interaction. This
model can describe non-ideal gas and dense fluids and was tested
over several complex flows that produced Rayleigh—Taylor and
Kelvin—Helmholtz instabilities at the interface. The obtained
results agree well with theoretical predictions [1,10]. Recently,
Lee and Lin [12] proposed a collection of consistent discretiza-
tion strategies to further stabilize the model by He et al. at high
density and viscosity ratios.

In this study, we consider two-phase flow in irregular pore net-
works using the He et al. model [ 1], where the interface thickness
is maintained between 3 and 4 lattice units. By considering a set
of appropriate boundary conditions for the particle distribution
function at solid sites we account for the effect of wettability
at solid—fluid interfaces. We show that different contact angles
can be realized by taking appropriate density values at the pore
walls. The minimum pore size in our simulations is 10 lattice
units in 3D simulations and 20 lattice units in 2D simulations,
in order to reduce the effect of interface thickness in our results
[30]. We study the effect of the viscosity ratio M and the con-
tact angle 6 on the apparent relative permeability curves. Our
results show that the modified LB model can qualitatively cap-
ture viscous coupling effects and model the “lubricating” effect
that arises when the viscosity ratio is M > 1.

3. Model description

In this section we briefly discuss the lattice Boltzmann model
proposed by He et al. [1,29]. We first describe how the LB model
accounts for particle interactions in non-ideal gases and dense
fluids, and then we show how the model is extended to account
for two-phase flow by considering an appropriate Equation of
State. We finally propose a set of boundary condition for the
density distribution function at the solid sites to account for the
effect of wettability.

3.1. Single phase model for non-ideal gases and dense
fluids

The Boltzmann equation with the Bhatnagar-Gross-Krook
(BGK) collision approximation [31] which applies for rare gases

reads;

b - 0 - 0 1

A ™
t or 0E T

where F is an external force (body force), i.e., gravity, £ the local
velocity vector of the fluid particles, r the position vector of the
particles and fis the particle density distribution function, which
follows a Maxwell-Boltzmann distribution at thermodynamic
equilibrium;

32 22
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i1 is the macroscopic velocity vector of the fluid.

He et al. [29] proposed a LB model for non-ideal gases (long
distance molecular interactions). They argued that the same forc-
ing term F, which was used to account for body forces could also
account for particle interactions, such as Van der Waals forces.

They accounted for both the intermolecular attractions in non-
ideal gases and the exclusion volume of molecules in dense
fluids. Using a mean field approximation they found that the
attractive force as a function of fluid density is;

Py = —V(=2ap — kV?p) )

When the overall molecular volume of a fluid becomes com-
parable with the volume of the fluid container, then the space
available for the motion of each molecule is reduced signifi-
cantly. The collision probability is significantly different from
the collision probability in a rare gas due to the volume excluded
by the molecules.

Chapman and Cowling (chap. 16, Eq. 16.32.4) [32] showed
that for dense fluids the collision operator in Eq. (7) should be
modified to account for the total volume of molecules and the
following term should be added to the collision term of the LB
equation

— fbpx(E — fig) - V In(0*x) (10)

where b is a function of the molecular volume (given by
b=2m03/3m, where o is the effective diameter of the molecule
and m is the mass of a single molecule). x is the increase in col-
lision probability due to the increase in fluid density. x is equal
to 1 for rare gases and greater than 1 for dense fluids.

For dense fluids the volume of the molecules becomes com-
parable to the volume occupied by the gas. Therefore, the space
where the center of a molecule is allowed to lie is reduced and
the collision probability is increased. This is called the exclusion
volume effect and leads to an increase in the collision probabil-
ity by the factor x, which is a function of position. The factor x
is an increasing function of the local density p.

The above term accounts only for binary collisions between
hard spheres (the same as in rare gases where the BGK approxi-
mation holds). These collisions are also instantaneous. The space
volume occupied by the molecules increases significantly the
collision probability.

By taking that 9f/9E ~ 9f°1/dE = — fd(m(& — i)/ kT) =
— f9((E — it)/RT) and by adding the exclusion volume term
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(10) to the collision operator, Eq. (7) reads;
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By combining Egs. (9) and (11), the continuous Boltzmann
equation for non-ideal gases and dense fluids reads;

i Lz 3f__, cay y peal - E—10)

at+$ = (f ffH+f RT (12)
where

F' = pVQap + kV2p) — bp> RTxV In(p*x) (13)

The first term of Eq. (13) comes from the intermolecular
attraction and the second term comes from the exclusion-volume
effect. The parameters « and b are related to the intermolecular
pair-wise potential.

This expression for the forcing term, which was first proposed
by He et al. [29], will be used in this study to account for the
interaction of the fluid particles with the pore walls.

3.2. Two-phase model

Based on the above single phase model, He et al. [1] pro-
posed a lattice Boltzmann model for two phase flow in the nearly
incompressible limit by considering a pressure distribution func-
tion along with the density distribution function of other LB
models. The consideration of a pressure distribution function
allows for appropriate EOS to be implemented in the LB model
in order to describe two-phase flow dynamics. The bulk den-
sity of the fluids remains approximately constant in this model.
The interfacial dynamics, such as phase segregation and surface
tension, are modeled through molecular interactions. The inter-
facial thickness is maintained at 3—4 lattice units without any
artificial “recoloring” step (like in the Gunstensen et al. model
[19]). This makes it ideal for modeling two-phase flow in porous
media where the pore size can be only a few lattice units due to
computational limitations.

