
PHYSICAL REVIEW E 87, 033001 (2013)

Blob population dynamics during immiscible two-phase flows in reconstructed porous media
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We study the dynamics of nonwetting liquid blobs during immiscible two-phase flows in stochastically
reconstructed porous domains predominantly saturated by a wetting fluid. The flow problem is solved explicitly
using a Lattice-Boltzmann model that captures both the bulk phase and interfacial dynamics of the process.
We show that the nonwetting blobs undergo a continuous life cycle of dynamic breaking up and coalescence
producing two populations of blobs, a mobile and a stranded one, that exchange continuously mass between
them. The process reaches a “steady state” when the rates of coalescence and breaking up become equal, and
the macroscopic flow variables remain practically constant with time. At steady state, mass partitioning between
mobile and immobile populations depends strongly on the applied Bond number Bo and the initial nonwetting
phase distributions. Three flow regimes are identified: a single-phase flow Darcy-type regime at low Bo numbers,
a non-Darcy two-phase flow regime at intermediate values of Bo, where the capillary number scales as Ca ∝ Bo2,
and a Darcy-type two-phase flow regime at higher values of Bo. Our numerical results are found to be in good
agreement with recent experimental and theoretical works.
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I. INTRODUCTION

Immiscible two-phase flow in soils is a subject of significant
scientific and technological interest. It is encountered in a se-
ries of environmental and energy-related processes, such as the
remediation of soils contaminated with toxic anthropogenic
chemicals, secondary and enhanced oil recovery (EOR) from
fractured petroleum reservoirs, and the geological storage of
CO2 in deep saline aquifers and depleted oil reservoirs, among
others. From a technological and/or environmental aspect, the
objectives of such processes is either the recovery of fluids
that pose environmental dangers due to infiltration into the
drinking water table (such as in soil remediation), the recovery
of fluids of financial interest (such as in oil recovery), or the
geological storage of by-product fluids, replacing the space
otherwise occupied by subsurface water in the Vadose and
saturated zones (such as in CO2 sequestration).

Typically, the recovery of such fluids [otherwise col-
lectively called Non-Aqueous Phase Liquids (NAPLs), as
opposed to the continuous aqueous phase which is dominant is
the subsurface] is accomplished by introducing purge or flush
fluids (steam, water, CO2, or natural gas) from injection wells
in order to displace NAPLs towards production wells. These
recovery technologies aim at increasing pressure gradients
in the soil and producing flow conditions that overcome
capillary forces at the pore scale. Other technologies rely on
the reduction of the interfacial tension between NAPLs and
the aqueous phase using surfactant or generating miscible flow
conditions [1–3].

During recovery, as the NAPL phase saturation in the soil
progressively decreases, the NAPL phase becomes highly
discontinuous by breaking up in smaller droplets or blobs
(otherwise called ganglia) that may span across several pore
volumes. The randomness and heterogeneity of the pore space
within soil formations lead to the production of blob size
distributions that either flow under the combined effect of
capillary, viscous, and gravity or buoyancy forces or become
stranded in lower permeability regions of the soil. The recovery
of such trapped residuals, which may account for a significant

amount of the initial NAPL saturation, is the aim of enhanced
recovery technologies, involving blob remobilization and/or
dissolution based on targeted flushes of dissolution agents
and surfactants. Eventually, the relative magnitude of the
forces acting on the blob interfaces at the pore and pore-
network scales determines their fate at the field scale, either
mobile or stranded, and the recovery potential of the applied
technology. Blob size distributions and local flow conditions
determine also the available interfacial areas and effective mass
transport coefficients, which are crucial parameters in recovery
technologies involving NAPL dissolution or volatilization.

Several methods have been proposed to model the dynamics
of NAPL blobs during immiscible two-phase flows in porous
media by accounting for pore-scale physics. These methods
include pore network modeling [4–9], stochastic simulation
[10,11], mechanistic modeling [12], and the recently devel-
oped method of Darcian dynamics [13]. Essentially all these
approaches treat the flow problem and the interfacial dynamics
at the pore scale, since continuum scale approaches, which
are based on relative permeability considerations, will fail to
accurately describe the process due to the highly discontinuous
nature of the nonwetting phase, interfacial instabilities that
may arise under certain flow conditions, and the potential
heterogeneity of the porous medium. The characteristic of
these pore scale methods is that they rely on simplified
mechanistic rules to determine the probability of fluid-fluid
interfaces invading the pores of the medium. These rules
typically take into account the effect of capillary, viscous,
and gravity forces across interfaces as they move through pore
volumes. Viscous forces and the pressure field are calculated
by solving linear flow models, such as Poiseuille or Darcy-type
equations, through simplified void topologies such as pore
networks [4], or continuous permeability fields [13]. Capillary
forces at the pore throats are calculated through Laplace’s
law. These approximations, although crude, have provided the
means to qualitatively model blob population dynamics at a
reasonable computational cost. On the other hand, application
of such models is limited to simplified pore geometries, and
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their accuracy is questionable given that the flow and interfacial
physics involved are coupled in macroscopic parameters, such
as relative permeabilities, or coalescence probabilities [6].

In recent years, the continuous development of rigorous
lattice Boltzmann (LB) models of multiphase, multicomponent
systems, in conjunction with the significant increase in
computational power, has allowed for modeling immiscible
two-phase flows in more realistic pore structures [14–16]. This
allows for the deterministic description of the flow problem and
the interfacial dynamics at the pore scale, providing significant
insight into the effects of pore scale physics on the macroscopic
or continuum dynamics in such systems. However, the main
focus of these earlier studies was on the construction of relative
permeability curves, rather than on the flow conditions that
lead to the mobilization of trapped NAPL residuals in porous
media.

