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Abstract We develop a pore network model for the evaporative drying of macroporous
media that accounts for the major pore-scale mechanisms experimentally identified to play
an important role on the drying rates and phase distribution patterns. The model accounts
for viscous flow through liquid films, gravity and mass transfer, both within the dry medium
and also through a mass boundary layer over the external surface of the medium. Also
accounted are the heterogeneity of the pore size distribution and pore wall microstructure
effects expressed through the degree of corner roundness. The latter plays a major role on the
extent of the film region. The model is then used to study capillary, gravity and external mass
transfer effects through the variation of the appropriate dimensionless numbers. The effect
of gravity is particularly analyzed for the two cases, when gravity is opposing and when it
is enhancing drying, respectively. In the latter case, strong mass transfer and viscous forces
compared to gravity can prevent instability of the receding evaporation front, leading to a
two constant-rate-regime drying curve in agreement with the 1-D theory proposed earlier.
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1 Introduction

Evaporative drying of macroporous materials (i.e., pore sizes greater than 50 nm) is a process
encountered in a number of applications of environmental and technological interest. Drying
within the complex inner geometry of a disordered medium involves several pore-scale
mechanisms that determine the macroscopic dynamics of the process, and specifically the
drying rates and the phase distribution patterns (van Brakel 1980; Shaw 1987; Prat 1993). Such
processes typically occur in the low-capillary-number regime, and thus the dominant mass
transport mechanisms are viscous flow through liquid films that form in the cavities of pore
walls, as the liquid–gas interface recedes deeper in the pore space, and diffusion both within
and near the external surface of the medium which is open to the environment (Yiotis et al.
2003; Lehmann et al. 2008; Shokri et al. 2008; Faure and Coussot 2010). In addition, buoyancy
plays a major role both in the movement of the liquid–gas interfaces, thus on the dynamics of
phase distributions (Wilkinson 1984), as well as in film flow, by either opposing or enhancing
flow and transport toward the evaporation interfaces (Chauvet et al. 2009; Yiotis et al. 2012a).

The interplay of these mechanisms can be described by three dimensionless numbers:
the capillary number, Caf , expressing the ratio of viscous over capillary forces at interfaces
and in the liquid films; the Bond number, Bo, expressing the ratio of gravity over capillary
forces; and the Sherwood number, Sh, describing mass transfer at the external surface of
the porous medium. In addition, pore-scale heterogeneity is expressed via the dimensionless
standard deviation of the pore-throat size distribution, but also through a spatially uniform
parameter, the degree of corner roundness, p, that significantly affects flow through liquid
films (Chauvet et al. 2010).

Consider, first, the case when gravity opposes drying, namely when the flow through
the films occurs in the direction opposite to the gravity acceleration vector. Under such
conditions, drying typically exhibits an early stage, where the evaporation rate is constant,
which defines what is known as the constant rate period (CRP) or Stage-1 evaporation.
This is followed by a regime characterized by a continuous decrease in the recovery rates,
termed falling rate period (FRP) or Stage-2 evaporation (van Brakel 1980). During CRP, the
external surface of the porous medium remains wet over extended periods of time, as liquid
continuity is maintained through films, despite the fact that connected liquid–gas interfaces
(the percolation front) have receded deeper in the medium and do not have macroscopic
continuity to the surface. Liquid films that are formed in the cavities of pore walls provide
the hydraulic connectivity needed (Shaw 1987; Eijkel et al. 2005). While surface wetness
decreases with time due to a combination of phenomena (Yiotis et al. 2003; Lehmann et al.
2008), and as long as liquid films still reach the external surface, the partial pressure of the
evaporating species there remains approximately constant, and equal to the vapor pressure
of the liquid (This also assumes that the thickness of the external mass transfer layer is
significantly larger than the characteristic pore size of the medium (Suzuki and Maeda 1968),
which is almost always the case). Thus during the CRP regime, the process is controlled by
external mass transfer.

