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Lattice Boltzmann method for Lennard-Jones fluids based on the gradient theory of interfaces
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In the present study we propose a lattice Boltzmann equation (LBE) model derived from density gradient
expansions of the discrete BBGKY evolution equations. The model is based on the mechanical approach of the
gradient theory of interfaces. The basic input is the radial distribution function, which is related exclusively to
the molecular interaction potential, rather than semiempirical equations of state used in previous LBE models.
This function can be provided from independent molecular simulations or from approximate theories. Evi-
dently the accuracy of the interaction potential, and thus the radial distribution function, reflects on the
accuracy of the thermodynamic properties and consistency of the derived LBE model. We have applied the
proposed model to obtain equilibrium bulk and interfacial properties of a Lennard-Jones fluid at different
temperatures, 7', close to critical, 7. The results demonstrate that the LBE model is in excellent agreement with
gradient theory as well as with independent literature results based on different molecular simulation ap-
proaches. Hence the proposed LBE model can recover accurately bulk and interfacial thermodynamics for a

Lennard Jones fluid at 7/7.>0.9.
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I. INTRODUCTION

Interfacial phenomena and liquid-vapor phase transitions
have an important impact in many natural and commercial
processes of industrial or environmental importance. Conse-
quently, the proper description of the structure of the liquid-
vapor interface and the corresponding surface tension require
a detailed molecular theory for the statistical mechanics of
nonuniform fluids [1]. The modern theory of interfaces has
its origins in the seminal works of Rayleigh, van der Waals
and their successors [2]. Based on van der Waal’s theory,
later revived by Cahn and Hilliard [3], a thermodynamic
gradient theory of interfaces has been developed to describe
the behavior of inhomogeneous fluids by seeking a Helm-
holtz free energy as a functional of fluid density distribu-
tions, which can be determined by minimizing this energy at
isothermal conditions. Minimization of Helmholtz free en-
ergy generates functional expressions for the chemical poten-
tials, which must be constant at equilibrium, resulting in dif-
ferential or integral equations for the fluid density [3—6]. In
an alternative way, known as the mechanical approach of
gradient theory, one starts from momentum or force bal-
ances, the well known Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) equations, where only mechanical equilib-
rium is guaranteed. The pressure tensors that appear in these
equations are functionals of the density distribution. Taking
density gradient expansions of the BBGKY equations we
obtain, at steady state, hydrostatic differential equations for
the fluid density that are of different order compared to those
of the thermodynamic approach [6,7]. At some special cases
the mechanical approach can also preserve chemical equilib-
rium and it has been shown that in this case the two theories
produce almost identical results in terms of density distribu-
tions and interfacial properties [6—8]. The main limitation of
gradient theory is the assumption of slowly varying density
across an interface, which mathematically holds only at tem-
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peratures, 7, that are very close to the critical temperature,
T.. Nevertheless, practice has revealed that this assumption
is still valid at temperatures that can be as low as 90% of the
critical temperature (i.e., T/T.>0.9) [2]. Another limitation
of the theory is that molecular interaction forces do not ap-
pear explicitly but instead all necessary information is car-
ried by the pair correlation function, also known as radial
distribution function, of an inhomogeneous fluid. Evidently
one must use additional theoretical or computational models
to obtain information on this function, a task that is not al-
ways easy to accomplish [9,10].

Over the past two decades, the continuous development of
more rigorous molecular or atomistic models of liquid-vapor
systems, in conjunction with the dramatic improvement in
computational power, has resulted in a more in-depth under-
standing of the underlying physics of these systems. Tradi-
tional computational fluid dynamics methods have many dif-
ficulties and limitations in this area, while molecular
simulation models have excessively large computational re-
quirements for the solution of even relatively simple prob-
lems, and are limited to extremely small time and/or space
scales and simple geometries. In this context, the use of the
lattice Boltzmann equation (LBE) method to study multi-
phase equilibrium and transport processes has increased sig-
nificantly over the last decade.

The LBE method is a mesoscopic approach that incorpo-
rates microscopic physics at a reasonable computational ex-
pense [11-13]. Even though the major focus of the method
has been on averaged macroscopic behavior, its kinetic na-
ture can provide many of the advantages of molecular dy-
namics, bridging the gap between molecular simulations at
the microscopic level and simulations based on macroscopic
conservation laws [14]. The method is especially useful for
complex systems in which the macroscopic governing equa-
tions cannot be determined in a straightforward manner
while microscopic physics is adequately described to a cer-
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tain level of approximation. Several approaches exist for
modeling liquid-vapor fluids using the LBE method (see for
example [13,14] and references cited therein). In the present
study we focus on the so called forcing method, which is
guided by an atomistic formalism where interparticle inter-
actions are introduced by the direct introduction of a forcing
term in the LB equation [15-20]. It has been previously rec-
ognized that this approach leads to a nonideal equation of
state that can produce phase separation [16].

A major breakthrough in the LBE theory has been the
direct derivation of the LBE from the continuous Boltzmann
equation under certain conditions [21,22]. The successful es-
tablishment of the theoretical foundation for the LBE method
in the framework of kinetic theory of gases has led to more
rigorous ways of incorporating molecular interactions in the
LBE following the BBGKY formalism [23-25] and/or En-
skog’s extension of Boltzmann’s equation [23,26-29]. In
their original work, He er al. [26] introduced a forcing term
considering interparticle interaction using a mean-field treat-
ment in the same way that the Coulomb interaction among
the charged particles of a plasma is treated in Vlasov’s equa-
tion [26,30]. Later, He and Doolen [23] improved the above
model starting from the BBGKY equations and established
the thermodynamic foundations of the LB multiphase models
by showing that a kinetic equation that combines Enskog’s
theory for dense fluids and the mean-field theory for long-
range molecular interaction can consistently describe non-
ideal gases and dense fluid flows. Luo [27,28] carried out a
systematic derivation of a thermodynamically consistent
LBE model for nonideal gases starting from the Enskog
equation. In all the above cases the basic features of the Van
der Waals theory are retained and set the thermodynamic
limits of the validity of these models.

Based on the approach of He ef al. [26] and later He and
Doolen [23], several LBE models have been proposed using
either Lagrangian [31] or Eulerian-based finite difference
schemes [32] for the discretization of the convective (advec-
tion) terms. However, in many cases these models failed to
provide accurate predictions for the bulk and interfacial ther-
modynamic properties [33].