In this paper we focus on the conditions that lead to
the trapping and mobilization of the disconnected NAPL
blobs by applying an immiscible LB model for flow driven
by gravity in a stochastically reconstructed porous domain.
Emphasis is placed on the effects of the medium structure,
flow conditions, and saturations on the population dynamics
of NAPLs during transient and “steady-state” conditions, blob
size distributions, the ratio of mobile to stranded populations,
and the resulting interfacial areas. The effects of the initial blob
size distributions on the resulting steady-state conditions are
also investigated. For simplicity, calculations are performed
on a two-dimensional (2D) reconstructed porous domain
with a relatively high porosity. Extension of the method to
three-dimensional (3D) porous domains is straightforward, but
requires significant computational resources.

II. MODEL FORMULATION

The model used for the study of NAPL blob dynamics in
soils consists of a LB model to solve for the dynamics of
immiscible flow in the pore space, a stochastic reconstruction
algorithm for representing the pore space, and appropriate
boundary conditions at the fluid-solid walls to account for
wettability and capillary effects. These components will be
described in detail in the following sections.

A. Lattice Boltzmann model

We solve for the hydrodynamics of immiscible two-phase
flow in porous media using an appropriate LB model in a
discrete permeability field. Following the work of He et al.
[17], the continuous Boltzmann equation for nonideal dense
fluids can be written in the following form:

Df

Dt
= ∂f

∂t
+ �ξ · ∂f

∂ �x − 1

λ
(f − f eq) +

�F · (�ξ − �u)

ρRT
f eq, (1)

where f (�x,�ξ,t) is the single particle distribution function,
�ξ and �u are the microscopic and macroscopic local velocity
vectors, respectively, ρ is the macroscopic density, �x is the
position vector, λ is a relaxation time related to the kinematic
viscosity as ν = RT λ, �F is the force experienced by fluid
particles, R is the ideal gas constant, T is the temperature, and
f eq(�u) is the single particle distribution function at thermo-

dynamic equilibrium, which follows a Maxwell-Boltzmann
distribution.

Equation (1) can be solved following the LB Lagrangian-
based discretization scheme by integrating in the microscopic
velocity space �ξ and time t (i.e., as shown in Refs. [18,19]):
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]
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, (2)

where 	i(�u) = f
eq
i (�u)/ρ, τ = λ/δt , and δt is the time step.

The discretized equilibrium distribution function f eq is de-
rived from the Maxwell-Boltzmann distribution by a Taylor
expansion in terms of the Mach number, �u/cs = �u/

√
RT :

f
eq
i (�u) = wiρ

[
1 +

�ξi · �u
c2
s

+ (�ξi · �u)2

2c4
s

− �u · �u
2c2

s

]
, (3)

where wi are appropriate weights that depend on the selected
discretization scheme.

In the resulting LB equation, time integration in [t,t + δt]
is coupled with the space integration in [�x,�x + �ξiδt]. The LBE
can be made explicit by the following transformation for f :

f̄i = fi −
�F · (�ξi − �u)

RT
	i

δt

2
, (4)

which yields the following evolution equation for f̄ :

f̄i(�x + �ξiδt,t + δt)

= f̄i(�x,t) − f̄i(�x,t) − f
eq
i (�x,t)

τ ′

+ 2τ ′ − 1

τ ′
(�ξi − �u) · �F

RT
	i(�u)δt (5)

where τ ′ = τ + 1/2 and ν = RT (τ ′ − 1/2)δt .
Phase separation is then induced by incorporating an appro-

priate expression for the intermolecular force �F in Eq. (5). For
a van der Waals fluid, for instance, the intermolecular force
�F can be obtained through a mean-field approximation and

accounting for exclusion volume effects [20,21] as follows:

�F = −�∇(p0 − ρRT ) + ρκ �∇∇2ρ = −�∇�p + �Fs, (6)

where p0 is the thermodynamic pressure, �p is the divergence
from the ideal pressure, �Fs accounts for interfacial forces, and
κ is a parameter associated with the intermolecular potential
uattr as

κ = −1

6

∫
r>σ

r2uattr(r)d�r, (7)

where σ is the molecular diameter.
Equation (6), which is usually referred to as the potential

form of the forcing expression, can be also expressed in terms
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of the chemical potential of the bulk phases μ0 through the
Gibbs-Duhem equation �∇P0 = ρ �∇μ0 [18]:

�F = −ρ �∇μ0 + �∇ρRT + ρκ �∇∇2ρ

= −ρ �∇(μ0 − κ∇2ρ − RT ln ρ)

= −ρ �∇(μ − RT ln ρ) = −ρ �∇�μ. (8)

In the above expression we note that μideal
0 = RT ln ρ

corresponds to the bulk chemical potential of the ideal gas
and μ = μ0 − κ∇2ρ. The latter formulation of the potential
form is adopted in the present contribution as it has been shown
to provide increased numerical stability and can better handle
mass separation between phases [19].

In order to improve the numerical stability of the LBE
scheme of Eqs. (5)–(8), He et al. [21] introduced a second
single particle distribution function g as follows:

g = f RT − � ′
p(ρ)	(0). (9)

This produced the following evolution equation:

ḡi(�x + �ξiδt,t + δt)

= ḡi(�x,t) − ḡi(�x,t) − g
eq
i (�x,t)

τ ′

+ 2τ ′ − 1

τ ′ (�ξi − �u) · {	i(�u)( �F ′
s + �Fb)

− [	i(�u) − 	i(0)] �∇� ′
p}δt, (10)

where

ḡi = gi − 1
2 (�ξi − �u) · {	i(�u)( �F ′

s + �Fb)

− [	i(�u) − 	i(0)] �∇� ′
p}δt (11)

and

g
eq
i (�u) = wi

{
p + ρc2

s

[ �ξi · �u
c2
s

+ (�ξi · �u)2

2c4
s

− �u · �u
2c2

s

]}
. (12)

�Fb accounts for body forces acting on fluid particles, such as
gravity �Fb = ρ �g, which is considered in this study to drive fluid
flow. Note that body forces are not accounted for in Eq. (5)
since this equation is used only to track the phase field. Here
we have also defined � ′

p following a different rearrangement
of the forcing terms in Eq. (6) proposed by Ref. [18], known
as the stress form of the forcing terms:

�F = −�∇� ′
p + �F ′

s

= −�∇
(

p0 − ρRT − κρ∇2ρ + κ

2
�∇ρ · �∇ρ

)

+ κ �∇(ρ∇2ρ) − κ

2
�∇( �∇ρ · �∇ρ) + κ �∇( �∇ρ · �∇ρ)

− κ �∇ · ( �∇ρ �∇ρ). (13)

This expression removes unphysical discontinuities in the
pressure field across the the interface and reduces spurious
velocity currents in the vicinity of the interface.

