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We develop a mathematical model for the drying of porous media in the presence of gravity. The model
incorporates effects of corner flow through macroscopic liquid films that form in the cavities of pore walls, mass
transfer by diffusion in the dry regions of the medium, external mass transfer over the surface, and the effect of
gravity. We consider two different cases: when gravity opposes liquid flow in the corner films and leads to a stable
percolation drying front, and when it acts in the opposite direction. In this part, we develop analytical results
when the problem can be cast as an equivalent continuum and described as a one-dimensional (1D) problem.
This is always the case when gravity acts against drying by opposing corner flow, or when it enhances drying
by increasing corner film flow but it is sufficiently small. We obtain results for all relevant variables, including
drying rates, extent of the macroscopic film region, and the demarkation of the two different regimes of constant
rate period and falling rate period, respectively. The effects of dimensionless variables, such as the bond number,
the capillary number, and the Sherwood number for external mass transfer are investigated. When gravity acts
to enhance drying, a 1D solution is still possible if an appropriately defined Rayleigh number is above a critical
threshold. We derive a linear stability analysis of a model problem under this condition that verifies front stability.
Further analysis of this problem, when the Rayleigh number is below critical, requires a pore-network simulator
which will be the focus of future work.
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I. INTRODUCTION25

During the drying of a porous medium, initially fully26

saturated by a volatile liquid, evaporation gives rise to a number27

of liquid-gas interfaces. These are located in pore bodies,28

that define the percolation front [Fig. 1(d)], but also reside29

in the cavities and corners along the pore walls in the form of30

macroscopic liquid films, which develop as the bulk liquid-gas31

menisci recede in the pore space [Figs. 1(b)–1(c)]. The32

movement of these interfaces is controlled by the combined33

action of capillary, gravity, and viscous forces.34

As in all drainage processes, fluid transport through the liq-35

uid films is an important transport mechanism. Films provide36

hydraulic connectivity between liquid-saturated regions that37

may appear to be macroscopically disconnected [1,2]. Such38

flows are induced by capillarity and driven by changes in the39

curvature of the liquid-gas menisci [3,4]. These macroscopic40

films should be clearly distinguished from thin films that41

develop on flat surfaces of the pore walls as vapor molecules42

are absorbed due to van der Waals forces. Liquid flow through43

the latter thin films, as well as mass transfer by diffusion in44

the film region, has been shown to be negligible compared to45

corner flow in the cavities through macroscopic films [5].46

Recent drying studies have suggested that macroscopic47

films provide hydraulic connectivity even at late times when48

a significant amount of the liquid has evaporated [6–8]. If the49

films reach the external surface S of the medium, wicking50

action keeps the surface at least partially wet. As more films51

get detached, the liquid content at the surface progressively52

decreases. However, the surface remains saturated with the53

evaporating species, even at small liquid content (liquid satu-54

ration), provided that the thickness of the external mass transfer55

boundary layer is sufficiently larger than the characteristic pore 56

size of the medium [9]. Under such conditions, the process is 57

controlled by mass transfer through the boundary layer and 58

characterized by a constant drying rate [the constant rate period 59

(CRP) regime], which may last up to very late times [8,10]. 60

At a certain length, liquid films cannot sustain capillary flow 61

over increasingly larger lengths and they become detached 62

[6,11–13]. Then, a completely dry region (absence of bulk 63

liquid and corner flow through macroscopic films) develops 64

between the evaporation front and the external surface. Drying 65

is now controlled by diffusion through this dry region and the 66

evaporation rate starts decreasing signaling the onset of the 67

falling rate period (FRP) [Fig. 1(d)]. 68

Previous studies have explored in detail various mathemati- 69

cal models of drying, including those based on a pore-network 70

representation of the porous medium (developed by Fatt 71

[14]). These have progressed from simple percolation models 72

[15,16], to models that include corner film flow [17,18], and 73

more recently those incorporating the effect of an external 74

mass transfer boundary layer [10]. Absent has been the effect 75

of gravity, which in many applications can play an important 76

role. Indeed, in recent experiments [19–21] it was found 77

that incorporating gravity in drying is necessary to match 78

the experimental results. It is the objective of our work to 79

address the effect of gravity in the drying of porous media and 80

quantities such as film extent, film thickness, and drying rates. 81

In this paper we develop the mathematical formalism to 82

incorporate the effect of gravity. This can be stabilizing or 83

destabilizing, depending on the orientation of the porous 84

medium [stabilizing when gravity opposes corner flow in the 85

films (and thus drying) and destabilizing in the opposite case, 86
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assuming sufficiently strong buoyancy]. We provide analytical87

