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Fractal Characteristics and Scaling of the Drying Front
in Porous Media: A Pore Network Study

A. G. Yiotis, I. N. Tsimpanogiannis, and A. K. Stubos
Environmental Research Laboratory, National Center for Scientific Research
‘‘Demokritos’’, Aghia Paraskevi, Greece

We perform two-dimensional pore network simulations of
isothermal drying in order to provide better insight on the structure
of the drying patterns, particularly in the frontal region, both in the
presence and absence of gravity forces. Our numerical results for
the fractal dimension of the invading gaseous phase (Dp¼ 1.88�
0.03) and the drying front perimeter (De¼ 1.34� 0.06) in the
absence of gravity are in very good agreement with reported experi-
mental and theoretical values. The scaling of the drying front width,
rf, in the presence of a front-stabilizing gravity gradient is also
examined and it is found to scale with the Bond number (ratio of
gravity to capillary forces) as rf/ jBj�0.58. The width of the finger,
n, that develops by a front-destabilizing gravity gradient is found to
scale as n/ jBj�0.57. We also report the effects of gravity forces on
the drying rates and their scaling.

Keywords Drying; Fractal; Invasion percolation; Pore network;
Porous medium; Scaling

INTRODUCTION

Drying of porous media is a liquid to gas phase change
process that has a wide range of industrial applications. It
is involved in the production process of a variety of
commercial products such as paper, food, pharmaceuticals,
textile, wood, ceramics, granular and building materials,
etc. In a different but related context, drying is also
involved in distillation and vaporization processes associa-
ted with soil remediation,[1] as well as in the recovery of
volatile oil components from fractured reservoirs by gas
injection (Lenormand et al.[2] and Tsimpanogiannis et al.[3]

and references therein).
The complicated nature of drying in porous media,

combined with the wide range of applications related to
this liquid to gas phase change process, has resulted in a
plethora of studies that have appeared in literature. Van
Brakel[4] has provided extensive insight into the drying
process by analyzing experimental results and modeling
studies. Traditionally, the process is approached from a

phenomenological point of view. Luikov[5] and
Whitaker[6,7] offered a good account of such methods in
their extensive reviews. Under this approach, the porous
medium is replaced by a hypothetical effective continuum,
in which the detailed physics at the pore level are lumped
into averaged quantities (see the comprehensive numerical
simulator by Perre and Turner[8]). Equivalent-continuum
partial differential equations are used to describe the tem-
poral and spatial evolution of volume-averaged quantities
(e.g., temperature, moisture content, etc.). Closure to the
problem is provided using empirical parameters, which
often require fitting to some kind of experimental data.
Alternatively, such parameters could be evaluated using
pore network models.

Pore network studies represent an improvement in
modeling that has been achieved in recent years. They have
been primarily used to study two-phase or multiphase
displacement processes in porous media. Blunt et al.[9]

presented a detailed review. Lately they have been used
to study processes in porous media where heat,[10] mass
transfer,[11–14] and reaction[15–17] are important. Pore
networks studies that examine drying=evaporation in
porous media are discussed in the remaining of the section.

Following the pore network description one can
represent the porous medium as an ensemble of pores
and throats of different geometries and sizes that can take
values from appropriate distributions. In this approach
emphasis is placed on incorporating into the pore network
models the detailed physics occurring at the single-pore
level. Such studies can contribute to the fundamental
understanding of how phenomena occurring at the pore
level can influence processes at the larger (effective con-
tinuum) scale. Note, however, that the detailed description
that is achieved with pore network modeling requires
significantly more computational power, therefore limiting
the size of the problems that can be considered.

Drying is a two-phase flow process that involves many
pore-scale mechanisms that affect the macroscopic beha-
vior of the process. These include the motion of individual
gas–liquid menisci residing in the pore space under the
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combined effect of capillary, viscous and buoyancy forces,
the mass and heat transfer by diffusion and convection in
the gas and liquid phase, viscous flow in both phases, liquid
flow through connected films, and liquid remaining at the
corners of noncircular pores. All these mechanisms need
to be accounted for at the pore scale. A number of pore
network studies of varying degree of complexity have been
presented during recent years that attempted to inco-
rporate various aspects of the drying process.[18–42] More
physical details of the drying process incorporated in a
pore network simulator result in obtaining more realistic
simulations but at the cost of higher computational
demands.