The above model is thermodynamically consistent for
the specific case of van der Waals (vdW) fluids, as long
as the thermodynamic pressure and/or chemical potential is
calculated using the vdW equation of state [19,22]. In this
case, Eq. (5) can be solved directly to calculate the liquid and
vapor phase densities of a vdW fluid in very good agreement

with the vdW theory and the corresponding Maxwell equal
area rule [23]. The interfacial tension is then predicted by van
der Waals theory by integrating over the density profile across
the interface:

γ =
∫ +∞

−∞
κ

(
dρ

dx

)2

dx. (14)

Note that for a vdW fluid, κ is a dependent variable and cannot
take arbitrary values.

The above scheme can be also applied to model the
hydrodynamics of any arbitrary pair of fluids with densities
ρnw and ρw using the vdW density field as a phase index and
interpolating the desired densities values over the correspond-
ing vdW densities [21]. The phase field ϕ is thus evaluated by
integrating f̄ in the microscopic velocity space:

ϕ(�x,t) =
∑

i

f̄i(�x,t) (15)

and the macroscopic density field as

ρ = ρnw + ϕ − ϕl

ϕh − ϕl

(ρw − ρnw), (16)

where ϕh,ϕl are the highest and lowest values of the index
function ϕ calculated by Eq. (15).

The interfacial tension of the simulated pair of fluids is
tuned by treating κ as an adjustable parameter. Equation (14)
remains valid in this approach.

Then the macroscopic velocity and pressure are

RTρ �u(�x,t) =
∑

i

ḡi(�x,t)�ξi + RT δt

2
( �F ′

s + �Fb), (17)

p(�x,t) =
∑

i

ḡi(�x,t) − 1

2
�u(�x,t) · �∇�μ(ρ)δt. (18)

In the present paper we use the vdW equation of state
in reduced form to induce phase separation without loss of
generality of the method:

p0 = ρRT

1 − bρ
− aρ2, (19)

where a = 9
8Tc/ρc, b = 1/(3ρc), Tc = RT/Tr , and ρc = 1 for

simplicity.
The corresponding bulk phase chemical potential μ0 is

calculated by solving the following equation for the bulk phase
energy E0:

p0 = ρμ0 − E0, where μ0 = ∂E0

∂ρ
. (20)

This yields

μ0 = RT ln

(
ρ

1 − bρ

)
+ RT

1 − bρ
− 2aρ. (21)

An alternative approach to the one used here consists of
using an ad hoc equation of state (instead of the vdW) for
controlling fluid densities, interfacial tension, and thickness
without other adjustable parameters [18,24].

In this study we perform 2D LB simulations using a D2Q9
discretization scheme, where the microscopic velocity �ξ is
discretized in nine vectors (including the null vector), defined
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as follows:

�ξi =

⎧⎪⎨
⎪⎩

(0,0)c i = 0
(±1,0)c i = 1,2
(0,±1)c i = 3,4
(±1,±1)c i = 5,6,7,8,

(22)

where we take c = δx/δt equal to unity here for simplicity
and δx is the lattice spacing. Assuming the molar mass equal
to unity and recalling that the equation of state for the ideal
gas is p = ρc2

s , where c2
s = RT is the speed of sound, then the

product RT in lattice units can be expressed by RT = c2/3
[25]. The corresponding integral weights for Eqs. (3) and (12)
are

wi =
⎧⎨
⎩

4/9 i = 0
1/9 i = 1,2,3,4
1/36 i = 5,6,7,8.

(23)

A crucial factor for numerical stability and mass conserva-
tion, particularly in smaller blobs, is the appropriate selection
of the discretization scheme for spatial derivatives. Here
spatial derivatives (both directional and nondirectional), i.e., of
density ρ, are calculated using a central isotropic discretization
scheme according to Refs. [18,24] as follows:

�∇ρ|�x =
∑
i �=0

wi
�ξi[ρ(�x + �ξiδt) − ρ(�x − �ξiδt)]

2RT δt
, (24)

∇2ρ|�x =
∑
i �=0

wi[ρ(�x + �ξiδt) − 2ρ(�x) + ρ(�x − �ξiδt)]

RT δt2
. (25)

The components of �∇ρ are calculated as ∂ρ

∂xj
|�x = �∇ρ(�x) · �ej ,

where �ej is the unit vector in j direction.
To conclude this section, it is important to note that in

the present paper we have used a single relaxation time
scheme (BGK model) to approximate the collision operator
in the Boltzmann equation for the sake of simplicity. This
scheme, coupled with the bounce-back rule at solid-fluid
interfaces to recover no-slip boundary conditions, is known
to produce a dependence of the effective location of the wall
on the kinematic viscosity, namely, on the selected value
of the relaxation parameter τ ′ [26–28]. This scheme was
used here while keeping the kinematic viscosity constant and
equal for both phases. A multiple-relaxation scheme could
be alternatively used, in order to have identical boundaries
effects for both phases, independently of the selected values
of the kinematic viscosities.