solutions for relevant quantities when gravity opposes drying88

and investigate the sensitivity to dimensionless variables, such89

as the bond number, the capillary number, and the Sherwood90

number. Attention is paid to drying curves and the conditions91

that mark the transition between the constant (CRP) and the92

falling rate (FRP) periods. When gravity enhances corner93

film flow, an equivalent 1D continuum can still apply if94

a critical threshold for an equivalent Rayleigh number is95

exceeded. We derive such a condition and infer its validity96

by a simplified stability analysis. For the more general case,97

a detailed pore-network is needed. This is a subject for future98

research [21].99

II. MODEL FORMULATION100

As in our previous studies [10,11,17], we postulate the101

following [Fig. 1(d)]: An external mass transfer boundary layer102

over the external surface S of the porous medium (sometimes103

referred to as the product surface), where the evaporating104

species is purged; an innermost region of pores, fully occupied105

by liquid (liquid saturated region); and intermediate regions106

containing pores partly occupied by liquid films (film region)107

or not occupied at all (dry region), depending on the extent of108

the process. The interface between the fully occupied and film109

pores is typically a percolation front (which in the presence110

of gravity can be determined using invasion percolation in the111

presence of a stabilizing or a destabilizing gradient [22,23]112

depending on the orientation). Gravity modifies both the113

morphology of the percolation front, as well as the extent114

of the film region by either enhancing or opposing corner flow115

in the films. To understand its effects we consider that the116

full problem can be cast as a 1D equivalent of drying from a117

material bearing the geometrical characteristics of capillaries118

with noncircular (i.e., rectangular) cross sections. This allows119

for the modeling of corner flow in the form of films that develop120

as the bulk liquid-gas meniscus recedes deeper in the pore121

space [Figs. 1(a)–1(c)] [19].122

Within the film region the dominant mass transport mecha-123

nism is corner liquid flow through the films [5]. The films are124

then parametrized by the radius of curvature of the liquid-gas125

menisci r(x,t) along their length from the product surface126

S [11], taken at ξ = 0, to the percolation front, taken at127

an average position ξp < 0. Under capillary equilibrium, the128

excess pressure in the film is129

Pl = −γ /r, (1)

where γ is the interfacial tension and flow is unidirectional130

along direction x and described by a Poiseuille-type law [3,4]131

Qx = −C∗r4

μβ

(
∂Pl

∂x
− ρlgx

)
. (2)

Here μ is viscosity, gx is the gravity component, ρl is density,132

β is the dimensionless flow resistance [3], C∗r2 is the cross133

sectional area of the liquid film and C∗ is a shape factor that134

expresses the area available for fluid flow in the corners of the135

capillaries. For the case of a square cross section C∗ = 4 − π .136

While valid for any gravity orientation [21], this paper will137

be restricted only to the case when the x direction is aligned138

with the gravity vector, namely gx = ±g. Taking into account139

Eq. (1), the above can be rewritten as 140

Qx = −C∗γ
3μβ

∂r3

∂x
+ C∗r4

μβ
ρlgx. (3)

The mass balance for the evaporating species along the 141

capillary is 142

∂V

∂t
= −∂Qx

∂x
− Qev, (4)

where V = C∗r2, Qev = −(2πrDM/ρl)Ce/r0[∂ζ/∂n] 143

is the evaporation rate in a cross section of the capillary, 144

r0 is the average size of the capillary in the cross section, 145

DM is the molecular diffusivity, Ce is the equilibrium 146

mass concentration, and ζ = C/Ce is the dimensionless 147

concentration. n is the normal to the interface and the brackets 148

denote an average over the dimensionless concentration 149

gradient at the interface. The above expression will not be 150

used further, however. In the following we will focus on two 151

distinct macroscopic regions: one in which the gas phase is 152

practically saturated by vapor and transport is through film 153

flow only, and another ahead of the film region, where the pore 154

space is completely dry and the transport is by diffusion in 155

the gas phase only. A macroscopic mass balance will connect 156

the two regions. 157

In dimensionless notation, this further reads 158

2Caf

C∗ρl

πCe

∂ρ

∂τ
= 1

ρ

∂2ρ3

∂ξ 2
− 3Box

ρ

∂ρ4

∂ξ
− 2Caf (1 − ζ ) (5)

where we introduced the dimensionless film thickness ρ = 159

r/r0 (not to be confused with the density notation), length ξ = 160

x/r0, and time τ = tDM/r2
0 , and we defined the dimensionless 161

capillary and bond numbers 162

Caf = 3βπμDMCe

C∗γρlr0
, Bo = ρlgr2

0

γ
. (6)

In our notation, the x direction is always taken from the 163

inside of the porous medium toward the external surface, 164

therefore Box = −Bo corresponds to evaporation from the 165

top (gravity-opposed drying), while Box = Bo corresponds to 166

evaporation from the bottom (gravity-enhanced drying). 167

Proceeding with the conventional quasi-steady-state as- 168

sumption and also considering that evaporation practically 169

occurs only near the film tip (due to the saturated gas phase 170

along the capillary) [11,17], the mass balance simplifies to 171

∂qx

∂ξ
= ∂2ρ3

∂ξ 2
− 3Box

∂ρ4

∂ξ
= 0. (7)

The above formalism can also be generalized (e.g., to a pore 172

network). Its continuum equivalent reads 173

∇2

(
ρ3 − 3Box

∫ ξ

0
ρ4dξ

)

= −3Box

(
∂2

∂u2

∫ ξ

0
ρ4dξ + ∂2

∂ω2

∫ ξ

0
ρ4dξ

)
, (8)

where u = y/r0 and ω = z/r0. When the right-hand side of 174

Eq. (8) is negligible, as in the specific case here of a 1D 175
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FIG. 1. Schematics of drying from a capillary with a noncircular (i.e., square) cross section with the top side open to the ambient environment
(a)–(c). The capillary is initially filled with a volatile liquid up to a certain height (a) (contact angle not shown here). As the liquid evaporates,
the liquid-gas interface recedes in the capillary forming a meniscus, while liquid films develop at the corners of the capillary. Initially, the film
tips reach up to the initial position of the liquid-gas interface (b). At later times, the film tips depin from their initial position and they recede
deeper in the capillary following the movement of the bulk meniscus (c). Also shown in (d) later times of the more general drying problem
from a porous medium bounded by an external mass boundary layer of thickness d over the product surface S. The pores can be classified in
analogy with the single capillary problem as: (i) completely dry (dry region) where mass transfer is by diffusion only, (ii) pores invaded by the
gas phase that contain liquid films at the pore walls (film region) where mass transfer is primarily through corner film flow, and (iii) pores that
are fully saturated by the liquid phase (liquid saturated region). The evaporation front (film tips), ξi , is located at the interface between the dry
and film regions. The percolation front, ξp , is located at the interface between film and liquid saturated regions. Lengths are in dimensionless
notation.