During the drying process, a single- or multicomponent
liquid phase that initially saturates partially or completely
the porous medium gradually evaporates and is removed
from the porous structure. The drained pore space is sub-
sequently invaded by air. This sequence of events resembles
those observed during immiscible displacement (ID) inside
porous media. During an ID process (e.g., drainage) the
porous medium is initially saturated with a wetting
phase (defending phase). The wetting phase is displaced
by the injection of a nonwetting phase (invading phase).
For the case of drying considered in this study, the network
is initially completely saturated with liquid. Due to
evaporation, air invades the system. Technically, however,
the gas phase does not displace the liquid but invades
the ‘‘empty space’’ created from the evaporation of the
liquid phase.

Figure 1 shows a schematic of the immiscible displace-
ment and the evaporation processes. Depicted also are
some of the differences between the two processes. In parti-
cular, at the ID the invading phase enters from one side
and the displaced defending phase exits from the opposite
open end. On the other hand, during the evaporation

process the invading phase (air) and the receding fluid (in
particular the vapors of the liquid phase) counterdiffuse
toward the same open side. During an ID, as a result of
the incompressibility of the defending wetting phase,
smaller clusters can be completely surrounded by the
invading phase and become disconnected (‘‘trapped’’) from
the main defending phase cluster. Such clusters do not
participate any further in the invasion process. For the case
of drying, however, such trapped clusters continue to
evaporate until they are completely eroded. Note, here, that
the drying process is driven by diffusion in the gas phase.

Shaw[43] was among the first to consider the drying
process as a modified form of immiscible displacement.
He conducted drying experiments in Hele-Shaw cells
placed horizontally with dimensions 2.5 cm� 4.0 cm and
thickness 15–20 mm, packed with silica spheres of size
0.5 mm, and analyzed the obtained images of the drying
experiments in order to obtain the scaling of the drying
front. It is known that when a less viscous nonwetting fluid
(air) displaces a more viscous wetting fluid (water),
unstable displacement finger-type fronts are expected.
Shaw attributed the drying front stability in the removal
of the liquid phase from the pore structure to the coun-
ter-flow of liquid films in the displacing fluid. The impor-
tant role played by the viscous forces on the stabilization
of the drying front was discussed in additional detail by
Tsimpanogiannis et al.[44] and Prat and Bouleux.[23]

In the current study, we perform 2D pore network simu-
lations of isothermal drying in order to better understand
the structure of the drying patterns, particularly in the
frontal region. We consider the simpler case where no vis-
cous effects are taken into consideration during the pore
network simulations. However, the effects of gravity forces
are considered. We report results for the fractal dimension
of the invading phase and the drying front perimeter in the
absence of gravity. We also examine the scaling of the
drying front width in the presence of a front-stabilizing
gravity gradient, as well as the width of the finger that
develops by a front-destabilizing gravity gradient. We also
report on the effects of gravity forces on the drying rates
and their scaling.

METHODOLOGY

The model discussed in this study is based on the work
of Prat,[19,20] Laurindo and Prat,[21,22] and Prat and
Bouleux.[23] It is applied, however, to further analyze the
fractal characteristics and the scaling of the drying front,
the phase distribution patterns, and the drying rates of
larger pore networks under the influence of gravity.

The porous medium is represented by a 2D regular
square network of spherical pores that are connected
through cylindrical throats. The radius of the pores is taken
constant and equal to 500 mm. The throat radius follows a
random distribution with a range 50–100 mm. The lattice

FIG. 1. Schematic of two-phase flow processes: (a) immiscible

displacement and (b) drying=evaporation.
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length l (pore center to pore center distance) is equal to
2mm. As a result of the considered values for the pore=
throat radius, the pores provide the volumetric storage
and the throats provide the resistance to flow and mass
transfer. The following assumptions are made in our
simulations:

� The fluids are stored in the pores only, because the
volume of the throats is significantly smaller.

� The capillary pressure is significant in the throats
and negligible within the pores.

For the aforementioned network we can identify the
following three types of pores (see also the discussion by
Tsimpanogiannis et al.[44] and Yiotis et al.[25]): those pores
that are fully occupied by gas (belonging to the gas phase
and denoted by G), those pores that are fully occupied by
liquid (belonging to the liquid phase and denoted by L),
and those pores located at the gas–liquid interface (in
which a meniscus resides, denoted by I). The latter can
be further subdivided in completely empty (CE) and partly
empty (PE) pores.