B. Wettability effects

The above described LB model does not explicitly account
for intermolecular forces between fluid and solid molecules at
fluid-solid interfaces, namely, at pore walls. The bounce-back
boundary condition is applied to all fluid particles when they
collide with a solid wall. Wettability effects are incorporated
in our LB simulations by implementing soild-fluid boundary
conditions as described in one of our previous works [29]. We
account for attracting (adhesive) forces between fluid particles
and molecules of the solid surface by assigning an effective
value for the density of the solid sites in the range between ρw

and ρnw, depending on whose phases molecules are attracted
stronger by the molecules of the solid surface. The density

assigned to the solid lattice sites enters the calculations through
the interfacial force �Fs . This boundary condition gives rise to
capillarity effects as fluid-fluid interfaces move within pore
walls, and it is used to modify the contact angle of the interface
at the solid surface [29]. In this study we assume a perfectly
wetting fluid ρw (contact angle θ = 0), and we thus set the
solid site density ρs = ρw.

C. Stochastically reconstructed porous domains

The porous medium in our study is represented by 2D
porous domains in the form of discrete permeability fields of
size 10242δx2. Each domain consists of solid (impermeable)
and void (permeable) sites, where the spatial distribution of the
solid sites is accomplished using a stochastic reconstruction
algorithm that pursues the recovery of the statistical properties
of naturally occurring porous media, i.e., sandstone, typically
the porosity φ and the two-point autocorrelation function
[30,31].

The porous medium is thus generated using a standard
spectral method. First, we generate a matrix W (�r) of white
random noise (with zero mean and a standard deviation of
one). Then we compute the Fourier transform Z(�r), which we
multiply with a Gaussian function, yielding

Z′(�k) = αZ(�k)e
− |�k|2

k2
0 . (26)

A fast inverse Fourier transform f (�r) = FT
−1(Z′(�k)) leads

then to a Gaussian distributed noise correlated with a Gaussian
correlation function:

FT (ff ∗) = α2e
−2 |�k|2

k2
0 ,

which leads to the autocorrelation function:

(f ∗f )(x) ∝ e− k2
0
8 x2 = e− 1

2 ( πx
2λs

)2

, (27)

where λs = π/k0 and ∗ denotes the convolution product.
Without loss in generality, the prefactor α is set to have
a standard deviation equal to one. The solid lattices are
obtained by level setting the field f (�r) with a given value,
f0: S = {�r|f (�r) < f0}. The porosity is then directly related
to the cumulative distribution function, P (f ), which is by
construction an error function centered around 0 and of
standard deviation equal to 1:

f0 = P −1(φ).

The above procedure allows for the construction of porous
domains parametrized by the porosity φ and the correlation
length λs for the spatial distribution of the solid sites. Given
the 2D nature of the domains, a high porosity value φ = 0.8
and λs = 15δx are selected in order to construct percolating
domains in all directions (see Fig. 1).

It straightforward to show that the superficial (Darcy)
velocity of a liquid flowing in such a domain is proportional to
the applied body force �Fb by solving the previously described
LB scheme for single phase flow (namely, Sw = 1). The
permeability of the medium K , determined by Darcy’s law,
is then found to scale with the correlation length of the solid
sites as K ∝ λ2

s ; namely, λs can be used as a proxy for the
average pore size.
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FIG. 1. 2D stochastically reconstructed porous domain with λs = 15δx. (a) Continuous permeability field with darker colors indicating
less permeable sites (or equivalently higher probability of solid phase). (b) Discrete permeability field with φ = 0.55. Black and white colors
represent solid and void phases, respectively. (c) Discrete permeability field with φ = 0.8, which is used for typical simulations presented in
this study. Note that for values of φ < 0.5 the domain is not percolating in all directions.

III. NUMERICAL SIMULATIONS

We performed a series of numerical simulations in 2D
porous domains with porosities 0.7 � φ � 0.9, constructed
as described in the previous section, and saturated with
two immiscible fluids. The nonwetting phase saturation was
taken Snw � 0.3 in our simulations. The initial nonwetting
phase distribution patterns were generated using a similar
reconstruction algorithm as the one described above for the
porous medium. As previously, a Gaussian field h(�r) is first
generated, parametrized by the correlation length λnw for the
sites occupied by the nonwetting phase. However, the level
set method differs slightly from the one used for the solid
site distribution, since one now needs to take into account
that some sites are already occupied by solid. The nonwetting
phase region is now defined as NW = {�r | �r /∈ S; h(�r) < h0}.
Practically, h(�r) is set to a very high value at solid cites. Since
the cumulative is not known analytically, we used an ordering
procedure to determine the level set value h0, in order to
impose the desired nonwetting saturation Snw. By ordering
the value field h(�r) → H [k], k = 1, . . . ,N, where N is the

(a) (b)

FIG. 2. (Color online) Initial phase distribution patterns for
λnw = 60δx (a) and λnw = 15δx (b) for a medium with porosity
φ = 0.8, λs = 15δx, and Snw = 0.2. Nonwetting phase blobs are
shown in yellow (brighter color in gray scale), wetting phase in gray,
and solid sites in black.

total number of grid points, we deduce the level set value by
h0 = H [NφSnw].

The resulting initial nonwetting phase distribution patterns
for different values of the correlation length λnw are shown
in Fig. 2 for a fixed value of Snw = 0.2. It is evident that
larger values of λnw lead to larger but fewer blobs initially
in the domain. A Hoshen-Kopelman algorithm [32] is then
applied to calculate the number, size, and interfacial area of
the disconnected blobs at each time step. Figure 3 shows the
initial blob size distribution in the same domain for different
values of Snw and λnw = 15δx. The distribution resembles a
log-normal with a mean blob area of the order of O(λ2

nw),
as expected. Here the blob size sb is expressed in λ2

nw units,
rather than lattice units δx2, and thus negative x-axis values
correspond to blob sizes less than the average pore size (given
that here λs = λnw). A shift of the distribution towards larger
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FIG. 3. Initial blob size distribution for different nonwetting
phase saturations Snw , and λnw = λs = 15δx, φ = 0.8. The horizontal
axis shows the natural logarithm of the blob size sb (in units of λ2

s ).
A mainly log-normal size distribution is observed that shifts towards
larger blobs as Snw increases.
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sizes is also observed with increasing Snw due to overlapping
of smaller blobs in the finite void space.