continuum, we can write176

∇2

(
ρ3 − 3Box

∫ ξ

0
ρ4dξ

)
= 0, (9)

the 1D equivalent of which is Eq. (7). Checking the validity of177

this assumption in the pore-network simulations is a subject178

for future research [21].179

In the dry region (where ρ = 0), the mass balance at steady180

state is the Laplace equation181

∇2ζ = 0. (10)

For convenience and following earlier works, diffusion is also182

assumed to apply within the external mass transfer boundary183

layer [9,10] as well. However, these results also apply to a184

convective boundary condition, as discussed further below.185

Finally, continuity of mass fluxes at the film tips (evaporation186

front in Fig. 1) reads at steady state187

∂ρ3

∂n
= Caf

∂ζ

∂n
, (11)

where n denotes outer normal.188

We proceed as in previous works [11,17] and develop a189

solution uniformly valid over both film and dry regions by190

defining the auxiliary variable191

� = ρ3 − 3BoxI + Caf ζ

1 + Caf

, (12)

where192

I =
∫ ξ

0
ρ4dξ. (13)

This satisfies the Laplace equation over both the film and dry 193

regions as required 194

∇2� = 0 (14)

and it is continuous with continuous fluxes at the yet-to-be- 195

determined evaporation front [Eq. (11)]. Equation (14) is then 196

to be solved subject to the following boundary conditions. 197

(i) At the percolation front (ξ = ξp � 0), we have saturated 198

conditions, ζ = 1, ρ = 1, hence 199

� = �p ≡ 1 − 3BoxI (ξp)

1 + Caf

. (15)

200

(ii) At the top of the mass boundary layer outside the porous 201

medium (ξ = d), we have ζ = 0, ρ = 0, hence 202

�0 = 0. (16)

The unknown position of the film tips is the place where ρ = 0 203

and ζ = 1, hence 204

� = �i ≡ Caf

1 + Caf

. (17)

Finally, at the product surface S (ξ = 0) mass flux continuity 205

applies 206

∂�

∂ξ

∣∣∣∣
S−

= λ
∂�

∂ξ

∣∣∣∣
S+

, (18)

where λ > 1 is the ratio of external to effective internal 207

diffusivities. At the same place � is discontinuous early in 208

the process. Namely, when the films reach the product surface, 209
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FIG. 2. (Color online) Plot of the auxiliary variable � vs the
dimensionless depth of the porous medium ξ in the 1D problem. The
product surface is located at ξ = 0, the percolation front at ξp < 0
(not shown here) and the film tips at ξi < 0, where �(ξi) = Caf /(1 +
Caf ). The red line (�) shows a solution for early times when ξp > ξpc,
the film tips reach the product surface S, and � is discontinuous there.
The blue line (◦) shows a solution for later times when ξp � ξpc, the
films have detached from S, and � is continuous there.

they have a finite thickness ρ∗ > 0 on the porous medium side210

of the surface S–,hence �(S−) = ρ∗+Caf

1+Caf
, and zero thickness211

(ρ = 0) just over the surface S+, �(S+) = Caf

1+Caf
. After the212

detachment of the films, however, � becomes continuous at213

ξ = 0.214

The 1D solution of Eq. (14) is straightforward: � is linear215

in ξ subject to the above conditions. Schematics of such a216

solution are shown in Fig. 2 for the two different cases of the217

film condition at the product surface S. We proceed therefore218

by considering the two different cases, when gravity opposes219

or enhances drying, respectively.220

III. GRAVITY-OPPOSED DRYING, Box = −Bo � 0221

Consider, first, the case when gravity opposes drying222

(Box = −Bo and evaporation is from the top). The percolation223

front is at ξp � 0 and the film tips at ξi � 0 (where ξi � ξp).224

Here and in the material below, we assume that the percolation225

front has not reached the bottom boundary of the medium,226

located at ξ = ξb. This will be relaxed later.227

At early stages the films are attached to S (ρ∗ > 0 at228

ξ = ξi = 0). As drying proceeds, ρ∗ decreases, and when ξp229

reaches a critical value ξpc (when ρ∗ = 0), the films detach.230

From that point on, the position of the evaporation front recedes231

within the pore space, ξi < 0, while a growing dry region232

forms below the product surface, ξi < ξ � 0, where gas-phase233

diffusion is the controlling process.234

A. Films terminate at product surface, ξ p > ξpc 235

When the films end at the external surface S of the porous 236

medium, � is discontinuous there, 237

�(S−) = ρ∗3 + Caf

1 + Caf

, �(S+) = Caf

1 + Caf

. (19)

It is straightforward to show that the solution of Eq. (14) for 238

� is 239

�(ξ ) = Caf

1 + Caf

(
d − ξ

d

)
for 0 < ξ � d, (20)

�(ξ ) = �p + λCaf

1 + Caf

(
ξp − ξ

ξp

)

= �(S−) + Caf

1 + Caf

(−λξ

d

)
for ξp � ξ < 0.

(21)

In this regime the mass flux is independent of time and constant 240

−∂�

∂ξ

∣∣∣∣
S+

= Caf

d(1 + Caf )
≡ �i

d
. (22)

This defines the CRP regime, which lasts as long as the films 241

stay connected to the surface. The film thickness is obtained 242

by differentiating Eq. (12) and taking ζ = 1 243

dρ3

dξ
+ 3Boρ4 = (1 + Caf )

∂�

∂ξ

∣∣∣∣
S−

= −λCaf

d
. (23)

This can be integrated once 244∫ ρ

ρ∗

3ρ2dρ( λCaf

d
+ 3Boρ4

) = −ξ. (24)

For compactness we will also use the hypergeometric function 245

2F1(a,b; c; z) to represent the above integral [24] 246∫ z

0

3u2

a + 3bu4
du = z3

a

[
2F1

(
1,3/4; 7/4; −3

bz4

a

)]
. (25)

The thickness of the film is thus 247

ρ3

[
2F1

(
1,3/4,7/4,

−3Bod

λ Caf

ρ4

)]

− ρ∗3
[

2F1

(
1,3/4,7/4,

−3Bod

λ Caf

ρ∗4
)]

= −λ Caf

d
ξp,

(26)

while the dependence of ρ∗ on the position of the percolation 248

front ξp can be obtained through 249

2F1

(
1,3/4,7/4,

−3Bod

λ Caf

)

− ρ∗3
[

2F1

(
1,3/4,7/4,

−3Bod

λ Caf

ρ∗4
)]

= −λ Caf

d
ξp.