When the gas–liquid interface is located inside an inter-
face throat, it remains temporarily pinned due to capillary
forces; however, evaporation continues to occur. The
difference in pressure due to capillary forces is

Pc ¼ Pnw � Pw ¼ 2c
r

ð1Þ

where Pnw and Pw correspond to the pressures of the
nonwetting (nw) and wetting (w) phases, respectively; r is
the radius of the throat; and c is the interfacial tension
and we assumed a zero contact angle. When the gravity
forces are important, the capillary pressure will vary with
the elevation h of the interface as follows:

Pc ¼
2c
r
þ gxhDq ð2Þ

where gx is the component of gravity in the direction of
displacement and Dq¼ qw� qnw.

As a result of the continuous evaporation of the liquid
phase, the gas–liquid interface recedes inside the pore
network and eventually isolated liquid clusters that are
disconnected from the main liquid phase are formed. These
clusters are surrounded by the invading continuous
gaseous phase. Let us consider an isolated liquid cluster
where the gas–liquid interface is pinned due to capillary
forces at the throats of the perimeter. Evaporation from
that cluster continues and eventually one of the throats
(and the adjacent liquid pore) belonging to the external
perimeter of the cluster is invaded (the one with the
minimum capillary threshold). This process is continued
until the liquid cluster is completely evaporated.

The evaporation flux, Fij ðmass=time� areaÞ, of the
liquid from the I pores at the perimeter of the liquid
clusters toward the G pores is

Fij ¼ D
Ci � Cj

l

� �
ð3Þ

where D is the diffusion coefficient; Ci and Cj are the vapor
concentration at the I pore (taken equal to the equilibrium
concentration Ce) and G pore, respectively; and l is the
distance between the centers of the two pores. The vapors
are transferred by diffusion to the open end of the network.
The mass flow rate by diffusion through a throat with
radius rij and cross-sectional area Aij that connects two
adjacent G pores is

Qij ¼ AijFij ¼ pr2ijD
Ci � Cj

l

� �
ð4Þ

At steady-state the mass balance inside every pore in the
gas phase is given by

X
j

Qij ¼
X
j

pr2ijD
Ci � Cj

l

� �
¼ 0 ð5Þ

The gas phase saturation inside an I pore (of type PE) is
calculated through the following mass balance:

Stþ1
i ¼ St

i þ
Dt
qlVl

�
X
j

Qij ð6Þ

where Stþ1
i is the gas saturation inside the pore at the next

time step (tþ 1), St
i is the gas saturation inside the pore at

the current time step (t), and Dt is the time step during
which we assume constant rate Q. Equations (3)–(6) are
used to calculate the recovery rate during the drying
process.

NUMERICAL RESULTS AND DISCUSSION

A large number of drying simulations were performed
using 2D pore networks with dimensions L�L, where L
denotes the number of pores in each dimension. A similar
set of simulations was performed for the case of invasion
percolation with trapping (IPT) to model drainage
processes. The networks had three sides impermeable and
one side open to flow and mass transfer. Isothermal
conditions were assumed. The largest pore network used
was with L¼ 600 and required approximately 58 h for
completion of the simulation of a single realization when
using an Intel P4 2.53-GHz personal computer (PC). The
respective time dropped to about 30min for a 300� 300
pore network. Each simulation was continued until the
invading gas phase reaches the side opposite to open one

DRYING FRONT IN POROUS MEDIA 983
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(breakthrough point, BT). At that moment we have the
formation of a sample-spanning cluster of the invading
phase (gas). That moment also corresponds to the critical
point of the ordinary percolation (OP) where we have the
creation of the infinite (percolating) cluster.[45]

In this study we considered hexane as the liquid that
initially completely saturated the pore network. The
following values for the parameters were used during
the numerical simulations: interfacial tension c¼ 19�
10�3N=m, liquid-phase density ql¼ 650 kg=m3, gas-phase
density qg¼ 4.4 kg=m3, equilibrium concentration Ce¼
0.266 kg=m3, and binary diffusion coefficient of hexane
into air D¼ 6.38� 10�6m2=s.