Lee and Lin [34] and later Lee and Fischer [35] have
developed LBE models that employ the chemical potential
instead of the pressure gradient as the driving force, through
the Gibbs-Duhem equation. Furthermore, these authors have
used alternative numerical schemes for the discretization of
the directional derivatives of the LBE model and their results
have shown an improved stability and accuracy for large
density differences, using a simplified equation of state, dur-
ing static and dynamic conditions. More recently Kikkinides
et al. [36] have demonstrated that the Gibbs-Duhem based
LBE model with the numerical scheme proposed by Lee and
Fischer is thermodynamically consistent in the sense that it
can recover accurately both bulk and interface thermody-
namic properties for several equations of state. Furthermore
it has been recently demonstrated that the Gibbs-Duhem
based LBE model can describe accurately complex multi-
phase flows including low Weber droplet flow and Rayleigh-
Taylor instability without exhibiting parasitic currents that
were previously observed [37].

The limitation of all LBE multiphase models proposed so
far is that they require an equation of state, which in most
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cases is empirical or semiempirical in nature. In many cases
several interparticle potentials have been applied to obtain a
suitable equation of state [38,39], while in other cases mul-
tirange interaction models have been proposed to control the
surface tension independently of the equation of state
[20,40]. In either case none of these potentials can be related
to fundamental interaction potentials that are based on statis-
tical thermodynamics.

Martys [24], on the other hand, has proposed an alterna-
tive route to model the force in the LBE model using a
density gradient expansion of the BBGKY collision operator,
in accord with the mechanical approach of gradient theory
[6,7]. The advantage of this approach is that the force term is
no longer related to an equation of state but instead it con-
tains information related to the molecular interaction poten-
tial both explicitly and implicitly, through the radial distribu-
tion function. This approach, although very promising, since
it relates for the first time the force term in the LBE model
directly to a fundamental property from statistical mechan-
ics, has not been explored so far, mainly due to the assump-
tion that the radial distribution function does not depend on
the fluid density [24]. An alternative methodology that re-
lates the forcing term directly to the molecular interaction
potential has been recently proposed and is based on prin-
ciples from density functional theory (DFT) [41]. This ap-
proach is also expected to give important physical insight on
the interface characteristics of complex fluids in the near
future.

In the present study, we extend and generalize Martys’
work by developing an LBE model that is based on the den-
sity gradient expansion of the discrete BBGKY evolution
equations. In the proposed model, the basic input is the radial
distribution function that is related exclusively to the mo-
lecular interaction potential. This function is provided from
independent molecular simulations or from approximate
theories. The discretization strategy is based on Lee-
Fischer’s work [35], since it has been shown that this method
gives thermodynamically consistent models and negligible
parasitic currents [36].

We have applied our proposed model to obtain bulk and
interfacial equilibrium properties including molar densities,
equilibrium pressure and surface tension for a Lennard-Jones
(LJ) fluid at different temperatures relatively close to the
critical temperature. The majority of the simulations are per-
formed for the case of a planar interface, nevertheless curved
(circular) interfaces have also been considered to validate
Laplace’s law and compare the interfacial properties of the
fluid for both interface geometries.

II. MODEL DEVELOPMENT

A rigorous way to derive a consistent LBE method for
nonideal gases is to start from the basic equation of nonequi-
librium statistical mechanics, which is the Liouville equation
for a gas with pair interactions [42]. Accordingly, we employ
the BBGKY hierarchy of equations for the various distribu-
tion functions. These equations describe the dependence of
the time evolution of a n particle distribution function ex-
pressed in terms of a n+1 particle distribution function. Fol-
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lowing [42,43], the BBGKY equations for the first or single
distribution function, assuming pairwise interactions, is writ-
ten as

i f9_fl F, 07f1 afia V(|rpl)
ar+§1'ar1 m o0& Jjagl ar, Tgr, 480

=0, (1)

where f,=1,(r,&,?) is the single particle distribution func-
tion, fo=f12(ry,&;,1r5,&,1) is the two particle distribution
function, m is the particle mass, and r;, & (i=1,2) are the
position and microscopic velocity vectors of the particles,
respectively. V is the interparticle potential, rj,=r,—r;, and
F, is the external force. For the case of a Lennard-Jones (LJ)
fluid the interparticle potential is given by the well known

expression,
o\12 [ o\6
V(r)=4s{(:) —(7) ], (2)

where o is the collision (molecular) diameter and € is the
depth of the potential well at the minimum of V(r). The
Lennard-Jones potential provides a fair description of the
interaction between pairs of rare-gas atoms and also of qua-
sispherical molecules such as methane.

Introducing the operators

Si=—+§&- (3a)

—+
at ar

fj‘w |1'12|) J d§2d 5 (3b)

AN
m o€’

Eq. (1) becomes
S{fit=Q{f1a} (4)

It is seen that we cannot solve Egs. (1) or (4) for f; since the
variable fi, is also unknown. Evidently the BBGKY equa-
tions are not independent since the nth equation contains the
(n+1) unknown particle distribution function each time.
Therefore we need to impose some closure hypothesis to
carry on with a formal solution. Following the closure hy-
pothesis for the Vlasov-Bhatnagar-Gross-Krook equation we
have [43]

fro(r, 81,00, 60.) = f1(r 1, &0 f1 (10, &,08°U(r,1) + X2,
(5)

where g°/(r,,r,) is the radial distribution function at equilib-
rium and Y, designates the difference between f|, and

fite, &,0f, (s, &,1)g%(r,1,) away from equilibrium.
Introducing the Bhatnagar-Gross-Krook (BGK) hypoth-
esis in the right-hand term of Eq. (4) leads to [43]

Q{1 = Qi €0 f1(r0, &,08%(r 1))} + Qi)
= O {fi(r, €0 f1(ry,&,0)g8%(r 1))}

+ [l &) = f1(r,§.1)
X )

(6)
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Then after some straightforward manipulations [given that
J&f1(ry, &.1)d&;=p(ry,1)], Eq. (4) is written in the follow-
ing form:

af1 e afl JEe an
a m 9§,
140 aV 7
_;a_];f C(7|l‘112|) 2)g€q(r1,l‘2)dl'2+fg )\fl.

™)

The above equation is very similar to the ones proposed
earlier [23-25] and describes the evolution of the single par-
ticle distribution function for a dense fluid following the
BBGKY hierarchy and the BGK hypothesis for the type of
the particle collisions. The difference between Eq. (7) and
the one proposed by Martys [24], is the current inclusion of
a BGK relaxation term for the one-body collisions. This term
is responsible for the transition to equilibrium and is not
related to the equilibrium properties of the fluid. The param-
eter \ in the denominator of the BGK-term is a phenomeno-
logical mean collision time parameter, which can be directly
related to the viscosity of the fluid [41]. A similar term ap-
pears in related studies [25,44,41].