When gravity opposes drying, at a critical film length (or an equivalent critical average
distance of the percolation front from the open surface of the medium, S), capillarity can no
longer sustain viscous flow, and the films detach from the external surface of the medium.
The film tips, which now act as a moving evaporation front, recede deeper in the pore space,
leaving behind an increasing completely dry region of pores just below the surface of the
medium (Yiotis et al. 2012b). Given that the effective diffusivity within the material is much
lower than over the external surface S, this period is controlled by diffusive mass transfer
through the increasingly larger dry region, resulting into a decreasing recovery rate.
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When gravity enhances drying, namely when film flow is in the same direction as the
gravity acceleration vector, the situation is likely to be different. Here, for sufficiently slow
external mass transfer, the gas–liquid front is expected to become unstable and, almost from
the onset, form a gravity finger of gas that reaches the bottom (closed to the ambient) side of the
medium immediately upon the start of the process. This leads to a prolonged presence of the
bulk liquid phase just below the product surface (as far-field pores are preferably invaded) and
results in a process characterized by a CRP only. One-dimensional considerations in previous
studies (Yiotis et al. 2012a, b) established the condition, Caf Sh < 3Bo, for the above case.
However, if the external mass transfer is sufficiently fast, a scenario similar to that for the
gravity-opposing case described above is also possible when Caf Sh > 3Bo. Namely, a stable
evaporation front may develop, which will recede in the medium following the underlying
percolation front (which could, however, remain unstable). We will test these 1-D predictions
in the present contribution using pore network modeling for the more general 3-D case, and
where the pore sizes are spatially disordered.

Pore network modeling of drying in porous media has proven to be a powerful methodology
to study the pore-scale heterogeneity and transport mechanisms and their impact on the
macroscopic behavior of the process. Originally developed by Fatt (1956), the method has
evolved from simple percolation theory (Prat 1993, 1995), to models that include corner
film flow (Yiotis et al. 2004; Prat 2007) and, more recently, the added effect of an external
mass transfer boundary layer (Yiotis et al. 2007), thus capturing increasingly more complex
phenomena. Still lacking, however, are certain effects identified in recent studies in model 1-D
geometries (e.g., single-capillary tubes (Chauvet et al. 2009, 2010) or packed bead packings
(Yiotis et al. 2012a, b)) to play an important role. These studies demonstrated important
effects of gravity, pore wall roundness and external mass transfer on the extent of the film
region and on the drying rates.

In our recent contributions (Yiotis et al. 2012a, b), we proposed an analytical solution for
the drying of a 1-D porous medium, where the complicated interplay of gravity, capillarity,
external mass transfer conditions and corner roundness were all accounted for in order to pre-
dict the transition from the CRP to FRP regimes and successfully recover the corresponding
drying curves. Despite the fact that our model compared very favorably with experimental
results of drying bead packings in the case of gravity-opposed drying and in the limit of
relative high Bo numbers (Yiotis et al. 2012b), such a 1-D approach essentially ignored the
effects of pore-scale disorder that may lead to a gradual desaturation of the product surface,
and thus a smoother transition between the above two periods of drying, as opposed to the
sharp transition predicted by the 1-D model.

The objective of this contribution is thus to extend previous pore network models to
also account for the above effects on drying, thus providing a model that includes all major
mechanisms experimentally identified to play an important role. The model will account for
viscous flow through liquid films, gravity, and mass transfer both within the dry medium and
also through the mass boundary layer over the external surface of the medium. We will also
discuss effects of pore wall microstructure through an assumed spatially uniform parameter
p, the degree of corner roundness, that appears to have a notable effect on the extent of the
film region (Chauvet et al. 2010).