Using a mean-field approximation for intermolecular attrac-
tion and following the treatment of the exclusion-volume effect
by Enskog, the effective molecular attraction force is described
by Eq. (13).

The terms in Eq. (13) can be conveniently rearranged as
follows in order to implement the forcing term in Eq. (7);

F' = 2apVp + kpVV2p — bp* RTxV (2 In(p) + In(x))
2 2 2 2 1
=aVp“ +kpVV°p —bp“RTy | —Vp+ —Vyx
o X
= kpVV2p — V(bp>RTx — ap?) (14)

The intermolecular force F’ can then be expressed as;

F'=—-Vy+ F=—-Vy+xpVVp (15)

where Fj is the force associated with the surface tension and v
the function of the density given by ¥ =bp?RTx — ap® and is
related to the pressure by P=1(p) + pRT.

By considering an appropriate EOS to describe the macro-
scopic pressure as a function of the local density, the LB model
can simulate two-phase flow.

Assuming that the pressure of non-ideal fluids is described
by the Carnahan—Starling EOS [33];

4—-2p 5
p=pRT 5 —ap’ + pRT (16)
then
4—-2p
V(o) = p*RT - — o ap? an

Note that for > 10.601RT, Eq. (16) has three roots that pro-
duce the same pressure p. Two of them are mechanically stable
(dp/dV<0) and one is unstable (dp/dV>0). The unstable root
lies between the two stable roots and induces phase separation.
If the temperature exceeds the critical value 7> a/10.601R then
the intermolecular attraction is weak and the fluid exists in a
single stable phase (supercritical).

He et al. argued that the direct solution of Eq. (12) is difficult
due to the calculation of the intermolecular force. To overcome
this problem they proposed a new pressure distribution function
defined as g =fRT + ¥(p)I"(0), where I'(it) is a function of the
macroscopic velocity u.

The evolution equation for g is;

Dg _ prPSf n F(O)DW('O)

Dt Dt

(18)

The material derivative for incompressible fluids is;

Dy(p) _ 31//(/))

D: it) - V(o) = E — i) - Vir(p)  (19)
and finally;
Dg  g—g" - .
o=@
[I(@)(Fs + G) — (I'(@t) — T'(0)V(p)] (20)

He et al. used Eq. (12) to calculate the density field only, so
they removed the forces which have no effect on mass conser-
vation. They retained however the intermolecular force Vy/(p)
which is essential in phase separation. They introduced an index
function ¢ which also satisfies Eq. (16) and they discretized Eq.
(12) for the index function f;

The discrete LB model by He et al. reads;

(& + &t t 4 81)

o — £33
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and the discretized Eq. (20) is;

gi(¥ + &8t t + 81

g —g &n 2t—1
T

= gi(x,1) — @& —it)-

[T3@)(Fs + G) — (Ti(@) — L;0)V(p)Ist (22)

where ¢; = éi.
The local index function ¢ is calculated form the first momen-
tum of the distribution function f,

o, 3,0 =D _filx,y,2) (23)

and the pressure and velocity are calculated from the first and
second momentums of the distribution function g, respectively;

1
POy, ) =Y &ix, y,2) — SiCx. . 2) - Vi)t (24)

- - RT . ~
px, y, ORTa(x, y,2) = Y _&igi(x, y, )+ —-(F + G)st
’ (25)

Different density values can be realized through a linear
dependence of the phase density p with the phase index function
®;

@ — Plow

—————(Phigh — Plow) (26)
Phigh — Plow

p(p) = prow +
where plow, Phigh> Plows Phigh are the low and high values of
density and the phase index function, respectively.

3.3. Capillary effects

The original LB model developed by He et al. [1] does
not account for intermolecular forces between fluid and solid
molecules at the fluid—solid interface. The bounce-back bound-
ary condition is applied to all fluid particles when they collide
with a solid wall. The bounce-back boundary condition con-
serves the momentum of the fluid particles prior to and after the
collision with the pore walls. Although this scheme is first-order
accurate with respect to the particle speed, it is used in most LB
models due to its simplicity and because only nearest-neighbor
information is required at each site of the computational domain.

In this paper we extend this LB model to the more general
case of a three-phase system including a solid in contact with a
liquid and its vapors (Fig. 2). For a complete description of this
problem both the pair-wise intermolecular potentials and their
range are required. We follow the assumption by Rowlinson and
Widom [34] that the solid is made up of rigid molecules of given
density. We should note here that this is a only a crude estimate
of the true chemical constitution of the solid and it is adopted
in our approach in order to take advantage of the mean field
approximation for the intermolecular potential by Rowlinson
and Widom [34].

Based on this assumption, we account for attracting (adhe-
sive) forces between fluid particles and molecules of the solid

Gas

Fig. 2. Schematic representation of the interfacial tensions at the intersection of
the liquid—gas, gas—solid and liquid—solid interfaces.

surface by assigning an “effective” value for the density of the
solid sites in the range between pg,s and pjiq, depending on
whose phase’s molecules are attracted stronger by the molecules
of the solid surface. The density assigned to the solid lattice sites
enters the calculations through Eq. (15) for the force due to sur-
face tension F;. This boundary condition can be used to modify
the contact angle of the interface at the solid surface.

The effect of the assigned effective density value is demon-
strated by considering a square ‘droplet’ of the liquid phase
located between two parallel solid plates (Fig. 3). The upper
and bottom sides of the droplet are in direct contact with the
solid plates and the other two sides are in contact with the gas
phase. A value in the range between pg,s and pjiq is assigned
to the solid sites (solid density) and the system is left to reach
equilibrium. Fig. 3 shows the equilibrium contact angle of the
liquid—gas interfaces for various values of the solid density. As
the value for the solid density ps is changed from pjiq t0 pgas,
the system changes from liquid-wet (upper left part of Fig. 3) to
gas-wet (lower right part of Fig. 3).