We continue our analysis by neglecting any external force
(F.=0) and letting ry=ry+r. Then Eq. (7) is written as

afl ve. af,= 10, { f (e +)g(err +1)
I m &,
X(&V(r){)cpr} L =h) ®
ar r A
or
I of_ 1on o (-1
(9t+§1'0r1__ma§1'1+ . ©)
where
- f p(m)gf‘f(rl,rz)(ag(r)f)d% (10)
r r

A. Gradient approximation

Equation (8) is still not very useful to obtain a solution for
the distribution function in time and space since the integral
in the right-hand side is not easily solvable. Nevertheless,
there have been a few attempts to solve the above equation
either under very specific conditions and assumptions (see
for example [25]) or using elements of DFT [41].

A different approach involves the application of density
gradient approximation, where we expand density and its
functions around r; using Taylor expansions to obtain differ-
ential equations that are solvable under certain conditions.
The density gradient approximation has imbedded in it the
assumption of slowly varying properties around ry, a condi-
tion that is met only in the immediate vicinity of the critical
temperature, 7., for a fluid. Nevertheless, experience has
shown that this approximation remains valid even for 7/7,
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down to 0.9. Davis, Scriven and co-workers [5-8] have per-
formed in the past extensive studies to come up with useful
formulations that can be employed to study interface proper-
ties using gradient theory. Thus we focus on expanding the
integral I in the right-hand side of Eq. (10) in terms of den-
sity gradients in accord with the above theory.

Following [7], we expand p(r,)=p(r;+r) around r, with
respect to r, keeping up to 3rd order gradients to get

1 1 .
p(ry) =p(r)) +r-Vp, + Err:VVp1 T VVVp;,
(11)

where we have used the notation: p,=p(r;), for i=1,2.

To continue our procedure we must make an elementary
hypothesis on the structure of the pair correlation function,
of an inhomogeneous fluid, g*/(r;,r,), with that of a homog-
enous fluid at some local density or densities. Since
g%(r,,r,) appears in Egs. (8) or (10) as a product with the
intermolecular force, it can be argued that only configura-
tions for which the particles are close to each other contrib-
ute appreciably to the theory [6]. Thus pair correlations can
be determined as those of a homogeneous fluid at a density
in the neighborhood of the correlated particles. The three
most common choices for such an approximation are [6—8],
(a) density at the mean location, ¥=(r;+r,)/2, (b) mean den-
sity p=(p;+p,)/2, or (c) mean pair correlation function,
5[ge9(r:py) +8°(r: p,)], where again, p;=p(r)), for i=1,2.

In any of these choices an important approximation is
made regarding the absence of transverse correlations which
can be important close to the interface. Rigorous theory on
the other hand has shown that transverse correlations, which
are gradient-induced, are in general not zero [1,6,45]. Nev-
ertheless, it has been demonstrated that, for a 6-12 LJ fluid,
the density profiles and surface tensions predicted by any of
the above local density approximations are in very good
agreement with those predicted by exact gradient theory [8].
This implies that the neglected correlations do not contribute
strongly to the fluid tension [6,45], at least in the neighbor-
hood of the critical temperature, 7.

In the present study we have considered choice (c); thus it
follows that

g°(ry,ry) = g(ry,r; +r)

= %[geq(r;pl) +g%“(r;py)]. (12)

Expanding g(r;p,) up to third order terms we get

2g% 1( Pt
ge"(r;pz)=g""(r;p1)+(%p)l(pz—pl)+5(?i2>l(pz
1 g
—p1)2+g< ;;3 )1(P2—P1)3~ (13)

Substituting Egs. (11)—(13) in Eq. (10), the latter becomes
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1 1 .
I=f {{p(rl) +r-Vp + Err:VVpl + PRl VVVpl}

1{9g% Pgel
X {geq(r;p1)+2( jp ) (pr— P1)+4( ai2 ) (py—p1)?
1

gl aV(r)r )
]2< )(Pz )}( o d3} (14)

where p,—p; in Eq. (14) is determined by Eq. (11) above.
The integral in Eq. (14) requires tedious operations keeping
terms up to third order in gradients of p. Such an approach is
cumbersome even in 1D and some additional assumptions
must be made to proceed and come up with practically useful
and tractable expressions.

For the 1D case and after a series of calculations, it can be
shown that the above equation becomes

dp 1 da (uz pduz)d3p <3du2
I=—a—=—p—+| -+ — |5+

dx 2 dx 2 4dpdx 2 dp

3d2u2>dpd2 (§d2u2+3d3u2>(@)3 (15)

4.dp? ) dxdx® \4dp* 4dp’)\dx)’

where parameters a, u, are the first and third moments of
force [7], and are defined as follows:

4 “ aV
a=-= f §1(rsp) 22 gy, (16)
3 Jo ar

Uy=—— r. (17)

* CLav()
15 g0 ar "
Note that in the above equations subscript 1 has been omitted
for simplicity, in accord with similar studies [7,23,24].

The above equation is still cumbersome to employ in the
LBM model. Moreover, it was shown before that unless we
assume that the third moment of force, u,, does not depend
on density, p, the gradient approximation of the mechanical
theory is not consistent with the van der Waals, Cahn, Hill-
iard (vdW-CH) thermodynamic theory [6,7,46]. Fortunately
u, is indeed a weak function of density at least in the phase
transition region and at 0.9<T/T.<1, which is the region
where the gradient theory holds anyway (McCoy er al. [8]).

Thus, if we assume that d—,~0 for n=1, Eq. (15) be-

comes
u, \d’p
- . 18
( 2 )dx3 (18)

dp 1 da
I=—a—
dx 2 dx

With the above assumptions it is straightforward to show that
the above expression becomes in 3D,

=—an——pVa+< )VV2 (19)

Substituting Eq. (19) in Eq. (9) the latter becomes (again
omitting subscript 1),
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J J 10 1 u
_f_,_g.—f:_——f. —an——pVa+(—2>VV2p
ot ar maoé 2 2

-1
+ .

N (20)

Assuming that f is close to f°¢, which corresponds to a Max-
wellian gas, we have

~ m 32 m(g_u)2:|
q‘p(zkaT> eXp{_ UT | @1)

Then we can write that [23]

af " m(§-w)
0 0 kgT

_pn(§—u)

o (22)
B

fri=
Substituting Eq. (22) into Eq. (20), the latter becomes

(9_f+§.(9_f=%feq.{_apr—%pzva

Jat or
q_
+ p(%) \Y Vzp} + @ (23)

or

o o _(E-w “_P2>
Pl e pkBwa'{V<_ 2 +pKVVzp}

(=1
+ :

N (24)

where parameter k=u,/2 is the well known influence param-
eter of gradient theory and is a measure of the magnitude of
surface tension at the microscopic level.