(27)

The end of the CRP is at the critical detachment position ξpc, 250

obtained by setting ρ∗ = 0 in the above 251

−λ Caf

d
ξpc = 2F1

(
1,3/4,7/4,

−3Bod

λ Caf

)
. (28)
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Note that the external mass transfer variable occurs in the252

combination λ/d. It is not difficult to show that more generally253

it represents an equivalent mass transfer coefficient across the254

boundary layer. Indeed, if the flux condition at the surface was255

based instead on a convective mass transfer coefficient h (e.g.,256

Flux = hCS+), it can be readily shown that257

λ

d
= Sh ≡ hr0

Deff
(29)

where we defined a Sherwood number Sh for the external258

mass transfer using the pore length r0 and the effective internal259

diffusivity Deff as the characteristic quantities. We remark that260

because we used the characteristic pore size above, the so-261

defined Sherwood number would usually take small values.262

From this point on we will use without loss the equivalence263

between Sh and d/λ.264

It is also worth noting that the explicit effect of Bo265

can be removed from the above by rescaling all lengths266

by −Box = Bo > 0: Then by defining ξ̂ = Boξ , Eq. (24)267

becomes independent of Bo268 ∫ ρ

ρ∗

3ρ2dρ

(τ + 3ρ4)
= −ξ̂ , (30)

where we introduced the single dimensionless parameter269

τ ≡ ShCaf

Bo
. (31)

One can view τ as an equivalent Rayleigh number Raev =270

Caf

Bo = 3πβ

C∗
CeDMν

ρlgr3
0

for evaporation in the presence of buoyancy271

(i.e., τ = RaevSh) where ν = μ/ρl is viscous diffusivity (as272

also in the case of miscible fluids [25]). In this notation, the273

equivalent of Eq. (27) is274

2F1

(
1,3/4,7/4,

−3

τ

)
− ρ∗3

[
2F1

(
1,3/4,7/4,

−3

τ
ρ∗4

)]

= −τ ξ̂p (32)

and that of the detachment time ˆξpc is275

ξ̂pc = − 1

τ

[
2F1

(
1,3/4,7/4,

−3

τ

)]
. (33)

Figure 3 shows profiles of the film thickness ρ∗ just below the276

product surface S– as a function of the rescaled position of the277

percolation front ξ̂p for different values of τ . The inset of the278

same figure shows ρ∗ vs the position of the percolation front279

ξp for the corresponding values of Box and a fixed value of the280

capillary number Caf . As expected, the film thickness at the281

product surface decreases as the percolation front recedes in282

the pore space, higher values of Bo corresponding to shorter283

films (due to stronger buoyancy) and earlier detachment times284

(smaller values of the magnitude of ξp).285

Figure 4 shows the critical rescaled position of the percola-286

tion front ξ̂pc as a function of τ . The figures demonstrate that287

smaller capillary and Sherwood numbers lead to longer films.288

The critical percolation front location ξpc is a slowly increasing289

function of τ . An asymptotic analysis of the corresponding290

Eq. (33) shows that at sufficiently large times, namely large291

values of −ξ̂pc292

−ξ̂pc ∼ Jτ−1/4, (34)

2000 1500 1000 500 0
0.0

0.2

0.4

0.6

0.8

1.0

Ξp

Ρ

8 6 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

Ξp
Ρ

FIG. 3. (Color online) Film thickness ρ∗ at the surface vs the
rescaled position of the percolation front ξ̂p for various values of
τ ; τ = 0.1 (�), τ = 0.01 (�), τ = 0.001 (©). Inset shows the film
thickness at the surface ρ∗ vs the position of the percolation front
ξp for the corresponding values of Box ; Box = −0.001 (�), Box =
−0.01 (�), Box = −0.1 (©) when Caf = 0.001 and Sh = 0.1. The
critical detachment time ξpc for each case is found when ρ∗ = 0.

where the algebraic constant J can be expressed in terms 293

of the gamma function J = 3− 3
4 �(1/4)�(3/4) 	 1.462. This 294

behavior is also demonstrated in Fig. 4. The magnitude of 295

10 6 10 5 10 4 0.001 0.01 0.1 1

1

2

5

10

20

50

Τ

pc

FIG. 4. (Color online) Log-log plot of the rescaled critical
detachment position −ξ̂pc vs τ . The dashed line of slope − 1

4
corresponds to the asymptotic prediction of Eq. (34).
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the percolation front position is used as a proxy for time. Its296

specific relation to time will be discussed in a later section.297

B. Films terminate inside the porous medium, ξ p � ξpc298

When the films have detached from S, the evaporation front299

is at ξi < 0. Now the variable � is continuous at ξ = 0 (Fig. 2)300

and we have301

�(ξ ) = �i

(
d − ξ

d − λξi

)
= �p

(
d − ξ

d − λξp

)
for 0 � ξ � d,

(35)

�(ξ ) = �i

(
d − λξ

d − λξi

)
= �p

(
d − λξ

d − λξp

)
for ξp � ξ � 0.