D=0.82

D=0.52

f
f

|
(
\
\
A

~

D=0.19

Fig. 3. Effect of the normalized solid density D= (05 — pgas)/(0liq — Pgas) ON
the wetting angle for a liquid droplet located between two parallel plates at
equilibrium. The system changes from strongly liquid-wet (upper left image) to
strongly gas-wet (lower right image) as the density of the solid walls decreases
from piiq to pgas. The size of the computational domain is 300 x 300. « = 1075,
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Fig. 4. Wetting angle (°) vs. the normalized solid density D=(ps — pgas)/
(plig — Pgas)- The wetting angle exhibits a linear dependence on the solid density.
1072 <k <107,

The contact angle exhibits a linear dependence to the normal-
ized solid density;

Ps — Pgas
Pliq — Pgas

D= 27

as shown in Fig. 4.

Approaches similar to the one described above are also used
by Bekri and Adler [35] for the Gunstensen LB model and also
in the original LB model by Shan and Chen [22] through the
fluid—solid interaction potential.

When the solid surface is very long compared to the size
of the liquid bubble and when D=1, namely when the solid is
strongly water-wet, we expect that the liquid bubble will soon
become very thin and will eventually break-up so that both solid
plates are fully covered by a liquid film. The thickness of the
liquid film is the same on both plates. The evolution of such a
bubble is shown in Fig. 5.

t=0 &t t=16000 &t

t=22000 &t

t=27000 &t t=45000 ot

Fig. 5. Evolution of a liquid bubble (colored red) located between two parallel
plates when the solid is strongly liquid-wet (D — 1) and the size of the bubble is
small compared to the length of the solid surface. The size of the computational
domain is 100 x 100. D=0.75 and « =0.1. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of the
article.)

wetting phase solid walls

non-wetting phase

Flow direction (y)

Fig. 6. Schematic of immiscible two phase flow between parallel plates. The
wetting phase flows along the solid walls, while the non-wetting phase occupies
the central region of the flow.

4. Viscous coupling during co-current flow in a 2D
channel

In immiscible two-phase flow in porous media, the wetting
phase typically covers the surface of the solid where it flows
in the form of films (Figs. 1b and 5). The non-wetting phase is
not in direct contact with the solid surface but it flows between
the films of the wetting phase. The velocity of the non-wetting
phase through the pores is affected by the viscosity ratio of the
fluids defined as M = punw/hw-

This is better demonstrated through the following study
of immiscible two-phase co-current flow through two parallel
plates. The length of the plates is infinite in the direction of the
flow and periodic boundary conditions apply at the sides ver-
tical to the direction of the flow. No-slip boundary conditions
apply at the plates. Both fluids have the same kinematic viscos-
ity v but different densities p which produces different dynamic
viscosities = pv.

For a given value of the wetting saturation Sy, we take the
wetting phase flowing along the parallel plates in the region
a< x| <L (namely, in two films with same thickness L—a), and
the non-wetting phase flowing in the central region 0< |x| <a,
where Sy, =(L — a)/L=(1 — a)/L and Sy, =a/L (Fig. 6).

We study the velocity profile at a cross-section vertical to
the direction of the flow. Assuming a Poiseuille-type flow, the
analytical solution for the velocity profile between the parallel
plates is;

u(x) = ﬁ(LZ —x?)

20y
= 2—(L2 —x%) inthe wetting phase region,

Vw Pw
a<|x| <L, (28)
and

AP P
u@x) = —(L> —a®) + ——(@* — x%)

281w 28nnw

F

20y Pw 2Vnw Pnw

in the non-wetting phase region, 0 < |x| < a, 29)

where vy, Vnw, Pw, OPnw are the kinematic viscosities and den-
sities of the wetting and non-wetting phases, respectively. The
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pressure gradient in the direction of the flow is taken equal to F,
i.e., AP/¢ = F.The pressure gradient is the same in both phases
but the dynamic viscosity produces different average velocities
in each phase. So the average volumetric rate is different in each
phase.

The relative permeability of each phase is defined in terms
of the superficial velocity of the fluid particles across a cross-
section perpendicular to the flow direction (y);

L
le|=a vy dx f|i\=0 Unw dx
kr,w(Sw) =7 . kr,nw = <L . (30)
Jivj=o vw dx Jixi=o Unw dx

It can be easily shown using Egs. (28)—(30) that the relative
permeabilities as a function of the wetting saturation is given by
(see the Appendix for more details)

1 2
kr,w = ESW(B’ - Sw),

ke nw = Snw BM + 82, (1 - ;Mﬂ 31)
Eq. (31) shows that the relative permeability of the wetting
phase between two parallel plates is a function of the wetting
saturation Sy, only. However, the relative permeability of the
non-wetting phase is a function of both the wetting saturation
and the viscosity ratio M.

When M « 1, namely when the viscosity of the wetting phase
is much larger than the viscosity of the non-wetting phase then
kynw = SSW =1- SW)3 and the relative permeability is always
less than 1. When M > 1, then the relative permeability of the
non-wetting phase is a function of both Sy, and M, and it may
take values greater than 1 (see Fig. 10).

4.1. Relative permeabilities when M < 1

Using the LB model presented in the previous section we
solve for the velocity profile in the slit in order to calculate the
relative permeabilities of both phases as a function of the wetting
saturation and the viscosity ratio M.