EFFECT OF CAPILLARY FORCES (WITH g¼ 0)

When the flow of the invading phase is very slow and in
the absence of gravity, capillary forces dominate over
viscous forces at the liquid–gas interface. In this case, the
movement of the interface, as the liquid evaporates, is
determined by the size of throat radii. Among all throats
belonging to the invasion front, the one with the minimum
capillary threshold (i.e., larger throat radius) will be
invaded. Because the size of the throats is distributed
randomly, the probability of throat invasion is random in
space as well. The sequence of pore invasion can be
modeled with invasion percolation (IP).[46] As a result,
the invading phase will acquire a self-similar fractal pat-
tern, which eventually approaches that of the percolation
cluster.[47] Prat[20] demonstrated numerically that the
invasion front resulting from evaporation and drainage
was the same fractal object. Figure 2 shows three typical
snapshots of phase distribution patterns obtained from
150� 150 pore network simulations of drying in the
absence of gravity forces.

Fractal Dimension of Drained Space

According to percolation theory, the mass, M, of the
percolating gaseous cluster, which is proportional to the
number (N) of invaded pores, is known to scale with
the correlation length np (i.e., the characteristic size of the

cluster) as follows[48]:

MðnpÞ / nDp
p ð7Þ

where Dp is the fractal dimension of the percolation cluster.
The theoretical value for 2D from ordinary percolation
(OP) is Dp¼ 91=48¼ 1.89,[49] whereas the value from
numerical simulations for invasion percolation without
trapping (IPWT; i.e., drying) is Dp¼ 1.89 and for IPT
(i.e., drainage) is Dp¼ 1.82.[46] For the case of IPT, the
incompressibility of the defending phase, which results in
the trapping of the defending phase, renders large areas
of the network to be unavailable for invasion. Therefore,
the number available for invasion pores is less, and the
liquid recovery at the critical point is lower when trapping
is taken into consideration.

In finite systems at the ‘‘critical’’ point, that is, when the
gas phase reaches the side opposite to the open one, the
correlation length equals the size of the system np¼L.
Therefore, Eq. (7) becomes

MðLÞ / LDp ð8Þ

By varying the size L of the system and counting the
number of invaded pores at BT, we can obtain the fractal
dimension Dp of the percolating cluster. We performed
such an analysis for the invading phase that resulted from
the drying simulations. Figure 3 shows a log-log plot of the
number of gas-invaded pores (drained pores) as a function
of the lattice size L for several hundreds of realizations.
These results correspond to a series of numerical simula-
tions with several hundred random pore networks of sizes
ranging from L¼ 30 to L¼ 600. The slope of the curve is
equal to the fractal dimension Dp.

The mass of the invading phase was measured by count-
ing the number of pores occupied by the invading phase
(air) at the critical point for various sizes of the pore
network L. Note that for the case of drying simulations
we ignored the effect of the gradient in the concentration
during the calculation of the mass fractal dimension of the
invading phase. Essentially we considered that all PE pores
empty with the same rate without considering their distance

FIG. 2. Phase distribution during drying for the case g¼ 0 cm=s2 inside a 150� 150 pore network. Liquid phase is shown in black and gas phase in

white. Open end at the top side.
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from the open end of the network where C¼ 0. Under this
assumption we calculated that the fractal dimension of the
invading phase is Dp¼ 1.88� 0.03. This value is in excellent
agreement with the experimental value for drying in
Hele-Shaw cells packed with silica spheres,Dp¼ 1.89� 0.03,
0.03, reported by Shaw.[43] The obtained value from our
drying numerical simulations is also in excellent agreement
with the theoretical value Dp¼ 1.89 resulting from OP,[49]

as well as with numerical results from invasion percolation
without trapping D¼ 1.89.[46] Recall at this point that dur-
ing the drying process the liquid clusters left behind as the
drying front advances inside the porous medium evaporate
completely. Therefore, the drying process produces invasion
patterns that are closer to IPWT than to IPT.

The saturation of the nonwetting (invading) phase is
equal to Snw¼N=Ld, where N is the number of the invaded
pores and d is the dimensionality of the pore network. The
saturation scales as follows[46]:

SnwðLÞ / L�a ð9Þ

where the exponent a is related to the fractal dimension Dp

and the space dimension d by

a ¼ d �Dp ð10Þ

From our numerical simulations we calculated that
a¼ 0.12� 0.01 in good agreement with the theoretical
value (a¼ 0.11).