(36)

The drying flux remains proportional to the gradient of � and302

from Eq. (35) we get303

−∂�

∂ξ

∣∣∣∣
+

= �i

d − λξi

. (37)

Now the drying rate decreases as ξi decreases.304

As before, the film thickness ρ is the solution of305

dρ3

dξ
+ 3Boρ4 = (1 + Caf )

∂�

∂ξ

∣∣∣∣
−

= − ShCaf

1 − Shξi

(38)

or306

∫ ρ

0

3ρ2dρ

Sh Caf

1−Shξi
+ 3Boρ4

= ξi − ξ (39)

and in compact notation, 307

ρ3

[
2F1

(
1,3/4,7/4, − 3ρ4Bo

1 − Shξi

ShCaf

)]

= ShCaf

1 − Shξi

(ξi − ξ ). (40)

By taking ρ = 1 at ξ = ξp, we obtain ξi as a function of ξp 308

2F1

(
1,3/4,7/4, − 3Bo

1 − Shξi

ShCaf

)
= ShCaf

1 − Shξi

(ξi − ξp).

(41)

With the percolation front location as a proxy for time, we 309

can determine all relevant variables, including the location of 310

the film tips ξi , as well as the film thickness profiles over ξ . 311

However, in this regime the effect of Bo cannot be simply 312

rescaled out as before, except for the critical percolation time. 313

Indeed, by using the rescaled notation, the above become 314

ρ3

[
2F1

(
1,3/4,7/4, − 3ρ4 Bo − Shξ̂i

Boτ

)]

= Bτ

Bo − Shξ̂i

(ξ̂i − ξ̂ ), (42)

and 315

2F1

(
1,3/4,7/4, − 3

Bo − Shξ̂i

Boτ

)
= Boτ

Bo − Shξ̂i

(ξ̂i − ξ̂p).

(43)

The profile for ρ as a function of ξ is plotted in Fig. 5 for 316

various values of the dimensionless numbers Bo and Caf . 317

The familiar cubic dependence as the film tip is approached 318

is evident [11]. For larger values of Bo, the liquid films 319

become shorter as buoyancy forces increasingly dominate over 320

capillary forces and the films detach from the product surface 321

earlier [Fig. 5 (left)]. The effect of Caf is demonstrated in 322

1000 800 600 400 200 0
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

Ρ
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0.2

0.4

0.6

0.8

1.0

Ξ
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FIG. 5. (Color online) (Left) Film profile ρ vs ξ for a fixed position of the percolation front ξp = −1000 (ξp � ξpc) for different values of
the bond number; Box = −0.1 (©) and Box = −0.01 (�) when Caf = 0.001 and Sh = 0.1. (Right) Film profile ρ vs ξ for the same fixed
position of the percolation front for different values of the capillary number; Caf = 0.1 (©), Caf = 0.01 (�), and Caf = 0.001 (�) when
Box = −0.01 and Sh = 0.1.
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FIG. 6. (Color online) The rescaled spatial extent of the film
region ξ̂i − ξ̂p as a function of the rescaled position of the percolation
front ξ̂p for different values of the parameter τ and Bo/Sh = 0.01;
τ = 1 (�), τ = 0.1 (©), τ = 0.01 (�). The dashed lines correspond
to the asymptotic dependence of Eq. (44) at large values of −ξ̂p .

Fig. 5 (right), with smaller values of Caf leading to longer323

films as capillarity dominates over viscosity supporting liquid324

flow over longer distances in the porous medium. This results325

in later detachment times and a longer CRP that eventually326

leads to faster drying of the medium.327

Figure 6 shows the rescaled extent of the film region ξ̂i − ξ̂p328

as a function of the rescaled percolation front position ξ̂p for329

various values of the dimensionless parameter τ . All curves330

collapse to the same curve at early times, but increasingly331

deviate later, when the two fronts appear to be separated by332

only a slowly varying distance, which is the film region extent333

and which is smaller as τ is larger. An asymptotic analysis of334

Eq. (43) shows that at sufficiently large times, namely −ξ̂p 
335

1, we have336

−ξ̂p ∼ Caf

J 4
(ξ̂i − ξ̂p)4 = τBo

ShJ 4
(ξ̂i − ξ̂p)4, (44)

which is apparent in Fig. 6.337

Before closing this section we note that the previous338

analysis must be modified when the percolation front reaches339

the lower boundary. Then the bulk liquid region, providing340

liquid for the films, no longer exists and the remaining fluid341

is contained only in the film region. The boundary condition342

corresponding to the percolation front must now be replaced by343

its counterpart � = (ρ3
b + 3BoIb + Caf )/(1 + Caf ) at ξp =344

ξb and the control parameter for evaporation is either the film345

thickness ρ∗ at ξ = 0 or the thickness ρb at ξ = ξb. Again346

we need to distinguish two cases, depending on whether347

the films detach from the product surface prior to or after348

the percolation front reaches the bottom of the medium.349

In the first case, where ξb � ξpc, Eq. (42) is still valid provided350

we set ρ = ρb at ξ = ξb, hence 351

ρ3
b

[
2F1

(
1,3/4,7/4, − 3ρ4

b

Bo − Shξ̂i

Boτ

)]

= Boτ

Bo − Shξ̂i

(ξ̂i − ξ̂b). (45)

In the second case, where ξb > ξpc, it is Eq. (26) that is valid 352

with ρ = ρb at ξp = ξb 353

ρ3
b

[
2F1

(
1,3/4,7/4, − 3

ρ4
b

τ

)]

− ρ∗3

[
2F1

(
1,3/4,7/4, − 3

ρ∗4

τ

)]
= −τ ξ̂b. (46)