We first consider the case where M <1, namely when the
viscosity of the wetting phase is greater than the viscosity of the
non-wetting phase. Fig. 7 shows the velocity profile for M =0.1.
Although both phases are subject to the same pressure gradient,
the non-wetting phase accelerates faster than the wetting phase
because it is less viscous. The velocity profile calculated with the
LB model is in very good agreement with the analytical solution.

Fig. 8 shows the relative permeabilities as a function of
the wetting phase saturation. The relative permeability of both
phases is less than 1 when M < 1, as expected from Eq. (31).

4.2. Relative permeabilities when M > 1

When M > 1, the velocity of the non-wetting phase is signif-
icantly affected by the saturation of the wetting phase. Fig. 9
shows the velocity profile for M = 10. In this case the viscosity
of the wetting phase is smaller than the viscosity of the non-
wetting phase. The agreement between the analytical solution
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4.0E-05 g %
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-1 -0.5 0 0.5 1

velocity (5x/5t)

Fig. 7. Steady state velocity profile perpendicular to the direction of the flow
when the more viscous fluid is the wetting phase. M=0.1, F=1.0e~'%,v = 0.1,
pw = 0.25, ppw = 0.02514, and « =0.
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Fig. 8. Calculated relative permeabilities for the wetting and non-wetting phases
in a slit when M =0.1. Also shown the analytical solutions for both phases.

and numerical results obtained using the LB model by He et al.
is very satisfactory.

The relative permeabilities of both phases as a function of
the wetting saturation Sy, are shown in Fig. 10. The LB model
shows that the relative permeability of the wetting phase is inde-

1.2E-04

1.0E-04 4

8.0E-05

o LB simulation X

— analytical solution X
4.0E-05

2.0E-05 X
0.0E+00

0.5

6.0E-05 1

velocity (dx/5t)

I
)

&,
.
bod
o
a5

X

Fig. 9. Steady state velocity profile perpendicular to the direction of the flow
when the less viscous fluid is the wetting phase. M =10, F=1.0e~19, v = 0.1,
pw = 0.25, ppw = 0.02514, and « =0.
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Fig. 10. Calculated relative permeabilities for the wetting and non-wetting
phases in a slit when M = 10. Also shown the analytical solutions for both phases.
The permeability of the non-wetting phase in a slit where both phases coexist
is typically greater than the relative permeability of the single phase flow of
the non-wetting phase (S, = 1) due to the “lubricating” effect of the wetting
phase at the solid walls [36]. The relative permeability of the wetting phase is
not affected by the viscosity ratio M.

pendent of the viscosity ratio. The relative permeability of the
non-wetting phase is typically greater than the absolute perme-
ability of the single-phase flow of the non-wetting component
flowing between two parallel plates for low to intermediate
values of the wetting fluid saturation. This is the well-known
“lubricating” effect [36], which is captured very satisfactorily
by our simulations. The numerical results are in good agreement
with the analytical solution.

Fig. 11 shows the relative permeabilities for M=0.1, M =1,
M =3 and M =10. The error of the LB simulations is less than
15% for all values of M. The maximum error appears for very
low and very high values of Sy, while for intermediate values
the error is practically negligible.

The relative permeability of the wetting phase is practi-
cally independent of the viscosity ratio as expected (Eq. (31)).
However, the relative permeability of the non-wetting phase
is strongly dependent on the viscosity ratio M. When M « 1,
namely when the viscosity of the wetting phase is much larger

25
20 / 7|~ Wetting fluid M=10 \
z =& Non-wetting fluid M=10
H —&— Wetting fluid M=3
E’ —4— Non-wetting fluid M=3
=15 -&- Wetting fluid M=1
ES —&— Non-wetting fluid M=1
M ~5- Wetting fluid M=0.1
10 —#- Non-wetting fluid M=0.1 a
0.5
0.0 & T A e

0.00 0.20 0.40 0.60 0.80 1.00
Wetting Saturation

Fig. 11. Calculated relative permeabilities for the wetting and non-wetting
phases in a slit for various values of the viscosity ratio M. F=1.0e~'9, v = 0.1,
and « =0.

than the viscosity of the non-wetting phase then &y = S5, =
(1 — Sy)° and the relative permeability is always less than 1.
When M > 1, then the relative permeability of the non-wetting
phase is a function of both Sy, and M, and it may take values
greater than 1 (Fig. 10).

5. Flow through pore networks

The simplified Poiseuille-type flow considered in the previ-
ous section offers some insight in viscous coupling in a single
channel. In this section we consider the more complicated prob-
lem of two-phase flow in a porous medium. The porous medium
is represented by 2D and 3D pore networks of N? square or
N? cubic solid and void (pore space) blocks. The size of each
block is n4 lattice units (3x) and so the size of the computational
domain is L¢ = (N x n)? lattice units, where d is the dimension-
ality of the pore network. The blocks are randomly distributed
in space so that the probability of finding a void block at each
one of the N¥ positions in the network is equal to &, where ¢ is
the porosity of the network. The probability of finding a solid
blockis 1 —e.

Initially, we consider that the liquid and gas phases also reside
in blocks of size n? lattice units distributed at random in the void
blocks with a probability Sy, for the wetting phase and 1 — S,
for the non-wetting phase, where Sy, is the wetting saturation.