2 Model Formulation

We proceed by postulating, as in previous studies (Yiotis et al. 2003, 2012b), that drying
entails the following four regions;
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Fig. 1 (Left) Schematic of the characteristic pore regions encountered during drying of macroporous media.
(Right) Cross-sectional area of a film-occupied square throat with rounded corners

1. A liquid region that covers initially the entire domain and contains only liquid-saturated
pores (shown in darker gray color in Fig. 1). The largest liquid-saturated region is denoted
as the main liquid cluster (MLC), while smaller liquid clusters, that detach from the initial
MLC, are denoted as disconnected clusters (DC’s).

2. A film region (shown in lighter gray color) that consists of pores invaded by the gas phase,
but of whose pore walls are still covered by a continuous liquid film that allows for flow
between liquid clusters (either DC’s or the MLC) and the product surface, S, which is
open to the environment. Here, the gas phase in the central part of the pores is saturated
by the vapors of the volatile species, and thus there is negligible evaporation within these
pores (e.g., see Eijkel et al. 2005), as well as negligible diffusive mass transfer within
this region.

3. A completely dry region (shown in white color below S), where the pore bodies are
completely dry and do not contain any continuous films. It is through this region, where
diffusive mass transfer takes place at rates proportional to the effective diffusivity of the
porous medium, Deff,S− (Yiotis et al. 2012b).

4. Finally, a mass boundary layer covers the external surface of the medium (shown in white
color above S), whose thickness depends on local flow conditions, and where we denote
the bulk phase effective diffusivity of the vapors of the volatile species by Deff,S+.

We denote the interface between the liquid region and the film region as the percolation front
(P), and the interface between the film region and the dry region as the evaporation front
(I), since it is there where vaporization of the liquid species predominantly takes place (see
Fig. 1).

Given that mass transport is primarily through viscous corner flow in the film pore region
and diffusion through both the dry pore region of the porous medium, but also within the
mass boundary layer, we propose in the following sections the mathematical formulation for
a single scalar variable, Φ, whose spatially continuous gradients describe mass fluxes in all
pore regions, in a similar fashion as in Yiotis et al. (2003). We then express mass transport
in pore throats as gradients of Φ, multiplied by the throat cross-sectional area, by imposing
appropriate boundary conditions for Φ at the percolation front (P), where the films emanate,
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and at the top of mass boundary layer, where we impose Φ = 0. A pore network model based
on this formulation is developed in Sect. 3.

2.1 Mass Transport in the Film Region

In the film region, we model film flow in the cavities of the porous medium in analogy to
corner flow through films that form at the corners of capillaries with noncircular cross-section
(e.g., a square capillary) (Dong and Chatzis 1995; Eijkel et al. 2005; Chauvet et al. 2009).
There, flow is driven by both gravity and the gradient in the capillary pressure, Pl = −γ /r ,
where γ is the interfacial tension and r is the radius of curvature of the film (and where
without loss we take the gas pressure to be zero).

Following Ransohoff and Radke (1988), Dong and Chatzis (1995), the volumetric flow
rate across the cross-section of the capillary of size 2rt is;

Qx = −C∗γ
μlβ

(
r2 ∂r

∂x
− r4ρlgx

γ

)
(1)

or equivalently;

Qx = −γ r2
t

μl

(
f (ρ)ρ2 ∂ρ

∂ξ
− Bo f (ρ)ρ4

)
(2)

where μl and ρl are the liquid-phase viscosity and density, respectively, gx is the gravity
acceleration component in the flow direction, ρ = r/rt is the dimensionless film thickness,

ξ = x/rt is the dimensionless distance from the product surface, and Bo = gxρlr2
t

γ
is the

Bond number. Here we introduced a function, f (ρ) = C∗/β that describes the hydraulic
conductivity of the corner films, where C∗ = (4−π)(1− (p/ρ)2) is the cross-sectional area
available for flow and β = β(ρ) is a dimensionless resistance to flow. The latter function
is obtained using a least-square fit on the data calculated by Dong and Chatzis (1995) for
a square capillary with rounded corners. The corner roundness is defined by the parameter
p = rw/rt , where rw is the corner radius of curvature (See Fig. 1 for a schematic of the
corner flow process).