The corresponding expression for the flux, ∂�/∂ξ , remains 354

the same as do the evaporation rate expressions. 355

C. The drying curve 356

We proceed now by determining the drying curve. The 357

dimensional drying rate is obtained from its dimensionless 358

counterpart through the solution for variable � 359

�̇ = −DMr2
0 Ce(1 + Caf )NyNz

Caf

d�

dξ

∣∣∣∣
S+

, (47)

where N denotes size. Its constant value at the onset of the 360

process during the CRP will be used to normalize all rates 361

�̇CRP = DMr2
0 CeNyNz

1

d
, (48)

hence 362

E = �̇
�̇CRP

= 1

1 − Shξi

= Bo

Bo − Shξ̂i

. (49)

This provides a direct relationship between drying rates and 363

the position of the film tips ξi , and through the relationship of 364

the latter to the percolation front position ξp. To connect the 365

variables to the process time, we will derive expressions for 366

the overall liquid volumetric content, which we will denote 367

as the liquid saturation, Sres. This is the combined sum of the 368

bulk liquid in the pores below the percolation front and that 369

contained in the liquid films. The bulk fluid contribution is 370

4(ξp − ξb) assuming ξp � ξb. The amount in the films Sf is 371

obtained by integrating the cross sectional area of the film 372

region ξi − ξp, which is proportional to ρ2, hence 373

Sf = −C∗
∫ ξp

ξi

ρ2dξ. (50)

During the CRP we have 374

Sf = C∗
∫ 1

ρ∗

3ρ4dρ

ShCaf + 3Boρ4

= C∗

Bo

[
1 − 2F1

(
1,1/4,5/4, − 3

τ

)]

− ρ∗ C∗

Bo

[
1 − 2F1

(
1,1/4,5/4, − 3

τ
ρ∗4

)]
, (51)
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while following detachment (during the FRP),375

Sf = C∗
∫ 1

0

3ρ4dρ
ShCaf

1−Shξi
+ 3Boρ4

= C∗

Bo

[
1 − 2F1

(
1,1/4,5/4, − 3

τE

)]
, (52)

where we used Eq. (49). The overall liquid saturation, Sres, is376

Sres = 4(ξp − ξb) + Sf

−4ξb

. (53)

The above equations relate implicitly the position of the377

percolation front ξp to the remaining liquid saturation. The378

relation to time results from the mass balance379

dSres

dt
= −E. (54)

The above are valid before the percolation front reaches380

the bottom of the medium. After that condition is reached,381

the film thickness is obtained from Eqs. (45) and (46) and a382

similar procedure can be applied. For simplicity, details will383

be omitted.384

The drying curve is a plot of the normalized evaporation385

flux E versus the liquid saturation Sres. By using the previous386

expressions we construct the plots shown in Fig. 7 that387

demonstrate the shape of the drying curve for different values388

of Bo and fixed values of Caf and Sh. The curves show a389

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S

E

FIG. 7. (Color online) Dimensionless drying rate E as a function
of the liquid saturation Sres for different values of the bond number
[Box = −0.1 (red-dashed line); Bx = −0.01 (blue-dotted line);
Box = −0.001 (green-dot-dashed line); Box = −0.0001 (orange-
continuous line)] for Caf = 0.01, Sh = 0.1, and ξb = −1000. The
smaller the effect of gravity, the longer the CRP. The curves
correspond to a solution where the films detach from the product
surface before the percolation front reaches the bottom of the medium,
namely when ξpc � ξb. Note the difference in the curves at lower bond
numbers as the bottom boundary is approached.

clear CRP, where E = 1, at early times (higher values of liquid 390

saturation Sres) that lasts until the films detach from the product 391

surface S (when the percolation front reaches ξpc). The plot 392

shows that the CRP is shorter for higher values of the bond 393

number that corresponds to stronger buoyancy effects within 394

the films. After that time, the drying rate decreases rapidly as 395

a completely dry region of increasing extent develops between 396

the evaporation front ξi and the product surface. This regime 397

corresponds to the FRP. A last regime occurs at very low 398

residual saturations, when the percolation front reaches the 399

bottom of the medium, and the bulk liquid has evaporated. 400

This regime corresponds to the shrinking of the liquid films 401

and is particularly evident for higher values of Bo. It is also 402

interesting to note that the dimensionless drying rate E has 403

a value slightly greater than zero at the limit Sres → 0 that 404

corresponds to an evaporation front ξi located exactly at the 405

bottom of the medium ξb, namely Emin = 1
1−Shξb

. 406

Of importance is the critical saturation Sc
res when the CRP 407

regime ends, namely when the surface film thickness becomes 408

ρ∗ = 0 for the first time. Its value depends on whether the films 409

detach from the surface before (ξb � ξpc) or after (ξb > ξpc) the 410

percolation front has reached the bottom boundary ξb. After 411

calculations, omitted for simplicity, we find 412

Sc
res,1 = 1 + 1

τ ξ̂b

[
2F1

(
1,3/4,7/4, − 3

τ

)]

− C∗

4ξ̂b

[
1 − 2F1

(
1,1/4,5/4, − 3

τ

)]
, (55)

in the first case, and 413

Sc
res,2 = −BoSf

4ξ̂b

= −C∗ρb

4ξ̂b

[
1 − 2F1

(
1,1/4,5/4, − 3ρ4

b

τ

)]
,

(56)

where ρb is given by 414

ρ3
b 2F1

(
1,3/4,7/4, − 3ρ4

b

τ

)
= −τ ξ̂b (57)

in the second. As expected, if the medium is infinitely long, 415

the critical saturation is equal to 1. Figure 8 shows the critical 416

saturation for various values of τ for this case. As expected 417

the critical saturation parameter is a strong function of τ . 418

IV. GRAVITY-ENHANCED DRYING, Box = Bo > 0 419

A. 1D predictions 420

The previous analysis was developed under the condition 421

that gravity opposes liquid flow through the films where a 1D 422

effective continuum solution is valid. This may not necessarily 423

be the case when film flow is enhanced by gravity (Bx > 0). 424

Under this condition and for sufficiently strong buoyancy, both 425

the percolation and the evaporation front are likely to become 426

unstable, mass transfer through the porous medium will not 427

be sufficiently fast to balance gravity and establish a quasi-1D 428

regime, and the films will remain at the product surface for very 429
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FIG. 8. (Color online) Critical saturation Sc
res vs parameter τ when

the films detach before the percolation front reaches the bottom of the
medium (ξ̂b < ξ̂pc) for various values of ξ̂b; ξ̂b = −20 (�), ξ̂b = −10
(�), ξ̂b = −5 (©). From the solution of Eq. (55).