The pore network is subject to periodic boundary conditions
in all directions. We calculate the steady state superficial velocity

Dummy sumdomain
where data received from
neighbors is stored

I Computational
N domain

¥ v 3

Al | 1

‘; ANy
Sumdomain send to *\X.

neighbors after local ~ *3' |
calculations

v

Boundary Conditions
for local calculations

y

Fig. 12. Schematic of the domain decomposition in our algorithm. The compu-
tational domain for each processor is shown in white color. At the boundaries of
the computational subdomains, the data calculated at the previous time step is
stored in dummy subdomains (where no calculations take place), shown in grey
color. The dummy subdomains serve as boundary conditions for the local cal-
culations at the current time step. The computational domain (two-dimensional
arrays) is decomposed in the y-direction in order to take advantage of Fortran’s
column-major storage of multi-dimensional array elements.
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of each phase in order to estimate the relative permeabilities as
a function of the wetting saturation and the viscosity ratio M.

The lattice Boltzmann model described in Section 3 is
parallelized for implementation on distributed memory com-
puters using the Message Passing Interface (MPI) libraries
(see Pacheco [37] for a review of MPI programming). The
computational domain (two- and three-dimensional arrays) is
decomposed in the y-direction in 2D pore networks and in the
z-direction in 3D pore networks in order to take advantage
of Fortran’s column-major storage of multi-dimensional array
elements. This scheme ensures that array elements exchanged
across processors with MPI are located in continuous memory
blocks (Fig. 12).

The numerical simulations terminated when the average
velocity of both phases reached a steady state. This typically
required more than 300,000 time steps for a body force of
G=10"".

6. Results and discussion

A series of numerical simulations were performed in a 2D
pore network with porosity € =0.77 and a 3D pore network with
porosity € =0.53 for various values of the initial wetting satura-
tion Sy, and fixed values of the wetting angle 6. The porosity was
selected to be greater than 0.6 in 2D and greater than 0.3 in 3D, so
that the network is percolating in all directions. For the 2D simu-
lations, the dimension of the computational grid was 400 x 400
lattice units (L =4008x) and the size of each block of solid or
void was 20 x 20 lattice units (n =208x). Thus, the dimension of
the pore network was 20 x 20 blocks (N = 20). For the 3D simu-
lations, the computational domain was 100 x 100 x 100 lattice
units (L=1008x) and the size of each block of solid or void
was 10 x 10 x 10 lattice units (n=108x). The size of the pore
network was 10 x 10 x 10 blocks (N=10).

The immiscible flow through the pore network is charac-
terized by three dimensionless numbers; the viscosity ratio
M = ppw/ iy, the Reynolds number Re = ud/v and the capillary
number Ca, which expresses the ratio of viscous forces to cap-
illary forces in any pore and is usually defined as Ca=uu/y.

The maximum gas velocity in our simulations was
u=1073(3x/dt) in the higher porosity 2D pore networks when
the saturation of the less viscous phase was 100%. The applied
body force was G =107 (3x/8¢%) in 2D and G = 10~%(3x/5¢%) in
3D pore networks.

The kinematic viscosity is v=(1/3)(t — (1/2))(8x%/3t). The
dimensionless relaxation time was selected t=0.8, therefore
v=0.1(3x2/3¢).The maximum Reynolds number in our simu-
lations was Re=un/v=0.2. This ensures that the flow rate is
sufficiently low so that Darcy’s law is valid in our pore network
[2], but, at the same time, sufficiently high so that there is strong
viscous coupling between the two phases.

The capillary number Ca is obtained from our simulation
by taking the ratio of the body forces to the interfacial forces
Ca=G/F3=10"7/425x107>=0.002 in 2D and Ca=0.02
in 3D. These are relatively high values of Ca, where the
movement of the interface is controlled by viscous forces
[38].
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Fig. 13. Parallel speedup of our LB algorithm.

Our typical production runs were performed on 10-20 CPUs
for 300,000 to 1,000,000 3¢. Each numerical simulation required
approximately 4-32 h, depending on the dimensionality of the
pore network and the number of available CPUs.

The parallel speedup of our algorithm is shown in Fig. 13.
The speedup is defined as S(p) =t(serial)/#(p) where t(serial) is
the execution time of the serial code and #(p) is the execution
time of the parallel code on p CPU’s. The parallel efficiency E of
our LB code is greater than 0.8 on 20 CPU’s and drops to 0.625
on 40 CPU’s. The parallel efficiency is defined as E(p) =S(p)/p.

6.1. Wetting phase viscosity is less than non-wetting phase
viscosity (M > 1)

We first consider the case where the viscosity of the wetting
phase is less than the viscosity of the non-wetting phase, namely
M > 1. The normalized solid density defined by Eq. (27) is taken
equal to D=0.05. As described in Section 3, this produces a
contact angle 6 =175°.

A series of numerical simulations were performed for various
values of the initial wetting saturation Sy, in order to calculate
phase distribution patterns and the apparent relative permeabili-
ties. The apparent relative permeabilities are calculated through
the average velocity of each phase at steady state as discussed
in Section 4. The average (superficial) velocity of the flow typ-
ically reaches a steady state value after 300,000 8¢, as shown in
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Fig. 14. Convergence of the superficial velocity of the wetting phase in our 2D
simulations with respect to the elapsed time steps dt. G=1.0e~7, and £=0.77.
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Fig. 15. Phase distribution patterns in 2D pore networks at different times (1=0,
100,000, 200,000, 300,00087) when the wetting phase is the less viscous phase
(blue color) M =10 at Sy, = 0.2. The more viscous phase is shown in red color.
D=0.05,0=175°,G=1.0e"7,£=0.77,and k= 10~*. The wetting phase is not
spanning and its permeability is equal to zero, while the non-wetting phase is
spanning the whole network. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of the article.)