A constant gravitational force �Fb = ρ �g is then applied
to generate flow through the reconstructed 10242δx2 porous
domain, where �g is the gravity acceleration vector. Periodic
boundary conditions are considered in both directions. For
simplicity, we take a value of Tr = 0.95 in Eq. (19), which
yields ϕl = 0.579ρ0 and ϕh = 1.461ρ0 for a vdW fluid, where
ρ0 is a reference density in our system. We use these values
for the wetting and nonwetting fluids in our system, namely,
ρ = ϕ [and thus the macroscopic density is calculated directly
from Eq. (15)], since this density ratio is convenient for the
simulation of an aqueous and an oily phase. The kinematic
viscosity is taken again equal in both phases with τ ′ = 0.8 and
ν = 0.1δx2/δt . The interfacial tension is controlled by the
adjustable parameter κ in Eq. (14), which we take here equal
to κ = 3 × 10−2cδx2/ρ0. This produces an interfacial tension
γ = 3.2 × 10−3ρ0c

2δx, as calculated from Eq. (14) [19,29].
The flow problem is typically characterized by two dimen-

sionless numbers: the capillary number Ca = qμe/γ , which
expresses the ratio of viscous over capillary forces across
interfaces, and the Bond number Bo = g(ρw − ρnw)λ2

s /γ ,
which expresses the ratio of gravity over capillary forces.
Here ρw, ρnw are the densities of the wetting and nonwetting
(or NAPL) phases, γ is the fluid-fluid interfacial tension,
μe is an effective saturation-weighted viscosity defined as
μe = Snwμnw + (1 − Snw)μw, and q = qw + qnw is the total
superficial (Darcy) velocity, where

qi = 1

A

∫
A

�ui · �ndA, i = w,nw. (28)

In the above equation �n = �g
|�g| is the unit vector in the direc-

tion of the applied body force. Note that A = Aw ∪ Anw ∪ As ,
where Aw, Anw, and As are the domain sites occupied by
the wetting, nonwetting, and solid phases, respectively. The
evolution of the phase distribution patterns with time for a
typical simulation is shown in Fig. 4. Starting from a spatially
random distribution of the nonwetting phase blobs with an
average size proportional to λ2

nw and random shape at t = 0
(see Fig. 3), all the blobs, with an initial size smaller than the
average pore size, flow practically unobstructed in the void
of the pores in the direction of the applied body force. The
effects of capillary forces across fluid-fluid interfaces on the
flow of these blobs are practically negligible. At later times,
however, as blobs larger than the average pore size are formed
(resulting from collisions between neighboring blobs), the
effect of capillarity becomes progressively important in the
resulting flow patterns and leads to the stranding of blobs in
smaller pores, particularly for lower values of the applied Bo.

The increasing blob size leads to another effect which is
negligible at early times: Larger blobs may deform signifi-
cantly due geometrical restrictions in the flow paths as they
“squeeze” through narrower pores under the effects of gravity,
viscous, and capillary forces. This deformation eventually
leads to the breakup of blobs into smaller ones. Both the effects
of blob coalescing and breaking up will be discussed in more
detail below.

At sufficiently large times, the superficial velocities q of
both phases and the number of blobs reach steady-state values

(a) (b)

(c) (d)

FIG. 4. (Color online) Phase distribution patterns at different time
steps t = 0 (a), t = 0.25 × 106δt (b), t = 2 × 106δt (c), and t =
4 × 106δt (d). Flow from left to right and periodic flow boundaries in
all directions. Nonwetting phase blobs are shown in yellow (brighter
color in gray scale), wetting phase in gray, and solid sites in black.
Snw = 0.2, Bo = 6.33 × 10−2, λs = λnw = 15δx [33].

as shown in Fig. 5(a) for Bo = 6.33 × 10−2. During this
period, both superficial velocities remain practically constant
with time, although fluctuations around the average values may
be significant. As expected, blob populations converge more
slowly to their steady-state values than superficial velocities.
Figure 5(b) shows the normalized fluctuations s of the blob
phase velocity qnw around the mean steady-state velocity,
s = qnw/qst

nw. As described in more detail below, we attribute
these velocity fluctuations to the blocking and unblocking
events of the nonwetting phase blobs, which appear to be
more pronounced at lower capillary numbers (resulting from
lower applied Bond numbers), namely, stronger capillary over
viscous forces across fluid-fluid interfaces.

It is worth noting here that, depending on the applied
Bo value and the initial blob size distributions, the system
required several million time steps δt to reach this “steady
state”. Typical simulations required approximately 3.5Mδt

and 20h on a massively parallel computer utilizing 64 physical
processing cores (corresponding to ∼1300 cpu hours per
simulation).

A. Dynamic blob breakup and coalescence

As discussed above, a key aspect of this type of flows lies
in the coalescing and breaking-up events associated with blob
trapping and deformation inside the media. In this section, we
focus on the dynamics of those events. The evolution of the
phase distribution patterns in Fig. 4 reveals that the NAPL
phase flows primarily in the form of disconnected blobs that
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FIG. 5. (Color online) (a)
Darcy phase velocities q for both
phases and total blob population
vs time t for Bo = 6.33 × 10−2,
Snw = 0.2, and λs = λnw = 15δx.
(b) Normalized divergence s =
qnw

qst
nw

of the superficial blob velocity
qnw with the respect to average
steady-state value qst

nw for different
values of Bo.

occupy the central part of the pores. At the same time the
wetting phase covers the pore walls forming a continuous
liquid film that spans across the entire domain. The shape and
population of the blobs are a function of the applied Bo number
and Snw.