Note that the forcing term in the brackets of the right-
hand side of Eq. (24) is practically identical to the one de-
rived by Martys [24]. However, in his model derivation Mar-
tys has assumed that the radial distribution function does not
depend on density and as a result both parameters a and «
are constant, while in the present study a can vary with p.

From statistical thermodynamics [9,10], it has been
shown that the general form of an equation of state for any
fluid with spherical potential and pair interactions is

f ! geq(r;p)m;(rr) r3dr] L5

0

2mp?
P0=pkBT— 3

where P is the bulk pressure of the fluid. The above equa-
tion is a general equation of state, where the first term in the
right-hand side is the ideal gas law term while the second
term shows the deviation of a fluid from the ideal gas law.
Based on the definition of the first moment of force, a, [Eq.
(16)] the above equation becomes

2
Py = pksT + ‘%. (26)

Combining Eq. (26) with Eq. (24), the latter becomes
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P P -
a_j:+ £ &—f= %}“ -[V(pkgT) = VPy+ kp V V?p]
. (f'?—f). (27)

N

Employing the Gibbs-Duhem equation for the bulk pressure,
Eq. (27) becomes

af L af (E-w) (=1
at+§-ar——pkBTJ“?-[V(pkBT)—pVM]+ o
(28)
where
w=po—kVp (29)

in accord with Van der Waals theory and its successors. The
bulk chemical potential wu for a fluid that obeys the general
equation of state Eq. (26) is found by solving the equation
for the bulk free energy density Fj,

aF,

=—. 30
Mo ap (30)

Py=puo—F, where

Solving Eq. (30) with the aid of Eq. (26) (see [35]), we get
the following expression for u:

N Pa | a
Mo = po +kgT(In p/py + 1) + Edp + 5P (31)
Po

where u is a constant of integration that depends on tem-
perature, 7, and p, is a reference density that can be the
equilibrium density of either gas or liquid phase. Note that
the selection of these parameters does not affect the simula-
tions since it is the gradient of the chemical potential that
matters and not its exact value. Thus, in the present case we
work with the chemical potential difference, A= po— g,
and py=p,.

Equation (28) is identical with previously developed LBE
models [35,36], but with two important differences: (a) the
expressions for bulk chemical potential and pressure are
given for the general equation of state that relates these vari-
ables with the intermolecular potential of the fluid, and (b)
parameters a and « are calculated from different expressions
compared to previous studies, in accord with Martys’s work
[24]. Note that for a constant value of the third moment of
force, u,, the three suggested choices of the local density
approximations of the radial distribution function described
above, become identical [7].

The numerical implementation of the model can be done
in exactly the same way as in [35,36], provided that we have
direct information on the intermolecular potential and the
radial distribution function, which constitute the main input
parameters to the present LBE model. Since this analysis
have been done in detail elsewhere [35,36] we provide only
the salient features of this method in the present study.

Following Lee and Fischer [35], Eq. (28) is discretized as
follows:
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_ _ 1 -
fi(X+§;5t,t+5t)—fi(X,t)=—[m(f;—ﬁq)}x

+ (&- u)(VMpkBT - PVM,U«)
pkBT

Xfi(x,1) ¢, (32)

St

where

& —u)(VpksT - pVp)
pkBT

Fir=ro- 2 EY

The equilibrium distribution function f7 is given by the well
known expression [following a Taylor expansion of Eq.

2D,

’ &u (-0’ (u-uw)
i = wip 1 + 2 = s
RT ~ 2(RT)>  2RT

i=0, Nb-l,

(34)

where w; is a weighting factor that depends on the lattice
type used in the LBE model, N, is the number of bonds
emanating from each lattice site and i is the index of each
velocity bond (for the D2Q9 LB-model N,=9, and so on).

Gradients of density are discretized by the following
mixed scheme [35],

1
Vol = E[ch|(x) + V2|l (35a)

1
St&- VVp| iy = 5[5f§iVCP|(x) + otEVPp| ] (35b)

Note that parameter 7 in Eq. (32), is the modified collision
time employed in the discretized form of the LBE [11,12,35].

The above mixed scheme considers an equal contribution
of central (superscript C) and biased (superscript B) finite
differences. For the case of directional derivatives the fol-
lowing second order schemes are used for central and biased
differences, respectively,

p(x+ &) — p(x — &61)
18+ Vbl = . ,

(36a)

—p(x+2&t) +4p(x + §dt) - 3p(x)
5 .

5t§i . VBp|(x) =

(36b)

Derivatives other than directional are computed by taking
moments of the 1D finite difference schemes with appropri-
ate weights to yield isotropic discretizations [35,36],

2 wiElp(x+ &6t) — p(x - §01)]
20 2kgT Ot

V| = . (37a)

VB = > wiEl— p(x +2&61) + 4p(x + &t) — 3p(x)]
* i#0 2kgT ot ’

(37b)
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V= S wilp(x + &) = 2p(x) + p(x = §;1)] _ (370)

i#0 kpTor*

Accordingly, density and velocity vector are determined tak-
ing the moments of the distribution function resulting in the
following expressions:

p=21: (38)

- ot
u=2 flp+ 3<vcpkBT—pVCm. (39)

Further details of the above discretization method are given
in [35,36].

B. Determination of the radial distribution function

The radial distribution function g°?(r; p), which physically
represents the structure of a fluid, acts as a bridge for relating
macroscopic thermodynamic properties to microscopic mo-
lecular interactions in a fluid. This function is a key quantity
in statistical mechanics since it describes quantitatively how
the intermolecular correlations in a fluid decay with increas-
ing separation, r, at different bulk fluid densities, p. Its for-
mal definition is through the product pg/(r;p), which is the
average density of atoms at a distance r, given that another
atom is located at the origin [10]. At large separations
g%(r;p)=1. For gases at low densities the radial distribution
function is equal to the Boltzmann factor of the pair potential
[9,10],

, V(r)

i:rré g(r;p) eXp{ KT ] (40)
From the above equation it is easy to conclude that the non-
ideal gas term in the general equation of state [Eq. (26)]
vanishes at high temperatures and low densities for a LJ
fluid.

There are numerous approaches to determine g°(r;p) in
the whole density range. For this reason various methods of
obtaining this function have been introduced:

(a) Perturbation theories including the well known
Barker-Henderson (BH) and Weeks-Chandler-Anderson
(WCA) theories and their extensions (for a review on these
and related theories see for example [9,10] and references
cited therein). These methods describe a LJ fluid fairly well
beyond low densities. In addition, a number of integral-
equation theories such as the Percus-Yevick (PY), the hyper-
netted chain (HNC) and other recently developed approxima-
tions toward solving the Ornstein-Zernike (OZ) equation are
adopted to study the LJ fluid (see [9,10,47] and references
cited therein). All the above theories are approximate in na-
ture and fail to describe accurately the liquid-vapor equilib-
rium properties of a LJ fluid at 7,=7/T.>0.9. Moreover,
some of the above theories require tedious calculations
which limit parts of their original advantages.