Fig. 14. However, the variance of the numerical values increases
significantly as the wetting saturation increases. This should
be attributed to the wetting phase being less viscous than the
non-wetting phase.

Fig. 15 shows the evolution of the phase distribution pat-
terns when the wetting saturation is Sy, = 0.2. The wetting phase
(shown in blue color) covers the solid surface, while the non-
wetting phase (shown in red color) forms a spanning cluster that
flows among the wetting phase films. The wetting phase is prac-
tically immobile and its permeability is equal to zero since the
solid blocks are not spanning the 2D pore network.

Fig. 16 shows the evolution of the phase distribution patterns
when wetting phase saturation is Sy, = 0.6. Both phases are now
spanning at all times. The non-wetting phase also flows in large
blobs that detach from the continuous non-wetting phase.

At high wetting phase saturations, i.e., S, = 0.8 in Fig. 17,
the wetting phase is continuous and the non-wetting phase
becomes discontinuous. The non-wetting phase flows in the form
of small blobs. These blobs are significantly accelerated due to
the lubricating effect of the wetting gas phase that covers the
pore walls.

This is demonstrated in Fig. 18 that shows the apparent rel-
ative permeabilities for both phases with respect to the wetting
saturation when M > 1. For low to intermediate values of the
wetting saturation, the relative permeability of the non-wetting
phase is significantly larger than 1 due to the lubricating effect.

Fig. 16. Phase distribution patterns in 2D pore networks at different times (r=0,
100,000, 200,000, 300,00087) when the wetting phase is the less viscous phase
(blue color) M=10 at Sy, = 0.6. The more viscous phase is shown in red color.
D=0.05,0=175°,G=1.0e77,£=0.77, and k = 10~*. The non-wetting phase is
still spanning most of the time, but also a significant amount of the non-wetting
phase flows in large blobs. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of the article.)

Similar results are obtained from simulations in 3D pore net-
works when M > 1. Fig. 19 shows the distribution of the wetting
and non-wetting phases in the pore space when the wetting sat-
uration is Sy, = 0.8. The non-wetting phase is flowing through
the pore-space in the form of large discontinuous blobs. Fig. 20
shows the relative permeability curves for both fluids. The appar-
ent permeability of the non-wetting phase is greater than 1 when
the wetting phase saturation is smaller than 0.7 and exhibits
a maximum at approximately Sy, & 0.5 for the specific pore
structure.

Non-wetting phase permeabilities exceeding single phase
permeabilities have been measured by Odeh [36] indicating
lubrication by a thin wetting phase film covering the pore walls
(Fig. 21). However, this phenomenon has not been studied in
detail and the relevant literature is very limited.

Goode and Ramakrishnan [39] produced relative permeabili-
ties of the non-wetting phase greater than 1 using a pore network
model when M > 1. Ehrlich [40] also produced similar results
using a bundle of capillary tubes model. He showed lubrication
of oil by water located in the corners of the irregularly shaped
tubes due to viscous coupling at the liquid-liquid interface.
For M = pioi1/ fewater > 1, the 0il apparent relative permeability is
greater than one over a significant range of Sy,. This is in agree-
ment with the results obtained in this study. Ehrlich also showed
that water relative permeability shows little sensitivity to M, as
we will also demonstrate in the next section.
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Fig. 17. Phase distribution patterns in 2D pore networks at different times (=0,
100,000, 200,000, 300,0008¢) when the wetting phase is the less viscous phase
(blue color) M=10 at Sy, = 0.8. The more viscous phase is shown in red color.
D=0.05,0=175°,G=1.0e"7,£=0.77, and k = 10~*. The wetting phase is now
spanning the entire network and the non-wetting phase flows in the form of small
blobs. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of the article.)

6.2. Wetting phase viscosity is greater than non-wetting
phase viscosity (M < 1)

We also consider the case where the viscosity of the wetting
phase is greater than the viscosity of the non-wetting phase,
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Fig. 18. Relative permeabilities in 2D pore networks when M =10. D=0.05,
0=175°, G=1.0e7, £=0.77, and k= 10"*. The relative permeability of the
non-wetting phase is greater than 1 for intermediate values of the wetting sat-
uration due to the “lubricating effect” at the pore walls and viscous coupling
between the phases within the pores.

namely M < 1. The normalized solid density is taken equal to
D =0.65. This produces a contact angle 8 =55°.

Fig. 22 shows the evolution of the phase distribution patterns
when the saturation of the less viscous non-wetting phase is
Saw = 0.2 and M =0.1. The wetting phase (red) covers most of
the solid surface, while the non-wetting gas phase flows in the
form of small blobs and is not spanning the pore network.

Fig. 23 shows the evolution of the phase distribution patterns
when the gas saturation is Spw = 0.6 and M =0.1. The wetting
liquid phase covers most of the solid surface and it flows in the
form of large blobs that become detached form the solid walls.
Due to the relatively large value of the contact angle (close to
90°), the solid walls are not entirely covered by the wetting
phase, as in Section 6.1. Both phases coexist in the pore channels
and both are in contact with the solid surface, although the solid
surface is mostly covered by the more viscous wetting phase.