At low Bo numbers, the blobs flow as long as their
size is smaller than the average pore size. Starting from a
large population of small blobs, as is the typical scenario
in our simulations, the blobs flow at early times, and they
continuously coalesce forming larger ones. For simplicity, we
denote blob coalescence events as N−, as they result in a
decrease of the overall population. These blobs progressively
become immobile in smaller pore bodies, as viscous and
gravity forces across fluid-fluid interfaces are not sufficiently
strong to overcome capillarity and produce the required blob
shape deformation to penetrate the pores. Eventually, at low
Bo numbers the entire blob population becomes completely
stranded (immobile), and only the flow of the wetting phase
occurs in the pore space (see also Fig. 9(a) below). The
dynamics of the process depend very strongly on the initial
blob size distributions at low Bo values.

For intermediate Bo numbers, the blobs may be either
mobile, as they enter higher permeability regions (larger
pores), or immobile due to strong capillary forces in smaller
pores. A careful inspection of the temporal evolution of the
phase distribution patterns reveals that stronger Bo numbers
lead to significant blob deformation and breaking up into
smaller blobs. We denote breaking-up events as N+ , since they
result in a increase of the population, and by Snw,m and Snw,i ,
the saturations of the mobile and immobile blobs, respectively.
These two populations exchange continuously mass between
them through a series of N− and N+ events. As expected,
larger blobs resulting from N− events have a higher probability
of being mobile as they as subjected to stronger body and
surface forces. Smaller blobs on the other hand, which are
produced by N+ events, have a higher probability of being
stranded.

Figure 6 presents the dynamics of these mechanisms for
different Bo numbers. The plot shows the measured pairs
of blobs coalescing (corresponding to N− events) and single
blobs breaking up (corresponding to N+ events) in a fixed time
interval [t ,t + �t], where �t = 5 × 104δt . The event numbers
are normalized by the total blob population at time t , in

order to express the event probabilities vs time. Alternatively,
these could also be expressed as event rates by dividing event
numbers by �t . It is apparent here that during early times,
when a very large population of smaller blobs exists, the
process is mostly governed by blob collisions and N− events,
while blob breaking up is negligible. As the overall population
reduces and larger blobs are formed, a significant increase
of the breaking up probability is observed. After sufficient
time, the system reaches a dynamic equilibrium where the two
probabilities become practically equal, but nonzero, revealing
that the blobs undergo a continuous life cycle of N+ and N−
events as they flow in this periodic boundary domain. The
nonlinear nature of the blob flow process in porous media is
also evident in Fig. 6 with respect to the applied Bo number.
The steady-state rate of structural events decreases by more
than one order of magnitude, as the applied Bond number is
decreased only by a factor of 4.

To conclude this section, it is worth discussing briefly the
physics behind the structural events that occur during the flow
of NAPL blobs. Blob breaking up into smaller ones in porous
media occurs when blobs reach smaller pores, and a significant
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FIG. 6. (Color online) Probability of N+ and N− events for
different values of the Bo number. Snw = 0.2, λs = λnw = 15δx.
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FIG. 7. (Color online) A sequence of snapshots focusing on a subdomain where N+ events commonly occur during the numerical simulation.
A significant structural deformation of the original blob as it goes through a narrower pore leads to a N+ event. Snw = 0.2, Bo = 0.127,
λs = 15δx. Nonwetting phase blobs are shown in yellow (brighter color in gray scale), wetting phase in gray, and solid sites in black.

shape deformation is required in order to overcome capillary
pressure entry values across pore throats. In order to invade
these throats, the blobs respond to the normal and shear stresses
acting on their interfaces by readjusting their shape, which can
be characterized by the interfacial curvature. As a result, the
curvature at the upstream side of the blobs decreases, and thus
the capillary pressure across the leading part of their interface
decreases, while curvatures at the downstream side increase, as
the blobs elongate to go through the narrower throats [10,11].
After the leading part of the blob passes through the restriction,
its radius of curvature begins to increase again. At this point the
blob interface becomes unstable under the effect of capillarity-
induced pressure gradients in the wetting fluid side of the
interface. Eventually the leading part of the blob snaps off from
the remaining part, possibly leading also to the trapping of the
smaller upstream part [34]. The dynamics of blob breaking
up is a function of several parameters, including the wetting
phase capillary number, but also the viscosity ratio of the fluids
M = μnw/μw [35].

Figure 7 shows the temporal evolution of such an event for a
solitary blob that reaches a narrower pore in a magnified region
of the computational domain. Figure 8 shows a sequence of
two N− events involving three neighboring blobs at a very low
Bond number, where capillary forces at pores are expected to
be dominant over gravity and viscosity. The average position
of the center of mass of the three blobs in the direction of
the applied body force is also indicated above each snapshot
with an arrow. Initially, the larger blob fits perfectly in the
containing pore. However, after two N− events, the resulting
blob is too large, and it moves slowly upstream towards
an adjacent larger pore in order to minimize the interfacial

curvatures. This movement is accompanied by the spontaneous
imbibition of the wetting phase into the smaller pore spaces
that contained initially the blobs. Thus part of the interfacial
energy released during these N− events is used to move the
resulting blob upstream, in the direction opposite to the flow
direction.

B. Steady-state blob populations

In this section we focus on the effects of the Bond number,
the NAPL phase saturation, the initial blob size distribution,
and the correlation length of the medium to steady-state blob
populations. We focus particularly on the ratio of mobile
to stranded or total blob populations which is of significant
importance to NAPL recovery technologies.

Figure 9 shows characteristic snapshots of the phase
distribution patterns at steady state for different Bo values.
These snapshots reveal a series of qualitative differences in
the population, the shape, and the mobility of the blobs.
At low Bo values [Fig. 9(a)], and after an initial period of
intense blob coalescence (see Fig. 6 above), all blobs become
practically immobile and rounded, stranded by capillary forces
that develop at the pores throats. The average size of the blobs
at steady state then depends strongly on the initial blob size
distribution and Snw. This is also demonstrated in Fig. 10,
which shows the blob size distributions at steady state for both
the mobile and immobile blobs for different values of Bo. The
results are averaged over several time steps (typically 10) from
snapshots taken at 50k δt intervals.