(b) Computer simulation methods (molecular dynamics or
Monte Carlo) [48]. These are more rigorous methods that are
used to predict equilibrium and some times dynamic proper-
ties of a fluid. Molecular dynamics solve Newton’s laws for
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a large number of molecules interacting through an intermo-
lecular potential. Monte Carlo methods are less rigorous and
are based on the use of Metropolis algorithm employed to
minimize the free energy of a system of a large number of
molecules interacting again with a LJ potential with pair in-
teractions. Both methods work well at all conditions, how-
ever extra care must be taken when working near the critical
temperature where long-range correlations become signifi-
cant requiring more particles and larger equilibration times in
the simulations [49,50].

(c) There are also experimental methods (see for example
[10] and references cited therein), however there are several
complications associated with them.

In the present work molecular dynamics (MD) have been
employed for the calculation of g°(r;p). The molecules in-
teract with each other through a LJ potential assuming pair-
wise interactions to comply with the assumptions of the
present LBE model. The resulting radial distribution func-
tions as functions of distance have been tabulated for each
density and temperature. Accordingly, for a certain tempera-
ture we can use interpolation formulas to get g*4(r; p) for any
value of r,p in the integral, provided that our interpolation
region contains these values. Fine space resolution has been
imposed (1000 points for 0 <r<8.8¢) to minimize artifacts
during interpolation.

We obtain g°(r;p) from MD at equilibrium using a stan-
dard open-source software (MOLDY) [51]. The advantage of
this approach is that we only need the interaction potential as
an input and not a semiempirical (and often inaccurate) equa-
tion of state. The basic assumption is that only pair interac-
tions must be included in the simulation to comply with the
gradient theory-based model derivation. In all simulations
we have used 10 000—12 000 spherical molecules per run
while long equilibration times have been employed to ensure
that we have reached equilibrium conditions [typically of the
order of 2X 10° time steps or more, with a time step, ot
=2.32X10730(*)""?]. The density spectrum ranged for di-
mensionless densities, p*=po”, from 0.05 up to 0.8 and for
dimensionless temperatures, T°=kzT/ €, ranging from 1.2 up
to 1.27. At dimensionless densities below 0.05, the low den-
sity analytical expression [Eq. (40)] has been employed. The
cutoff radius is set 5.870 to account for long-range correla-
tions, as it has been demonstrated that this limit produces
accurate vapor-liquid equilibrium data even close to the criti-
cal temperature [49]. Note that the information on g®(r; p) is
provided from the MD simulation package for distances up
to 8.80. Beyond this distance we set g*4(r;p)=1.

Finally, in order to solve the LBE model equations we
have expressed them in dimensionless form using the follow-
ing dimensionless variables: T*=kzT/e, p*=po’, P*
=Po’/e, uy=pole, y'=yo’le, r'=rio, x*=x/o, a*
=aled’, K'=kleo, '=1(-5)"2, N"=\(-55)"2,

III. RESULTS AND DISCUSSION
A. Determination of vapor-liquid equilibrium properties

1. Maxwell construction

A series of MD simulations have been performed at fixed
temperature, for a certain density range in order to determine
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the respective radial distribution function (RDF) at each tem-
perature. A typical plot of RDF’s at different densities is
presented in Fig. 1. At low densities most molecules are in
the vapor phase and the RDF obeys the analytical form of
Eq. (40), above. At higher densities, and inside the phase
transition region, the RDF shows an oscillatory behavior,
which is typical of the liquidlike structure developed during
condensation. At sufficiently large distances the intermolecu-
lar forces become negligible and the RDF approaches unity.

Given several simulation data, we represent the RDF
g%(r; p) as a discrete function of density p and distance r and
we determine a(p) directly from Eq. (16) using spline inter-
polations to determine accurately the integral in this equa-
tion. A typical result of such calculations is presented in Fig.
2 at a constant temperature, 7%=1.25, showing that the first
moment of force, a, is a strong function of density. More-
over, a is negative up to a certain density, above which it
becomes positive. Since a is related to the compressibility
factor of the fluid, z=Py/pkgT, through Eq. (26), it is
straightforward to conclude that at low densities z<<1 be-
cause the attractive intermolecular forces cause the actual
volume of the fluid to be less than its ideal value. At higher
densities, z>1 tending to infinity at very high densities

First moment of force, a*

0.0 0.2 0.4 0.6 0.8 1.0
Density, p*

FIG. 2. Dependence of the first moment of force, a*, on fluid
density p*, at T"=1.25.
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FIG. 3. (Color online) Isotherm for a LJ fluid at 7%=1.25.

because the intermolecular repulsive forces cause the actual
fluid volume to be greater than its ideal value.

Having determined a(p), it is straightforward to compute
the equation of state for a LJ fluid at a certain temperature
[see Eq. (26)]. A typical isotherm is shown in Fig. 3. It is
seen that this isotherm has qualitative similarities with the
idealized Van der Waals equation of state.

The next step is to determine the saturation densities (gas
and liquid) and saturation pressure, for a given temperature.
This requires the simultaneous solution of the equations of
pressure and chemical potentials that set the constraints for
mechanical and chemical equilibrium, respectively (thermal
equilibrium 1is already achieved since we work at constant
temperature). An equivalent and simpler approach is to apply
Maxwell’s equal area rule, according to which

Vg
PO,‘v(vg_vl)_JA Pdv=0, (41)
Y

where P is the saturation pressure, and, v,, Y are the satu-
ration specific volumes of gas and liquid at a certain tem-
perature, 7. Note that v=1/p assuming that v stands for the
specific volume of the fluid.

The above procedure can be repeated at various tempera-
tures in order to get the phase diagram for a LJ fluid. Note
that in performing the above procedure we have assumed
that Maxwell rule holds within the spinodal region of the
isotherm [6], an assumption that is shown to be valid when
the third moment of force, u,, is constant [46].