Equation 2 can be conveniently expressed in the form of a gradient of a scalar variable as
follows;

Qx = −γ r2
t

μl

∂

∂ξ

(ˆ ρ

p
f (ρ∗)ρ∗2dρ∗ − Bo

ˆ ξ

ξi

f (ρ)ρ4dξ∗
)

= −γ r2
t

μl

∂

∂ξ
(J (ρ) − BoI x(ξ)) (3)

where ξi is the dimensionless location of the film tips [i.e., the average position of the
evaporation front (I)], and we denote the two integrals as;

J (ρ) =
ˆ ρ

p
f (ρ∗)ρ∗2dρ∗ (4)

and

I x(ξ) =
ˆ ξ

ξi

f (ρ)ρ4dξ∗. (5)

Equation 3 describes film flow at the corners of a single capillary and can be readily
extended to 3-D by considering mass conservation in a network of intersecting capillaries,
as follows;
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∇2(J (ρ) − BoI x(ξ)) = −Bo

⎛
⎜⎝ ∂2

∂u2

ξˆ

ξi

f (ρ)ρ4dξ∗ + ∂2

∂ω2

ξˆ

ξi

f (ρ)ρ4dξ∗

⎞
⎟⎠ (6)

where u = y/rt and ω = z/rt .
The right-hand side of Eq. (6) is negligible, as long as fronts are stabilized (e.g., by

gravity), or far from the percolation front (Tajer 2011), and we can thus write the above mass
conservation equation as;

∇2(J (ρ) − BoI x(ξ)) = 0 (7)

2.2 Mass Transport in the Dry Region

In the completely dry pore region of the medium and the mass bounday layer over the
product surface, mass transfer is assumed through steady-state diffusion. Therefore, mass
conservation reads;

∇ · j = DM∇2C = 0 (8)

where j is the diffusive mass flux, DM is the molecular diffusivity and C is the vapor
concentration of the volatile species. We should note here that the effective (volume-averaged)
diffusivity in the porous medium (previously defined as Deff,S−) is always lower than the
effective diffusivity over the product surface (defined as Deff,S+), due to the porosity and
tortuosity of the porous material. This is accounted for in the pore network model presented
in Sect. 3 by appropriately adjusting the pore-throat cross-section ratio above and below the
product surface (See also Eq. (15) below).

2.3 Coupled Solution in the Film and Dry Regions

The dry and film pore regions are coupled through mass conservation at the evaporation front
(I) (or equivalently at the film tips), where we assume that the corner film flow reaches due to
capillary pressure gradients, evaporates and then diffuses on the dry side of the front. Thus,
mass conservation at I reads;

ρlQn = −4r2
t DMCe

∂ζ

∂n
(9)

where Qn is the film flow rate in the normal direction to the front I, 4r2
t is the throat cross-

section (note that rt is the throat ’radius’, not to be confused with the film thickness r ),
ζ = C/Ce and Ce is the equilibrium (at vapor pressure) concentration of the volatile species.

Using Eqs. (3) and (9), and taking the direction x as the normal to the evaporation front,
we have

∂ (J (ρ))

∂ξ
= Ca′

f
∂ζ

∂ξ
(10)

Here we defined a film-based capillary number Ca′
f = 4μlDMCe

ρlγ rt
(which is within a geometric

constant of order 1 similar to our previous definition (Yiotis et al. 2012b), Ca′
f = 4

3π
Ca∗

f ).
The above rearrangements allow us to introduce the following transformation that captures

in a single scalar variable, Φ, mass transport through both the film and dry regions;

Φ = J (ρ) − BoI x(ξ) + Ca′
fζ

Jp + Ca′
f

(11)
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where

Jp ≡ J (ρ = 1) =
ˆ 1

p
f (ρ∗)ρ∗2dρ∗ (12)

Note that the denominator of Eq. (11) is selected in such a way so that Φ = 1 at the percolation
front, P, in the limit when Bo = 0.