100 100

Fig. 19. Phase distribution patterns in 3D pore networks of the wetting phase (left panel) and the non-wetting phase (right panel) when M =10 and Sy, = 0.8. The
solid is not shown in these figures. D=0.05,§=175°, G=1.0e"7, £=0.53, and x = 10~%.
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Fig. 20. Relative permeabilities when M = 10 in the 3D pore network. D =0.05,
0=175°,G=1.0e"",£=0.53, and k =107,

The apparent relative permeabilities for both phases with
respect to the wetting saturation are shown in Fig. 24. The rela-
tive permeabilities of both phases are less than one, as expected
when the wetting phase is more viscous than the non-wetting
phase. However, the relative permeability curve of the non-
wetting phase is qualitatively different than the same curve for
M=0.1 for the flow between parallel plates (Section 4). This
should be attributed to the fact that neither of the phases is
very strongly wetting the solid and also to the presence of the
disordered porous medium.

Under the conditions assumed in this paper, namely relatively
high Capillary numbers [38], both fluids co-exist in most pores
and there is strong viscous coupling between them. The wetting
fluid moves along the solid surface and the non-wetting phase is
not generally in contact with the solid, but it flows in the central
part of the void surrounded by the wetting fluid.

The effect of viscous coupling on the apparent relative perme-
ability of the wetting phase is more significant within the pore
network than between the parallel plates examined in Section
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Fig. 21. Relative permeabilities of water and oil in low permeability sandstone
(from Ref. [36]). For values of M> 1, the relative permeability of takes values
greater than 1.

Fig. 22. Phase distribution patterns in 2D pore networks at different times (=0,
100,000, 200,000, 300,00087) when the wetting phase is the more viscous phase
(red color) M=0.1 at Sy, = 0.8. The less viscous non-wetting phase is shown in
blue color. D=0.65, =55°, G=1.0e™7, £=0.77, and x = 10~*. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of the article.)

Fig. 23. Phase distribution patterns at different times (=0, 100,000, 200,000,
300,0008¢) when the wetting phase is the more viscous phase (red color) M =0.1
at Sy = 0.4. The less viscous non-wetting phase is shown in blue color. D = 0.65,
0=55°,G=1.0e"7,6=0.77,and k = 1074, (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of the
article.)
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4 (compare Figs. 11 and 25). On the other hand, the lubricat-
ing effect on the non-wetting phase becomes less important in
the porous medium due to the disordered nature of the pore
space. The relative permeability of the non-wetting phase does
not exceed 1.2 in the pore network when M = 10, while for the
flow between parallel plates it takes values much greater than 1.

7. Conclusions

In this study we consider two-phase flow in irregular square
and cubic pore networks using the immiscible two-phase lattice
Boltzmann model proposed by He et al. [1], where the interface
thickness is maintained between 3 and 4 lattice units. This unique
feature of the He et al. model makes it ideal for flows in pores
and cavities with a size of only a few lattice units.

By considering a set of appropriate boundary conditions for
the index function, we account for the effect of wettability at
solid—fluid interfaces and capillary effects within the pore space.
It is shown that steady state contact angle is a linear function of
the density value assigned to the solid sites.

The proposed model is applied to study of the relative perme-
abilities with respect to the wetting saturation and the viscosity
ratio in pore networks. We find that non-wetting phase perme-
abilities may exceed single phase permeabilities under certain
flow conditions (relatively high values of the Capillary num-

ber and low contact angles), when viscous forces control the
movement of the interface and when the wetting phase is less
viscous than the wetting phase. This indicates strong viscous
coupling between the phases flowing in the same pores and also
“lubrication” by a thin wetting phase film covering the pore
walls.

To the best of our knowledge this is the first study that viscous
coupling in two-phase flow through porous media has been mod-
eled using a LB approach. Our results show that the LB model
used in this study is an ideal tool for modeling immiscible flow
in porous media, due both to its ability to incorporate compli-
cated boundary conditions at the pore walls and also capture the
physical aspects of the flow in the bulk and the interfaces.

Acknowledgements

The authors acknowledge the help and computational
resources provided by the Barcelona Supercomputing Cen-
ter (BSC) and the Centre de Supercomputacié de Catalunya
(CESCA) under the EC funded HPC-Europa project (RII3-CT-
2003-506079).

Appendix A. Calculation of relative permeabilities for
immiscible two phase flow between parallel plates

We consider the permeability of each phase in two phase flow
between two parallel plates at distance 2L as shown in Fig. 9.
The length and depth of the plates are both infinite.

The relative permeability k;.; of each phase i at a fixed satura-
tion S; is defined as; k,;; = Q;(S;)/Q;(S; = 1), where Q; is the flow
rate of phase i.

We assume that the wetting phase is located over the plates
at a < |x| <L and the non-wetting phase is located at 0 < |x| <a.

The local velocity within the wetting phase reads

FL? x?
= 1— =
2vy pw L?

Assuming single phase flow of the wetting phase in the slit,
the flow rate of the wetting phase is

u(x) = (L? — x%)

(A1)

2vy Pw

L L
u(x)dx = 2N
x=0 x=0

FL*> [F x2 2 NFL?
2vywpw Jo L 3 vwow
where N is the depth of the plates.
The relative permeability at saturation Sy, is

S 1 L FL? 2
=Qw( w)= / (1—xz>dx (A.3)
Ow,max Owmax Ja 2VwpPw L

Given that Sy, = (L —a)/L =1 — (a/L), Eq. (A.3) reads;

Qw,max =2N u(x)dx

(A.2)

kr,w

1
kew = 5SV%(S — Sw) (A.4)

Eq. (A.4) shows that the relative permeability of the wetting
phase is independent of the viscosity ratio M.
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The local velocity in the non-wetting phase is

u(x) = (L*—d®) + (@ —x% (A.5)

2V Pw 2Vnw Pnw

Assuming single phase flow of the non-wetting phase in the
slit, the flow rate of the non-wetting phase is
2 NFL?