2. Influence parameter

Extensive studies by McCoy ef al. 8], have demonstrated
that the third moment of force, u,, is almost independent of
density for fluids with various interaction potentials, includ-
ing the classic 6-12 Lennard Jones potential. This result en-
ables us to define the influence parameter, , as k=u,/2,
which is also a density independent parameter [6,7]. In such
a case it was shown before [7], that the gradient theory of the
thermodynamic formulation, described by a third order dif-
ferential equation, produces identical interfacial properties
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FIG. 4. Dependence of the third moment of force, u,, on fluid
density, p*, at different temperatures.

with the gradient theory of the mechanical formulation,
which is described by a second order differential equation.
This is a very important conclusion that enables us to utilize
the BBGKY equations that describe, in general, momentum
transfer under hydrostatic conditions in the more general
case of equilibrium, where chemical equilibrium (equality of
chemical potentials) must be imposed apart from mechanical
equilibrium. To ensure that « is indeed a weak function of
density, we calculate the third moment of force, u, from the
integral in Eq. (17) at different densities and temperatures.
The results are presented in Fig. 4. It is seen that u, is almost
density independent above T=1.2 at least in the two-phase
region. The behavior of u, is different at 7°=1.17 where we
observe a distinct maximum in accord with similar studies
[52,53]. Thus we expect that gradient theory and LBE model
will be less accurate at temperatures below T"=1.2.

From the above it is evident that the present LBE model,
which originates from the BBGKY equations, should pre-
serve mechanical and chemical equilibrium under the as-
sumption that the influence factor, «, does not depend on the
fluid density p. This is shown to be true for the 6—12 LJ fluid,
therefore the present LBE model appears to be thermody-
namically consistent, as are the previously developed mean-
field based models [23,35], having the additional advantage
that thermodynamics is no longer described by semiempir-
ical equations of state, but instead by the molecular interac-
tion potential V(r), a fundamental property that emanates
from statistical mechanical theories.

Note that according to gradient theory the pressure tensor
for the case of a constant influence parameter, «, is given by
[6,7,54]

1 1
P=POI—g{{pvzp_E(Vp)Z}I+2<pVVp—EVpr)},
(42)

where P, is the bulk fluid pressure given by Egs. (26) or
(27).
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The only empirical parameter in the present LBE model is
the mean collision time parameter, A, which is related to the
kinematic viscosity of the fluid through the standard equation
(see for example [55]),

=L\l (43)
pm m
Note that the above equation holds even for the case of a
nonideal gas [56].

Unlike surface tension or other thermodynamic properties
that can be described from straightforward (although compli-
cated) integrals relating g®/(r;p), V(r), etc., transport prop-
erties including viscosity, thermal conductivity, and self-
diffusion coefficient are much more difficult to be
determined and only approximate expressions can be found
from the Kinetic theory of gases [57]. These expressions still
require a series of calculations of complicated integrals mak-
ing the whole approach of determining the above properties
not very attractive.

Hence in the present study we choose a simpler and still
quite accurate approach for the determination of viscosity
from the LBE model as a function of density.

First we use equations from the literature that relate vis-
cosity 7 as a function of density p for LJ fluids by fitting
calculated viscosities from MD simulations to some semithe-
oretical expressions [58]. Then we solve Eq. (43) with re-
spect to N and get an expression for the latter parameter as
function of density p. Finally we convert A to 7, which is the
modified collision time employed in the discretized form of
the LBE [11,12,35]. In essence, we follow the same proce-
dure that was carried out before for the case of LBE models
describing non-Newtonian fluids [59,60], where in the
present case the expression for N or 7 depends only on the
fluid density, p, and not on velocity gradients as in the former
case.

This approach guarantees that we will have the correct
density dependence on viscosity for a LJ fluid. However,
even if we had used a simple constant value for 7, it would
have no influence at all on the density profile, surface tension
or any thermodynamic property (bulk or interfacial) of the
fluid.

B. Determination of bulk thermodynamic properties
using the LBE model

The LBE model simulations have been performed using
the two-dimensional (2D) nine-speed D2Q9 model for planar
and circular interfaces. Technical details on the implementa-
tion of this model on Egs. (33), (34), (35a), (35b), (36a),
(36b), (37a)—(37c), (38), and (39) are given elsewhere
[35,36]. For the case of planar interfaces we have used 100
pixels in the axial direction, where density variation takes
place, with 30 pixels at each end occupied by low density
values and the rest 40 pixels, located at the center, containing
high density values. For the case of circular interfaces we
have employed symmetric lattices of different size depend-
ing on the size of the circular drop or bubble, which varied
from 40 up to 360 pixels, resulting in domains of 100
X100 up to 460X 460 pixels, respectively. In this case we
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FIG. 5. Time evolution of bulk densities at 7°=1.20. Solid line
refers to initial densities equal to their vapor-liquid equilibrium val-
ues, while dotted line refers to initial densities that are 60% of their
vapor-liquid equilibrium values.

place initially a circular or square region of high density at
the center of the lattice the rest being occupied by low den-
sity values. Periodic boundary conditions are applied at each
direction. To accelerate convergence to equilibrium we al-
ways assigned to the low and high densities the thermody-
namic gas and liquid densities, respectively, computed from
Maxwell’s equal area rule at a specific temperature, 7, al-
though we have also performed studies starting from differ-
ent initial densities to ensure uniqueness of the solution. For
the case of planar interfaces it takes approximately
10 000—20 000 time steps to reach equilibrium, while for the
case of a circular interface the number of time steps required
increases by ~20-30 %. Note that equilibrium is established
when fluid densities remain constant with time by an abso-
lute error of <107°, while at the same time the maximum
parasitic velocity current is eliminated to round off [35].
Typical plots of density and velocity histories are presented
in Figs. 5 and 6. It is observed that for a planar interface fluid
densities can reach equilibrium after ~1000—2000 time
steps and the rest of the time is needed for the parasitic
velocity currents to drop down to values of the order of
10-14-1071.

Phase diagrams

In Tables I and II we compare the LBE model predictions
of equilibrium densities, pressure and chemical potential
with the exact solutions obtained from Maxwell’s equal area
rule. It is seen that the agreement is excellent for all bulk
properties. Note that in all cases we used the lowest possible
value of pixel size o™ since we have seen from previous
studies that the lower the pixel size (and hence the higher the
resolution), the more accurate is the LBE model prediction
[36]. Unfortunately we cannot use smaller values for &x* due
to stability issues that occur during the simulations (see also
[36]).