Then, Φ satisfies the Laplace equation, ∇2Φ = 0 (in the case when Φ is continuous at the
product surface), in both the film and dry regions within the porous medium, but also above
the external surface S within the mass boundary layer. Its solution will allow us to account
comprehensively for all relevant effects, namely gravity, capillarity, viscosity and pore wall
microstructure.

The variable Φ is subject to the following boundary conditions;
At the percolation front P, where the films emanate, we have ζ = 1 and ρ = 1, hence;

ΦP = 1 − Bo

Jp + Ca′
f
I x(ξp) (13)

Note that the above boundary condition assumes a radius of curvature equal to rt at the
percolation front where the films emanate. A more elaborate study on the exact shape of the
bulk liquid menisci can be found in Wong et al. (1992).

At the evaporation front I, conditions ζ = 1 and ρ = p apply (assuming that it lies within
the porous medium), therefore;

ΦI = Ca′
f

Jp + Ca′
f

(14)

The latter equation determines the position of the film tips, which in addition to being a
function of the film-based capillary number Ca′

f , as also was the case in our previous works,
it also depends here on Jp , as well. The latter parameter accounts for the effects of corner
roundness in pore throats.

At the top of the mass boundary layer, the conditions ρ = 0 and ζ = 0 apply, thus Φ = 0.
Note that the thickness of the mass boundary layer depends on local flow conditions through
an appropriately defined Sherwood number, as we will discuss in more detail below.

At the beginning of the drying process, where the films reach all the way up to the product
surface, the solution for Φ is discontinuous at S, with a finite film thickness ρ∗ on the porous
medium side S- and a zero film thickness on the external side S+, corresponding to ΦI . The
mass flux, however, remains continuous at S;

∂Φ

∂ξ

∣∣∣∣
S−

= λ
∂Φ

∂ξ

∣∣∣∣
S+

(15)

Here, λ = Deff,S+
Deff,S− > 1 is the ratio of external to internal effective (volume-averaged) diffu-

sivities. An approximation for λ can be obtained through Deff,S+
Deff,S− = τ

φ
, where τ and φ are the

tortuosity and porosity of the medium, respectively. In the pore network model developed in
the following section, λ is implemented as the ratio of the average throat cross-section within
the porous medium to the cross-section of throats above the product surface. At later times,
when the film tips have detached from the product surface, Eq. (15) remains valid, but now
the Φ profile becomes continuous at S (Yiotis et al. 2012a).

Before we proceed further, it is worth noting the dependence of J (ρ) and Jp in the
transformation of Eq. (11) on the degree of roundness in order to obtain insight into the effects
of p on the extent of the film region and the corresponding position of the evaporation front
as defined by Eq. (14). In interpreting these results, it is worth recalling that Ca′

f is typically
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Fig. 2 Variation of the transport integrals in Eqs. (11) and (14) with the degree of corner roundness, p. (Left)
Jp versus p; (Right) Effects of corner roundness along a single capillary (for a film thickness ranging from
ρ = 1 at the percolation front to ρ = 0 at the evaporation front) for fixed values of the corner roundness, p.
The results are normalized with the sharp corner value as J∗ = J (ρ; p)/J (ρ; 0)

of the order of 10−6. Figure 2-(Left) shows that in the limit where p → 0, namely for sharp
corners, Jp becomes practically independent of p, and thus the extent of the film region is
solely determined by Ca′

f , as in Yiotis et al. (2003). In the opposite limit of rounded corners,
when p → 1, then Jp → 0, leading thus to extremely short films and an evaporation front
that practically collapses to the percolation front (ΦI = ΦP = 1) in the case of negligible
gravity, Bo = 0.

Figure 2-(Right) shows the effects of corner roundness along a single capillary (for a film
thickness ranging from ρ = 1 at the percolation front to ρ = 0 at the evaporation front) for
fixed values of the corner roundness, p. The results are normalized with the sharp corner
value as J ∗ = J (ρ; p)/J (ρ; 0). For p � 1 there is a significant effect only close to the film
tips. However, film-long effects become significant if p is not very small (for values as low
as 0.1).