— (A.6)
3 Vaw Onw

an,max =

The relative permeability at saturation Spy = 1 — Sy is

1-3S8 1 a F
kr,nw = Quwl w) = / (L2 — a2) dx
an,max an,max =0 2VwOw
1 a F 5 5
+ (a© —x")dx (A7)
an,max 0 2VnwPnw
3 > 3
keaw = Saw EM +Sw | 1 — EM (A.8)

where M = vpy pnw/Vw Ow-
References

[1] X.He,R.Zhang, S. Chen, G.D. Doolen, Phys. Fluids 11 (1999) 1143-1152.
[2] J.L. Lage, B.V. Antohe, J. Fluids Eng. 122 (2000) 619-625.
[3] EA.L. Dullien, Porous Media: Fluid Transport and Pore Structure, Aca-
demic Press, San Diego, 1992.
[4] S. Whitaker, Trans. Porous Media 1 (1986) 105-125.
[5] F. Kalaydjian, Trans. Porous Media 5 (1990) 215-229.
[6] C.Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40 (2004) W01501.
[7] H. Li, C. Pan, C.T. Miller, Phys. Rev. E 72 (2005) 026705.
[8] P. Grosfils, J.P. Boon, J. Chin, E.D. Boek, Phil. Trans. R. Soc. Lond. A 362
(2004) 1723-1734.
[9] X. Nie, Y.-H. Qian, G.D. Doolen, S. Chen, Phys. Rev. E 58 (1998)
6861-6864.
[10] X. He, S. Chen, R. Zhang, J. Comp. Phys. 152 (1999) 642-663.
[11] R. Zhang, X. He, G.D. Doolen, S. Chen, Adv. Water Res. 24 (2001)
461-478.

[12] T. Lee, C.-L. Lin, J. Comp. Phys. 206 (2005) 16-47.

[13] S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30 (1998) 329-364.

[14] AJ.C. Ladd, R. Verberg, J. Stat. Phys. 104 (2001) 1191-1251.

[15] S. Succi, The Lattice-Boltzmann Equation, Oxford University Press, New
York, 2001.

[16] R.R. Nourgaliev, T.N. Dinh, T.G. Theophanous, D. Joseph, Int. J. Multi-
phase Flow 29 (2003) 117-169.

[17] U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (1986) 1505—
1508.

[18] C. Pan, J.F. Prins, C.T. Miller, Comp. Phys. Comm. 158 (2004) 89-105.

[19] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43
(1991) 4320-4327.

[20] D.H. Rothman, J. Keller, J. Stat. Phys. 52 (1988) 1119-1127.

[21] X. He, G.D. Doolen, J. Stat. Phys. 107 (2002) 309-328.

[22] X. Shan, H. Chen, Phys. Rev. E 47 (3) (1993) 1815-1819.

[23] X. Shan, H. Chen, Phys. Rev. E 49 (4) (1994) 2941-2948.

[24] N.S. Martys, H. Chen, Phys. Rev. E 53 (1996) 743-750.

[25] M.S. Swift, W.R. Osborn, J.JM. Yeomans, Phys. Rev. Lett. 75 (1995)
830-833.

[26] M.S. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54
(1996) 5041-5052.

[27] A.N. Kalarakis, V.N. Burganos, A.C. Payatakes, Phys. Rev. E 65 (2002)
056702.

[28] A.N. Kalarakis, V.N. Burganos, A.C. Payatakes, Phys. Rev. E 67 (2003)
016702.

[29] X. He, X. Shan, G.D. Doolen, Phys. Rev. E 57 (1998) R13-R16.

[30] P. Raiskinmaki, A. Shakib-Manesh, A. Jasberg, A. Koponen, J. Merikoski,
J. Timonen, J. Stat. Phys. 107 (2002) 143-158.

[31] P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94 (1954) 511-525.

[32] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform
Gases, Cambridge University Press, 1990.

[33] N.F. Carnahan, K.S. Starling, J. Chem. Phys. 51 (2) (1969) 635-636.

[34] J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Dover Publi-
cations, 2003.

[35] S. Bekri, PM. Adler, Int. J. Multiphase Flow 28 (2002) 665-697.

[36] A.S. Odeh, Petrol. Trans.-AIME 216 (1959) 346-353.

[37] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann Pub-
lishers, San Francisco, 1997.

[38] J.E. Le Romancer, C. Touboul, C. Zarcone, J. Fluid Mech. 189 (1988)
165-187.

[39] P.A. Goode, T.S. Ramakrishnan, AIChE J. 39 (7) (1993) 1124-1134.

[40] R. Ehrlich, Trans Porous Media 11 (1993) 201-218.



	A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media
	Preliminaries
	Multiphase lattice Boltzmann models in porous media
	Gunstensen et al. model
	Shan-Chen model
	Free energy model
	He-Shan-Doolen model

	Model description
	Single phase model for non-ideal gases and dense fluids
	Two-phase model
	Capillary effects

	Viscous coupling during co-current flow in a 2D channel
	Relative permeabilities when M<1
	Relative permeabilities when M>1

	Flow through pore networks
	Results and discussion
	Wetting phase viscosity is less than non-wetting phase viscosity (M>1)
	Wetting phase viscosity is greater than non-wetting phase viscosity (M<1)

	Conclusions
	Acknowledgements
	Calculation of relative permeabilities for immiscible two phase flow between parallel plates
	References