long times leading to longer CRPs and a faster recovery of the430

liquid. In the case, however, that gravity is not so strong, it is431

possible that mass transfer can be sufficiently fast to convect432

the gravity-draining liquid through the films and establish433

a flow regime that can be approached with the previous434

methods.435

To determine if such a regime exists we consider the 1D436

analysis of the previous section for Box > 0. In this case films437

will stay at the product surface S provided that a solution of438

the following equation, which is the counterpart of Eq. (24)439

for Box > 0, exists:440

∫ 1

ρ∗

3ρ2dρ

ShCaf − 3Boρ4
= −ξp. (58)

Clearly, a necessary condition is that the integral does not441

diverge, which is satisfied if442

ShCaf > 3Bo ⇒ τ > 3. (59)

This condition is favored by stronger viscous forces (compared443

to gravity) and faster mass transfer in the dry region and over444

the product surface. Then, a solution to Eq. (24) exists and445

can be computed as in the previous sections. The resulting446

surface film thickness ρ∗ at the surface as a function of the447

percolation front position ξp is shown in Fig. 9 for the case448

of gravity-enhanced drying (Box > 0), and the cases of zero449

gravity (Box = 0) and gravity-opposed drying (Box < 0). The450

solution for ρ∗ = 0 gives the critical position of the percolation451

front ξpc. Larger values of Box lead to later detachment times452

and evidently longer CRPs.453
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FIG. 9. (Color online) Film thickness ρ∗ as a function of the
position of the percolation front ξp for the case of gravity-enhanced
drying, Box = 0.0001 (�), when gravity is neglected, Box = 0 (�),
and when it opposes drying, Box = −0.0001 (©). The CRP lasts
longer when Box > 0 as expected. Caf = 0.01, Sh = 0.1.

After the films detach, and always under the condition of 454

Eq. (59), their thickness is obtained through equation 455

∫ ρ

0

3ρ2dρ( ShCaf

1−Shξi
− 3Boρ4

) = ξi − ξ. (60)

As the magnitude of ξi increases, however, the above integral 456

will diverge when the following condition is approached 457

−ξis =
(

τ
3 − 1

)
Sh

or H = πβ

C∗
DMCeν

ρgr2
0

− D

λ
, (61)

where H = (−ξis)r0 and D = dr0 are the dimensional position 458

and boundary layer thickness, respectively. This implies that 459

the evaporation front will become stationary at that location. 460

Inspection of Eq. (61) shows that this location consists of two 461

competing terms; one due to gravity involving τ , which does 462

not depend on surface tension, and another corresponding to 463

external mass transfer. Under the condition that diffusivity 464

within the medium and viscous forces are strong enough to 465

balance gravity, or that external mass transfer is not very 466

strong, films will detach and their tips will stabilize at a fixed 467

location. Such behavior is indeed demonstrated in Fig. 11. The 468

location of the evaporation front ξi reaches a stationary state 469

at sufficiently large values of time (position of the percolation 470

front ξp) (inset of Fig. 11). It is interesting to note that the 471

film thickness profile in Fig. 10 is qualitatively different from 472

that of gravity-opposed drying. The film thickness becomes 473

almost constant and equal to unity away from the film tips, 474

and decreases rapidly to zero as that position ξi is approached. 475
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FIG. 10. (Color online) Plot of the film thickness ρ vs ξ̂ for the
case of gravity-enhanced drying when Bo/Sh = 0.1, Caf = 1 and
ξ̂p = −8. The film thickness remains practically constant and equal
to unity along the entire length of the film region, except very close
to the film tips ξ̂i , where it decreases sharply to zero.

This practically implies that the flow through the films is driven476

by gravity, rather that capillarity-induced pressure gradients,477

since the term ∂r3

∂x
	 0 in Eq. (3).478

The above analysis suggests that when the evaporation front479

reaches the stationary state, the drying curve should exhibit a480

second period of constant drying rate (following the initial481

CRP and FRP) when the dimensionless drying rate becomes482

equal to E = 3
τ

. This behavior is indeed demonstrated in483

Fig. 11.484

B. Linear stability analysis of buoyant instability of an485

evaporation front486

While the previous analysis showed that a stationary front487

for the film tips is possible for a percolation front that488

continuously recedes deeper in the pore space, it cannot489

indicate whether it is in fact stable. To verify its stability we490

consider a somewhat simpler approach in the absence of films,491

as shown in right side of Fig. 12. In this model, liquid (darker492

gray) drains downward due to gravity in a porous medium of493

porosity φ and permeability k. At a finite location z = −H , it494

evaporates and then diffuses through the medium (lighter gray495

region) toward the outside of the medium where it is purged at496

the mass boundary layer (white region). The concentration of497

the liquid vapors is zero at z = D. We will find the stationary498

states of this process and their stability.499

Here we introduce the following dimensionless notation,500

where all lengths are normalized with H , concentration with501

Ce, pressure with ρgH , fluid velocity with kρg/μ, and502
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FIG. 11. (Color online) Drying curve for the unstable case, Box >