Fractal Dimension of the Drying Front

Of interest also is the external perimeter of the percolation
cluster. For the case of drying this corresponds to the drying
front. Essentially it includes all the liquid-occupied pores at
the perimeter that have a gas-occupied pore as a next-nearest
neighbor.

The fractal dimension of the interface for the drying
process was calculated using the ‘‘box-counting’’

method.[47,50] The fractal set is completely covered by
nonoverlapping boxes of Euclidean size d. The number
N(d) of such boxes required is plotted and the following
relation is used in the limit d! 0:

NðdÞ / d�De ð11Þ

Figure 4 shows the double-logarithmic plot of the
number of gas-invaded pores at the front as a function of
the box size d. Results from 10 realizations of 200� 200
networks were utilized. The value for the fractal dimension
of the interface for the drying process was calculated to be
De¼ 1.34� 0.06. This value is in good agreement with the
experimental value for the fractal dimension of the external
perimeter, De¼ 1.38� 0.02, of the drying front reported by
Shaw.[43]

Our numerical results are also in good agreement with
reported values for drainage in the literature. In particular,
Birovljev et al.[51] reported the following computational
(De¼ 1.39� 0.02) and experimental (De¼ 1.34� 0.04)
values for drainage. Grossman and Aharony[52] reported
the value De¼ 1.37� 0.03 from computer simulations of
site percolation clusters for the case when considering
nearest-neighbor connectivity.

Effect of Gravity Forces

If we consider the gravity forces to be part of the drying
process (g 6¼ 0), then an IP will not develop over the entire
region of the displacement. Instead, the displacement
follows the features of invasion percolation in a gradient
(IPG).[51,53–56] The Bond number, B, which is the ratio of
gravity to capillary forces, is a measure of the competition
between the gravity and capillary forces during the
displacement. The Bond number is given by

B ¼ gxr
2
mDq
c

or B ¼ gxkDq
c

ð12Þ

FIG. 4. Log-log plot of the number of gas-invaded pores at the front as a

function of the box size d (in lattice units).

FIG. 3. Log-log plot of the number of gas-invaded pores (dried pores) as

a function of the lattice length L (in lattice units).
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where k is the permeability of the pore network and k / r2m
(rm is the mean pore size). We can distinguish two cases:

1. When B> 0 (i.e., downward displacement of a heavier
fluid by a lighter fluid), the two phases are separated
by a front of finite width, rf, which scales with the Bond
number as

rf / B�n=ðnþ1Þ ð13Þ

where n is the correlation length exponent of percolation,
with values n¼ 4=3 in 2D and n¼ 0.88 in 3D.[45] There-
fore, the theoretical predictions for the exponent
�n=(nþ 1) are equal to �0.57 for 2D and �0.47 for
3D. Figure 5a shows a schematic of the front width rf.
As a result of the self-affinity of the front it is useful to
define the drying mean-front position, xf, as follows for
the case of 2D (see also the detailed discussion by
Gouyet et al.[57] and Gouyet and Rosso[58] for the case
of 3D diffusion fronts).

xf ¼

R1
0

x � pf ðxÞdx

R1
0

pf ðxÞdx
ð14Þ

where pf(x) is the probability to find a pore of the
interface at x. The mean-front position and the width
of the front are related through

r2f ¼

R1
0

ðx� xf Þ2 � pf ðxÞdx

R1
0

pf ðxÞdx
ð15Þ

2. When B< 0 (i.e., upward displacement of a heavier fluid
by a lighter fluid), the invasion process is dominated by
the growth of a single invading finger (branch), the local
characteristics of which are still controlled by perco-
lation. The finger can be described as a chain of fractal
blobs that have a characteristic length n. Figure 5b
shows a schematic of the front width n. The mean width
of the finger is proportional to the characteristic length
and scales as

n / jBj�n=ðnþ1Þ ð16Þ

Namely, it follows the same scaling as the mean width of
the front for the stabilizing case. This regime has been
studied in detail by Frette et al.[59] andMeakin et al.[60,61]

Stabilizing Gradient Pore Network Results (B> 0)

In the current study we consider that the gravity g is
parallel to the invasion direction and constant in the entire
network. For the case where the gravity vector has the
same direction with the velocity vector of the drying front
(i.e., B> 0), the gravity forces stabilize the interface and
tend to limit the front width rf (see Fig. 5a). Figure 6
shows the evolution of the phase distributions during
drying for two values of the parameter B. As can be seen,
the width of the front of the gas–liquid interface is a func-
tion of B or equivalently g. The higher the value of g, the
stronger are the hydrostatic forces that act on the interface
and the smaller the width of the front rf.