Furthermore in Figs. 7 and 8, we compare the LBE pre-
dictions with those from molecular simulations for a LJ fluid
[61-63]. Excellent agreement is found for all cases consid-
ered, indicating the validity of the present approach to de-
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FIG. 6. Time evolution of maximum velocity at 7°=1.20. Solid
line refers to initial densities equal to their vapor-liquid equilibrium
values, while dotted line refers to initial densities that are 60% of
their vapor-liquid equilibrium values.

scribe accurately the bulk thermodynamics of phase equilib-
rium for a LJ fluid. The present LBE model gives an
excellent prediction of the bulk fluid properties for dimen-
sionless temperatures 7* above 1.17. Below this temperature
level, we have observed some stability issues in the simula-
tions of the LBE model. Since for a LJ fluid the dimension-
less critical temperature is 7%~ 1.32 we estimate a lower
limit of the reduced temperature 7,=7/T, of ~0.886, where
we anticipate a breakdown of the gradient theory anyway.
The excellent agreement of the phase equilibrium proper-
ties predicted by the LBE model for a LJ fluid indicates that
the current model preserves both chemical and mechanical
equilibrium. Note that there have not been any literature re-
sults for the equilibrium chemical potential of a LJ fluid with
the exception of the work by Lotfi er al. [61]. However, care
must be taken in the definition of the chemical potential
when comparing our present results with those in [61]. More
specifically in [61], the results are given for the density-
dependent part, Afi,, of the chemical potential difference,
Mo- Therefore, in order to compare our present results we
must subtract the density independent properties kzT(~In p,
+1) from the right-hand side of Eq. (31). Through this ap-
proach we compute Azy=-2.94 for T*=1.27, which is com-
pared to Afig=-2.83, in [61]; and Afy=-3.27 for T"=1.17,
which is compared to Afy=-3.13, in [61]. It is seen that in
both cases the relative error is less than 4.5%, in agreement
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FIG. 7. Vapor and liquid coexisting densities as functions of
temperature, for a LJ fluid.

with the error of pressure and equilibrium densities predicted
from the present work compared to the respective properties
in [61]. Thus we can conclude that our present work gives
excellent predictions of all the basic bulk thermodynamic
properties of a LJ fluid for 7/7,.>0.9.

C. Determination of surface tension

1. Planar interface

Following the gradient theory of the thermodynamic ap-
proach [3-6], the surface tension of a fluid for the case of a
ID planar interface (assuming that density p varies only
along the x direction) is computed by the following formula:

y= LO K<£> dx. (44)

On the other hand, following the mechanical definition of the
surface tension through the pressure tensor [2,64], we have

- (Pxx——L(P ;P”))dx, 45)

where P,, is the normal component of the pressure tensor
assumed to be uniform, while P =P, are the tangential
components that depend on distance, x. From Eq. (42) we get
the following expressions for the components of the pressure
tensor for a 1D planar interface:

TABLE 1. Equilibrium densities for a LJ fluid.

Maxwell’s rule LBE model
T Py P " Py P
1.17 0.0835 0.5897 2.97 0.0839 0.5903
1.20 0.1013 0.5650 2.60 0.1018 0.5656
1.22 0.1140 0.5483 2.35 0.1144 0.5488
1.24 0.1286 0.5246 2.20 0.1286 0.5245
1.25 0.1384 0.5096 2.10 0.1384 0.5095
1.27 0.1591 0.4860 2.00 0.1591 0.4860
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TABLE II. Equilibrium pressures and chemical potentials for a LJ fluid.

Maxwell’s rule LBE model
T P, Apg o P Apg
1.17 0.0668 0.8004 297 0.0676 0.7987
1.20 0.0782 0.7721 2.60 0.0788 0.7714
1.22 0.0856 0.7510 2.35 0.0860 0.7495
1.24 0.0934 0.7261 2.20 0.0934 0.7262
1.25 0.0977 0.7057 2.10 0.0977 0.7057
1.27 0.1065 0.6694 2.00 0.1065 0.6694
K dp 2 dzp p dp’
Pxx=P0+_(_) —Kp— 5, (463) X=Xg= BV (48)
2\ dx dx py o(p’)
where p,=p(x,) [5,7]. In general, we choose x,=0 and then
k(dp\® « d’ assign to p, an arbitrary value between p, and p;. In the
Py =P =P+ o\x) 3P (46b)  present study, we have chosen p,=(p,+p;)/2, although more
complicated choices, based on the Gibbs dividing surface of
zero excess matter, have appeared in the literature [5].
Comparing Egs. (39) it is easy to show that Variable ¢(p) in Eq. (48) is defined by
dp
1 2 elp)=—" (49)
P,V,V = Pzz = gpxx + §PO’ (47) dx
and ¢(p) is determined from the following integral:
which is a well known result that relates the normal with the ) P p[Py(p") = Py(p)] , ,
. =2 dp'. (50)
tangential components of the pressure tensor for a planar kp'?
interface (e.g., [6,7] and references cited therein). i
Substituting the above equations in Eq. (45) and integrat-  Using Eq. (44) it is straightforward to show that [7]
ing by parts with the additional boundary conditions that )
ap _ —+ 8
o ‘0 at x— * oo, we can recover Eq. (44). Note that the y=f «- o(p)dp. (51)
equivalence of Egs. (44) and (45) holds only when « is den-

sity independent. If this is not the case, then the two expres-
sions are no longer equivalent [7] and this causes a serious
limitation of the current theory. Moreover, according to gra-
dient theory, the density profile for a planar interface can be
determined from the following integral equation:

0.14
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FIG. 8. Vapor and liquid coexisting densities as functions of
pressure, for a LJ fluid.

P

The advantage of Eq. (51) over Eq. (45) is that in the former
we do not need to calculate the density profile to determine
the surface tension. This is very useful particularly when the
density profiles get very steep as we move away from the
critical temperature [5].

Our simulation results on surface tension are shown in
Table III. It is seen that the surface tension predictions of the
LBE model are in excellent agreement with the predictions
from gradient theory. This is further illustrated in Fig. 9,
where we compare the density profile obtained from the LBE
simulation with that from the numerical solution of Eq. (48).
These profiles are in excellent agreement indicating a close
matching of the LBE model with gradient theory based on
the mechanical approach.

Looking at the results in Table III, we note that when we
compare surface tension values obtained from gradient
theory with those from the LBE model, the predictions of the
latter based on Eq. (44) are slightly worse than those from
Eq. (45) for all temperatures. Furthermore, the difference
between the two predictions becomes larger as the tempera-
ture decreases. To investigate this further we plot the inte-
grands for each case in Fig. 10. In the same figure we com-
pare them with the respective curves obtained from gradient
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TABLE III. Surface tensions predicted by gradient theory for a
planar interface.

Exact result LBE model
T* v Eq. (44) & v Eq. 37) v" Eq. (38)
1.17 0.1980 297 0.1790 0.2000
1.20 0.1409 2.60 0.1309 0.1410
1.22 0.1145 2.35 0.1085 0.1137
1.24 0.0810 2.20 0.0784 0.0806
1.25 0.0673 2.10 0.0655 0.0671
1.27 0.0440 2.00 0.0432 0.0439

theory. Note that in the latter we use Eq. (51) to compute
surface tension, which is an integral in the density space, and
hence does not involve accuracy limitations due to the profile
steepness. Nevertheless, it is straightforward to obtain the
detailed structure of the integrands of Eqgs. (44) or (45) with
the aid of Egs. (48)—(51) for the case of gradient theory.