0, under the condition τ > 3. The curve clearly exhibits two CRP
regimes: an early one that lasts until the films detach from the product
surface S–and a late one that occurs when the condition of Eq. (61)
is satisfied. Caf = 1.0, Box = 0.01, Sh = 0.1, and ξb = −180. Inset
shows the corresponding position of the evaporation front ξi as a
function of the position of the percolation front ξp . The stationary
state solution for ξi corresponds to the solution of Eq. (61).

time with φHμ/kρg. The evaporation front is considered at 503

location 504

ϒ ≡ z − f (y,t). (62)

The relevant dimensionless Darcy’s law, continuity and diffu- 505

sion equations are respectively 506

�u = −�∇p + �i, (63)

�∇ · �u = 0, and (64)

∇2ζ = 0, (65)

where �i is the unit vector in the downward direction. 507

At the interface the liquid pressure is assumed zero (equal 508

to the surrounding constant gas pressure and in the absence 509

of capillary or surface tension effects) and the mass balance 510

reads 511

un + Rak
∂ζ

∂n
= φvn ≡ −ϒt/| �∇ϒ |, (66)

where Rak = CeDMν

ρlgkH
is analogous to the above-defined number 512

for evaporation in porous medium and vn is the normal 513

component of the interface velocity. At the product surface 514

z = 0, we have continuity of concentration and mass fluxes, 515

and at z = ds , ζ = 0. 516
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FIG. 12. (Color online) (Left) Dispersion relation of the linear stability analysis for various values of Rak and λ = 1; ds = 1. Rak = 0.8
(©), Rak = 1 (�), and Rak = 1.3 (�). For Rak > 1 the condition of Eq. (73) is always fulfilled. (Right) Schematic of the process for the
linear stability analysis of an evaporation front in the presence of gravity with Box > 0. Liquid (darker gray region) drains downwards due to
gravity and evaporates at position z = −H . It then diffuses through the porous medium and the mass boundary layer (lighter gray regions).
The concentration of the liquid vapors is zero at z = D.

The properties of the stationary state are easily derived;517

f = −1; p0 =
(

1 − λRak

λ + ds

)
(z + 1);

ζ0 = 1 − λ(z + 1)

λ + ds

; −1 < z < 0; (67)

ζ0 = ds − z

λ + ds

; 0 < z < ds.

Importantly, this state requires that the liquid viscous flow rate518

is balanced by evaporation and diffusion into the surroundings.519

Expressed in terms of dimensional variables this condition520

reads521

H = DMCeν

kρg
− D

λ
. (68)

Note the similarity of Eq. (68) to those of the stationary522

evaporation front, Eq. (61). Again, we note that the stationary523

front consists of two counterbalancing terms, one due to524

gravity and the other due to mass transfer. If gravity is525

sufficiently small, namely when526

ShRak
H

r0
> 1, (69)

then a balance and a stationary state exists within the porous527

medium. The above condition is analogous to the condition528

τ > 3, derived for the more general problem that accounts529

also for the liquid films.530

For a linear stability analysis, we next take small (ε)531

perturbations at the front, of wave vector α and temporal532

growth rate σ533

f (y,t) = −1 + ε exp(iαy + σ t) (70)

and corresponding perturbations on the pressure and534

concentration. These are substituted and linearized in535

Eqs. (62) and (63) and the boundary conditions of Eq. (66). 536

After tedious calculations, we obtain the linears stability 537

dispersion relation for the rate of growth as a function of the 538

wave number 539

σ =
(

1 − λRak

λ + ds

)
α −

(
λRak

λ + ds

)

× sinh αds sinh α + λ cosh αds cosh α

sinh αds cosh α + λ cosh αds sinh α
α, (71)

which is plotted in Fig. 12. As can be shown analytically, the 540

long-wave (small wave number) (LW) limit is stable, whereas 541

the short-wave (SW) limit could be either stable or unstable 542

σLW = − λ2Rak

(λ + ds)2
; σSW =

(
1 − 2λRak

λ + ds

)
α. (72)

The condition for stability is therefore 543

2Rak > 1 + ds

λ
. (73)

Using Eq. (68) for H , the above reads 544

Rak > 0, (74)

which is always satisfied. We conclude, therefore, that if the 545

condition of Eq. (69) is satisfied, the evaporation front is stable. 546

By extension, we believe that the same applies to the general 547

case described in the previous section under the condition 548

τ > 3. 549

V. CONCLUSION 550

We have presented a mathematical model for the drying 551

of porous media that accounts for capillarity-induced flow 552

through liquid films, the effect of gravity on the extent of 553

the film region, and mass transport through an external mass 554
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boundary layer over the medium surface. By treating the555

medium as a 1D continuum in the case when gravity opposes556

drying, thus leading to a stable percolation front, we obtain557

analytical expressions for all relevant variables, such as the558

drying rates and the critical saturation that marks the transition559

from the constant to the falling rate periods. Based on these560

expressions, we study the effect of capillarity (expressed as561

a film-based capillary number) and gravity (through the bond562

number). In such cases, gravity opposes drying and leads to a563

shorter CRP regime, shorter films, and reduction of the overall564

drying rate. When gravity enhances film flow, the analytical565

results are valid only when a suitably defined Rayleigh number566

is sufficiently large to stabilize the front. This condition is567

qualitatively similar to a condition obtained by considering568

the linear stability analysis of a simpler 2D problem. We569

find that in the latter case, there exists a solution where the570

evaporation front reaches a stationary state, thus leading to a 571

second constant rate period regime that occurs after the films 572

detach from the medium surface. The detailed analysis of the 573

destabilizing case will be the subject of a pore-network study 574

to be presented, along with supporting experimental results in 575

future work. 576
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