As Bo increases, blobs become gradually mobile as they
are subjected to an overall body force proportional to their

FIG. 8. (Color online) A sequence of snapshots focusing on a subdomain where a series of N− take place in the limit of capillarity-controlled
process. The arrow above each snapshot shows the center of mass of the blobs in the flow direction. After each N− event, the produced larger
blob cannot fit the initial pores and rearranges its shape by moving towards larger pores in order to reduce interfacial curvatures. In this case
capillarity forces the larger blob upstream opposite to the direction of the applied body force. Snw = 0.2, Bo = 0.025, λs = 15δx. Nonwetting
phase blobs are shown in yellow (brighter color in gray scale), wetting phase in gray, and solid sites in black.
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(a) (b)

(c) (d)

FIG. 9. (Color online) Phase distribution patterns at “steady-
state” flow conditions for various values of the applied body force
Bo = 2.53 × 10−2 (a), Bo = 6.33 × 10−2 (b), Bo = 1.27 × 10−1 (c),
and Bo = 2.53 × 10−1 (d). A transition from immobile, practically
circular blobs to elongated in the flow direction is clearly observed as
the body force is increased. For low Bo values, the average blob size is
limited by initial blob number density and saturation of the phase. For
larger values, the average blob size is limited by the increased N+
probability. Nonwetting phase blobs are shown in yellow (brighter
color in gray scale), wetting phase in gray, and solid sites in black.

size, but also stronger viscous forces at their interface by the
flowing wetting phase. Under the effect of these forces blobs
deform significantly, and they overcome capillary forces in
pore throats [Figs. 9(b) and 9(c)]. In this intermediate Bo

region, blobs coalesce at higher rates (see Fig. 6), and they
elongate in the direction of the flow forming blobs that span
several pore volumes.

In the higher Bo number region [Fig. 9(d)], viscous forces
dominate over capillarity and dynamic breakup intensifies,
producing larger populations of smaller blobs with size
practically equal to average pore size.

The “steady-state” blob number density, namely, the
number of produced blobs per unit volume of the porous
medium (the averaging volume should be significantly larger
than the average blob size to obtain statistically meaningful
results), is of significant importance to physical processes
occurring at interfaces, such as dissolution, evaporation, and
reaction. In these processes, both the blob density and the
specific interface, namely, the interface area per unit volume
of the porous medium, are important. Figure 11(a) shows the
average blob size s̄b at “steady state” normalized by λ2

s vs
the applied Bo number for various values of the NAPL-phase
saturation and an initial blob size distribution with a correlation
length λnw = 15δx. In the lower Bo region, most of the
blobs are immobile, and the average size is determined by
the initial distribution, or, equivalently, the flow history. The
blob size increases with Bo as more blobs become mobile
and the probability for N− events increases due to blob
collisions. For even larger values of Bo, viscous forces take
control over capillarity and the dynamic breakup of blobs
intensifies, producing larger populations of smaller blobs. A
clear maximum value for the blob size is found in the region
0.06 � Bo � 0.07. As expected larger nonwetting saturations
produce larger blobs over the entire range of Bo values
considered here.

Figure 11(b) shows the specific blob surface Lb, defined as
the total interfacial area over the volume of the NAPL phase in
the system, here in δx2 units. A clear increase of Lb is evident
with Bo resulting from the transition from practically rounded
blobs at lower Bo values to elongated ones at intermediate
values, and finally at increased blob populations in the upper
Bo region. The effects of the initial blob size distribution are
also demonstrated at low Bo and Snw values.
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FIG. 10. (Color online) Steady-state blob size distributions for both mobile (a) and immobile populations (b) for different Bond numbers.
The horizontal axis shows the natural logarithm of the blob size normalized by λ2

s . Inlets show the corresponding cumulative distributions.
Snw = 0.2, λnw = λs = 15δx, φ = 0.8.
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FIG. 11. (Color online) (a) Average blob size s̄b in λ2
nw units vs the Bo number for different values of the nonwetting phase saturation

Snw . (b) Specific NAPL interface Lb, namely, total NAPL interface over the total NAPL phase volume, vs the Bo number. λnw = λs = 15δx,
φ = 0.8.

Figure 12 shows the ratio of mobile to the overall blob
saturation pm = Snw,m/Snw with respect to the applied Bond
number Bo for different values of Snw and λnw. A sharp
transition from a completely immobile blob population at
lower Bo values is observed when a critical value Boc is
exceeded. This indeed corresponds to a transition from single
phase flow of the wetting phase in a medium of significantly
decreased permeability (due to the pores blocked by the
immobile blobs), to a two-phase flow regime where at least
some of the blobs are mobile. Figure 12(b) supports the
argument that larger correlation lengths λnw, thus larger blobs
at t = 0, lead to progressively smaller values of Boc. This
is largely an anticipated result as larger blobs are subjected
to stronger overall forces (in the form of both body forces
and viscous stresses) and are thus mobilized at lower Bo
values. This effect, however, was not studied thoroughly
in our simulations, due to the relatively small size of the
computational domain that did not allow for larger values of
λnw, while pertaining a sufficiently large number of blobs for
statistical purposes.

C. Flow regimes

It is expected that the mobility of NAPL blobs affects
significantly the total flow of both phases in the porous domain
by changing the “effective” permeability of the medium over
a wide range of the applied Bo numbers. The presence
of immobile blobs results in the blocking of some pores,
excluding them from the flow paths available for the wetting
phase. Therefore, the permeability of the medium, as “experi-
enced” by the wetting phase, may be significantly decreased
due to immobile blobs.