It is seen that due to the steepness of the density profile,
the nonzero points in the integrand of Eq. (44) are not
enough for very accurate integral calculations, compared to
those in the integrand of Eq. (45). This problem deteriorates
as the temperature decreases since we know that the interface
thickness scales with a power law with temperature, and
therefore the density profiles will get steeper as temperature
decreases. An additional complication comes from the use of
larger pixel sizes ox™ as temperature decreases for stability
reasons (see also the analysis in [36]). Therefore the only
possibility for an improvement in the accuracy of the surface
tension computations is to introduce more points in the inte-
grand of Eq. (44) using interpolation schemes. For example
if we double the number of points in the density profile at
T*=1.25, using linear interpolation, we get from Eq. (44) a
surface tension prediction of, ¥*=0.0670, which is in much
closer comparison with the value predicted from gradient
theory (y*=0.0673). Further increase of the number of inter-
polating points by another factor of two, results in a surface
tension prediction of y*=0.0673, which is in exact agree-
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FIG. 9. Density profile for the case of a planar interface com-
puted by the LBE model (filled points) and gradient theory (solid
line).

PHYSICAL REVIEW E 82, 056705 (2010)

0.002

— Gradient theory
A LBE, Eq. (44)
W LBE, Eq. (45)

0.001 |

0.000

Integrands in Eqs. (44)-(45)

-0.001

-30 -20 -10 0 10 20 30

Distance, x*

FIG. 10. Integrand profiles in Egs. (44) and (45) for the case of
a planar interface computed by the LBE model (filled points) and
gradient theory (solid line).

ment with the value predicted from gradient theory as can be
seen in Table III. The same behavior is observed qualita-
tively at all temperatures studied in this work. Note that if we
use Eqs. (44) or (45) for the density results of gradient theory
[instead of Eq. (51)] we will get the same value for y* that
Eq. (51) predicts, provided that we use a sufficiently large
number of points in space (typically of the order of 1000).
In Fig. 11 we compare the surface tension predictions of
the present study with literature results from molecular simu-
lation studies [63,65-67]. The observed discrepancies in the
simulation results taken from the literature are attributed to
the fact that different approaches have been used to simulate
surface tension. These approaches are often different in na-
ture (e.g., molecular dynamics are based on the mechanical
definition of surface tension, while test area simulation or
Monte Carlo methods are based on the thermodynamic defi-
nition of this property). Furthermore the use of a spherical
cutoff in the molecule-molecule interactions has an impor-
tant effect on surface tension predictions. Some authors have
included long-range corrections (LRC) in surface tension
predictions known as surface tail corrections which have re-
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FIG. 11. Surface tension as a function of temperature, for a LJ
fluid. Solid line is used to guide the eye through the LBE results.
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sulted in an upward shift in the surface tension curve as a
function of temperature. Our simulation results (both LBE
model and gradient theory) appear to be closer to the LRC-
corrected surface tensions. This is justified by the fact that
we have not used any cutoff in the force term of the interac-
tion potential appearing in the integral that defines the influ-
ence parameter, k. Thus the spherical cutoff of 5.870 em-
ployed in the MD simulations to obtain g¢/(r;p) has a much
smaller effect on the determination of the influence param-
eter compared to the interaction force Z—‘: that is kept nonzero
beyond the cutoff value. To further support our argument, we
repeated our simulations applying the spherical cutoff in the
interaction force and hence in the integral used to compute «.
The results are also presented in Fig. 11. It is seen that sur-
face tension predictions are lower when spherical cutoff is
applied in the determination of the influence factor . The
surface tension predictions of the LBE model are again in
close agreement with those of gradient theory and are in very
good agreement with literature results where a similar spheri-
cal cutoff is employed with no surface tail corrections
[65,66].

From the above results made on planar interfaces, it is
evident that the LBE model predictions are in excellent
agreement with gradient theory, on which the model is based.
Any limitation of these predictions with respect to molecular
simulation studies depends exclusively on the physical limi-
tations of gradient theory and also on the approaches used to
describe the radial distribution function g¢/(r;p).

2. Curved interfaces

The case of a curved interface is more complicated to
analyze because there are more nonvanishing terms in the
pressure tensor given by Eq. (42). As a result we cannot use
the simple Eqgs. (44) or (45) as in the planar case. Instead, by
applying the condition of mechanical equilibrium V-P=0 we
can obtain Laplace’s law for a spherical or cylindrical liquid
droplet [54],

5y

AP=pP 0ut=R

P , (52)

in~
c

where AP is the pressure difference between the center of the
drop and the bulk of the surrounding gas phase, calculated
from the respective density values through the respective
equation of state, R, is the drop radius, 7 is the surface ten-
sion for the curved interface and s is a numerical shape factor
due to the curvature effects. It is straightforward to show that
for spherical drops s=2, while for circular drops s=1.

In Fig. 12 we present a plot of AP vs 1/R. at T*=1.25 and
T*=1.27. It is seen that Laplace’s law is verified at both
temperatures. Furthermore, the value of surface tension ob-
tained from the slope of AP vs 1/R,., according to Eq. (52),
is in very good agreement with the respective value com-
puted for the case of planar interfaces.

A final remark is that in all simulations conducted with
the present LBE model we have determined maximum val-
ues of parasitic current velocities of the order of
107%~10"1, in accord with previous studies [35,36]. Hence
the proposed model can simulate more realistic fluids using
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FIG. 12. Verification of Laplace’s law for a LJ fluid using the
LBE method.

input from statistical mechanics, while keeping the advan-
tages of previously employed discretization schemes.

IV. CONCLUSIONS

In the present work we have developed a lattice Boltz-
mann equation (LBE) model that originates from the discrete
BBGKY evolution equations and is based on the mechanical
approach of gradient theory of interfaces. The basic input of
the model is the radial distribution function that is directly
related to the molecular interaction potential and is provided
from independent molecular simulations or from approxi-
mate theories.

We have applied the new model to obtain equilibrium
bulk thermodynamic properties including phase equilibrium
densities, pressure and chemical potential, for a Lennard-
Jones (LJ) fluid at different temperatures. Excellent agree-
ment is achieved between the LBE model and gradient
theory as well as with independent literature results based on
various molecular simulation approaches. Furthermore, sur-
face tensions are computed at different temperatures for the
case of planar and curved interfaces. Again excellent agree-
ment is achieved between the proposed LBE model and gra-
dient theory as well as with independent literature results
obtained from molecular simulations. The results of this
study indicate that the proposed LBE model can capture ac-
curately bulk and interfacial thermodynamics for a LJ fluid at
T/T.>0.9. Current focus of our work is to include surface-
fluid interactions to study equilibrium and transport phenom-
ena of real fluids on solid surfaces or within confined spaces.
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