In order to study the dependency of the width of the
drying front on the value of g, a series of numerical simula-
tions was conducted and we measured the front width
using Eq. (15). For values of g� 10 cm=s2 we used 100
realizations of 200� 200 pore networks, whereas for values

FIG. 5. Schematic of the drying front: (a) front width for the case of

the stabilizing gradient and (b) finger mean width for the case of the

destabilizing gradient.

FIG. 6. Evolution of phase distribution during drying under stabilizing

gradient (B> 0). g¼ 10 cm=s2 (top panel), and g¼ 30 cm=s2 (bottom

panel). Liquid phase is shown in black and gas phase in white.
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of g< 10 cm=s2 we used 10 realizations of 600� 600 pore
networks. The front width was measured at the critical
point (invading gas phase reaching the opposite end of
the pore network).

Figure 7 shows the averaged values of the front width
as a function of g. According to the results from our
numerical calculations the width of the front as a function
of the gravity force is given by

rf / g�0:58 ) rf / B�0:58 ð17Þ

The obtained value of the exponent �0.58� 0.04 for 2D
is in very good agreement with the theoretical prediction,
� 0.57, of Eq. (13). Prat and Bouleux[23] performed drying
simulations in 400� 400 pore networks (six realizations)
and obtained the value of �0.5738� 0.0017.

Similar values were reported from experimental and
numerical simulations for drainage in 2D pore
networks.[51,53,62]

Destabilizing Gradient Pore Network Results (B< 0)

In the case where the gravity vector has the opposite
direction of the velocity vector of the receding drying front
(i.e., B< 0), the gravity forces destabilize the interface and
tend to increase the front width rf. Figure 8 shows two
snapshots of the evolution of the phase distributions during
drying for a negative value of the parameter B. We observe
that we have the formation of a dominant branch
(finger-like structure) that increases continuously in length
until it finally reaches the opposite end (critical point).

The width, n, of the finger (see Fig. 5b) is almost
constant along its length. By changing the value of g (or
B) we observe that the average width of the invading finger
changes as well. This is clearly demonstrated in Fig. 9,

where the percolating gas phase is depicted for three
different values of g (i.e., �2, �10, and �70 cm=s2).

We apply Eq. (15) in the direction perpendicular to the
flow (parallel to the open end of the pore network) and
measure the width of the invading finger for various values
of g. For each value of g we performed 10 realizations in
300� 300 pore networks and the average values of the
finger widths are shown in Fig. 10 as a function of jgj.
To reduce the effect of the inlet and outlet of the network
we ignored the finger width that was near the inlet=outlet
(within 10% of the network length).

According to the results from our numerical simula-
tions, the width of the invading finger as a function of
the gravity force is given through

n / jgj�0:57 ) n / jBj�0:57 ð18Þ

where the finger width n is calculated using Eq. (15).

FIG. 7. Front width, rf, (in lattice units) as a function of gravity for the

drying process under stabilizing gradient. Squares denote the average

values obtained from the pore network simulations.

FIG. 8. Evolution of phase distribution during drying under destabiliz-

ing gradient (B< 0) in 200� 200 pore networks (g¼�20 cm=s2). Liquid

phase is shown in black and gas phase in white.

FIG. 9. Phase distribution during drying under destabilizing gradient

(B< 0) in 100� 200 pore networks. The effect of gravity forces on branch

width: g¼�2 cm=s2 (left panel), g¼�10 cm=s2 (center panel), and g¼
�70 cm=s2 (right panel). Liquid phase is shown in black and gas phase

in white.
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The obtained value of the exponent �0.57� 0.05 is in
very good agreement with the theoretical prediction,
�0.57, of Eq. (16). It is also in very good agreement with
experimental and numerical results from the literature for
the case of drainage in 2D pore networks.[53,60,61]

Effect of Gravity on the Drying Rate

Assuming that the gas–liquid interface (drying front)
recedes with an average velocity uf and the mean front
position is xf, as defined through Eq. (14). Concentration
and pressure fields are coupled at the interface by mass
balance.[44] Therefore, due to the boundary conditions of
the drying process the following scaling holds for the
average velocity

uf /
D � Ce

xf
ð19Þ

where D is the diffusion coefficient and Ce is the equilib-
rium concentration.