Recalling that the “effective” permeability of medium is
the constant coefficient which relates flow rate to the applied
pressure gradient, we plot in Fig. 13 the capillary number
Ca, based on the total Darcy velocity q = qw + qnw vs the
Bond number Bo. At low Bo numbers, as discussed above,
the ratio of mobile to total blob volume becomes pm → 0,
and thus only the continuous wetting phase flows in the
medium (q � qw). For these values of Bo < Boc we find that
the “effective” permeability of the medium is fixed, and there is
linear Darcy-type dependence between Ca and Bo. This regime
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FIG. 12. (Color online) (a) Ratio pm = Snw,m/Snw of the mobile blob volume to the total nw-phase volume at steady state versus the applied
Bo number for various values of Snw and λnw = 15δx. (b) pm vs the applied Bo number for different values of λnw and Snw = 0.2.
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FIG. 13. (Color online) Flow regimes observed in this study ex-
pressed as Ca = qμe/γ vs the Bond number Bo = g(ρw − ρnw)λ2

s /γ .
Symbols (+) show numerical simulation data. Red dashed lines
represent a Darcy-type scaling where Ca ∝ Bo, and the black dot-
dashed line shows non-Darcy scaling where Ca ∝ Bo2. A transition
from single phase flow (when all blobs are stranded) to two-phase
flow occurs at a critical Boc value that is a function of the blob size.

effectively corresponds to single phase flow of the wetting
phase in a medium of reduced, but constant, permeability due
to pore blocking by the blobs.

This Darcy regime lasts until the threshold Boc

(dashed-vertical line in Fig. 13) is exceeded, and the
nonwetting blobs start to become mobilized. Above this
threshold, more and more blobs are mobilized, and the flow
of both phases is strongly influenced by capillarity. Therefore,
a deviation from Darcy’s law is expected [36–38]. Within this
Bo range, a small increase in the applied body force, results in
significant increase in the capillary number, as larger blobs are
mobilized first, unblocking larger pore volumes that become
part of the wetting phase flow paths (see also Fig. 12). We find
that a scaling Ca ∝ Bo2 (dot-dashed line in Fig. 13) describes
quite accurately the available numerical data in that region.

Increasing further the the applied Bo, when pm → 1, leads
again to an almost linear relationship Darcy-type dependence
between Ca and Bo, but with a larger (more than a factor
of 2) prefactor compared to the regime below Boc. Note
that the prefactor is proportional to the effective permeability
of the medium. In this last regime the average blob size
becomes smaller than the average pore size and almost all
blobs are mobile leading again to a Darcy’s law for the mixture
of wetting fluid and blobs with simultaneous occurrence of
breaking up and coalescence (see Fig. 6).

Such behaviors are reminiscent of recent experimental
and theoretical studies in immiscible pressure-driven flows
[36–39]. Sinha et al. [39] proposed a robust theoretical
explanation for the transition between these flow regimes based
on a pore network representation of the medium. Using a pore
network model, the flow in each pore throat is controlled by
a capillary pressure threshold which depends on pore size

and saturation. At the network scale this results in a pressure
threshold for the total flow rate. As the pressure gradient
increases, more pore throats become mobile (active) and thus
contribute to the flow. Since each active throat contributes
linearly with the applied pressure, while at the same time the
number of active throats increases with the pressure drop,
one should expect an exponent larger than one at lower Ca
values. Based on a mean field approach, Tallakstad et al. [36]
first showed that the flow rate scales as q ∝ (�P )2 in this
flow regime. This relationship was further generalized by
Sinha et al. [39], who showed that the flow rate scales as
q ∝ (�P − �Pc)2 close to �Pc, and as q ∝ �P when �P �
�Pc, where �Pc is the total capillary pressure threshold for
the entire network. The non-Darcy regime is a consequence
of the spatial distribution of the local pressure thresholds,
when capillarity controls the process. It is also interesting to
note that the transition from the capillarity-dominated to the
viscosity-dominated regime at higher Bo values is found in our
simulations to occur at Ca � 0.03, in good agreement with the
theoretical predictions by Sihna et al. [39].

We should note, however, that the above model differs
significantly from the one presented here. In our simulations,
we solve explicitly for the interfacial dynamics within pore
volumes, without assigning capillary pressure thresholds in
the medium. Effectively, we solve the flow problem using a
modified Navier-Stokes equation in the reconstructed medium.
More importantly, our model accounts explicitly for snap-off
and coalescence events, which are, as we have shown, a key
issue in immiscible two-phase flows in porous media. This
comparison, however, with previous studies reveals that the
model presented here captures quite accurately the scaling
between Ca and Bo that emanates from capillarity and the
spatially random pore size distribution in porous media.

IV. CONCLUSIONS

In this paper we studied pore scale phenomena occurring
during the immiscible flow of Non-Aqueous Phase Liquids
(NAPLs) in 2D stochastically reconstructed porous domains.
We employ a lattice Boltzmann model to simulate the
dynamics of NAPL blobs as they flow through the porous
medium, coupled with a Hoshen-Koppelman algorithm to
determine the structural characteristics and mobility of the blob
population. The process is characterized by two dimensionless
numbers: the Bo and capillary Ca numbers, which express the
interplay between capillary, viscous, and gravity forces. We
find that the process is governed by the dynamical coalescence
and breaking up of blobs, which result in two interacting
populations of mobile and stranded blobs, which continuously
exchange mass between them. At steady state, when the
rates of blob breaking up and coalescing become equal, both
populations follow a log-normal size distribution with an
average size and cumulative volume that depends strongly
on the applied Bo number. At higher Bo values, the ratio of
mobile to stranded blob saturation increases significantly, as
gravity forces overcome capillarity as fluid-fluid interfaces
move through pore bodies, and the breaking rate increases,
leading to smaller blob sizes. Our simulations show that the
transition between single and two-phase flow occurs when a
critical value of Bo is applied, and then the mobile blob volume
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increases nonlinearly with Bo until viscous forces become
dominant in the system. Three flow regimes are identified:
a single-phase Darcy-type regime at low Bo numbers, a
non-Darcy two-phase flow regime at intermediate values of
Bo where the capillary number scales as Ca ∝ Bo2, and a
Darcy-type two-phase regime at higher values of Bo. These
results are in good agreement with recent experimental and
theoretical works.
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