The average velocity of the front can also be defined
through the mean front position

uf � _xxf ¼ dxf
dt

ð20Þ

By combining Eqs. (19) and (20) we obtain

dxf
dt

/ 1

xf
ð21Þ

After integration of the above equation we can obtain
that the mean front position of the interface is proportional
to the square root of the drying time

xf /
ffiffi
t

p
ð22Þ

and therefore the velocity of the front and the drying
rate are inversely proportional to the square root of the
drying time

uf / t�1=2 and _mm � Q / t�1=2 ð23Þ

Figure 11 shows in a log-log plot the drying rate as a
function of time for two cases of g: A case were the gravity
forces are not present (g¼ 0 cm=s2) and a case with B> 0
(g¼ 30 cm=s2), for which case the interface recedes almost
without perturbations (piston-like).

We observe that during the initial stages of the drying
process when the interface is very close to the open end of
the pore network, the drying rate remains almost constant
for a long period of time (constant rate period, CRP). Yiotis
et al.[25] demonstrated using 2D numerical simulations that
CRP lasts as long as the liquid phase remains in contact
with the open end of the pore network. A more detailed

FIG. 11. Drying rates as a function of time for two cases of g. The

dashed line shows the theoretical slope equal to �0.50.
FIG. 10. Log-log plot of the finger mean-width, n, (in lattice units) as

a function of gravity, jgj, for the drying process under destabilizing

gradient. Circles denote the average values obtained from the pore

network simulations.

FIG. 12. Drying curves for two cases of g. The dotted line shows the

theoretical slope for early times equal to 1.0. The dashed line shows the

theoretical for later times slope equal to 0.50.
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discussion based on 3D pore network simulations about
CRP and other characteristic periods that develop during
drying in porous media was presented in Yiotis et al.[34]

and will not be further elaborated in this study.
At later times the drying rate becomes inversely

proportional to the square root of the drying time, as
Eq. (23) dictates. This becomes obvious for the case of
large values of B (the interface recedes without significant
fluctuations). For the case of B¼ 0 this is not that obvious
due to the existence of trapped liquid clusters that become
disconnected from the main liquid phase. Figure 12 shows
the drying curves for the aforementioned two cases
expressed as the recovered liquid saturation, Sl, as a func-
tion of time. At early times the liquid recovery is directly
proportional to the elapsed time Sl/ t, as shown by
Chapuis and Prat[63] in the case where the continuous
liquid phase is contact with the open side of the network,
either directly (in this work) or through liquid films as in
the case of Chapuis and Prat.[63] At later times, when the
continuous liquid phase loses contact with the open side,
the recovered liquid saturation scales as Sl/ t0.5. As shown
in the figure, theoretical prediction and numerical simula-
tions are in good agreement.

Figure 13 depicts the mean front position of the inter-
face as a function of time for the case of B> 0. We observe
that the mean front position of the interface is proportional
to the square root of time as predicted by Eq. (22). The
numerical simulations result in a slope equal to 0.51, which
is in very good agreement with the theoretical value of 0.50.

CONCLUSIONS

We performed a series of 2D pore network simulations of
isothermal drying in order to provide a better understand-
ing of the structure of the drying patterns, particularly in
the frontal region in the presence of gravity. The pore net-
work simulator used in this study was based on concepts

from invasion percolation in porous media that is driven
by mass transfer. Our numerical results for the fractal
dimension of the invading phase (Dp¼ 1.88� 0.03) and
the drying front perimeter (De¼ 1.34� 0.06) in the absence
of gravity were found to be in very good agreement with
reported experimental and theoretical values.

In the case of a gravity stabilized front, that is, when
B> 0, the drying front width, rf, in the presence of a stabi-
lizing gravity gradient is found to scale with the Bond
number as rf/ jBj�0.58, consistent with theoretical predic-
tions and reported numerical simulations and experiments.
In the opposite case of a gravity-destabilized front, the
width of the finger, n is found to scale as n/ jBj�0.57, in
excellent agreement as well. We also reported the effects
of gravity forces on the drying rates and their scaling.
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