3 Pore Network Modeling

Pore network models of transport processes in porous media have been employed successfully
in the last couple of decades. Although with significant computational demands, these treat
transport processes at the pore network scale, thus offering the additional detail required to
solve problems over a wider range of flow conditions, while also providing tools for relating
pore-scale phenomena to the ’effective’, continuum-scale behavior (Blunt et al. 2002).

Typically, the porous medium is treated as a lattice of larger pore bodies (voids) inter-
connected through narrower throats of various sizes and shapes. Pore bodies serve as phase
containers, with typically negligible contribution to flow resistance and mass transfer, while
the throats serve primarily as flow and transport resistors, with negligible phase capacity.
The predictive capabilities of the approach depend strongly on the construction of accurate,
representative networks of pores, a field of active research (Wildenschild and Sheppard 2013;
Gostick 2013). A set of transport equations, e.g., viscous flow equations of motion or Ficks
equation for diffusive mass transfer, are then solved within discrete networks of pores and
throats.

In this paper, we will assume a fixed topology, taken as a 3-D cubic network of spherical
pores interconnected through throats with a square cross-section, but with rounded corners
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[See Fig. 1-(Right)]. The mass boundary layer over the medium is also approximated using
a cubic network of larger ’pseudo-pores’ and throats to match the volume and cross-section
of the actual boundary layer. The ratio of effective (volume-averaged) diffusivities above
and below the product surface, λ, is implemented by appropriately adjusting the ratio of the

throat cross-section, as λ = Deff,S+
Deff,S− = r2

t,S+
r̄2

t
> 1, where rt,S+ is the fixed throat radius in the

mass boundary layer and r̄t is the average throat radius within the porous medium.
In integrating the conservation equations for flow and mass transfer over a pore body of

volume Vp = 4
3πr3

p , where rp is the pore body radius, we use the identity
ˆ
Vp

(∇ · j) dV =
"

At

(n · j) d A (16)

where j ∝ ∇Φ is the flux in the corresponding film or dry region, and n is the unit vector
normal to the surface of the throats cross-section, At . For the film and dry regions and for
the mass diffusion layer over the medium, Eqs. (7), (8), (11) and (16) give∑

j

ρ2
t,i j

(
Φi − Φ j

) = 0 (17)

where ρt,i j = rt,i j/r̄t is the normalized throat ’radius’ between adjacent pore bodies i and j .
Application of the above equation in all pore bodies within the film, dry and mass boundary

regions leads to a system of linear equations for Φ to be solved subject to the appropriate
boundary conditions at the percolation front and the top of the mass boundary layer, as shown
in Fig. 1. The overall drying rate je is then calculated by integrating the gradient of Φ at the
top of the external mass boundary layer, located at distance δ from the product surface, using
the outer boundary condition Φ = 0;

je = −Deff,S+Ce

r̄t

ˆ
A

∂ζ

∂ξ
dA = 4Deff,S+Cer̄2

t

lΦI

∑
j

ρ2
t,i jΦ j (18)

where l is the distance between pore centers.
The above drying rate is partitioned between individual liquid clusters (both the MLC and

DC’s) depending on the gradient of Φ at the perimeter of each cluster (percolation front), as
follows;

je,cl = je

´
A,cl

∂Φ
∂n dA∑N

i=1

(´
A,i

∂Φ
∂n dA

) (19)

where n is the unit vector at the perimeter, the index cl denotes individual clusters and N is
the total number of liquid clusters.

At the beginning of the process, all pore bodies below the product surface are saturated by
the volatile liquid, which in our simulations is hexane (See Table 1 for physical properties).

Table 1 Physical properties of
n-hexane Liquid density, ρl 660 kg/m3

Liquid viscosity, μl 0.31 mPa /s

Surface tension, γ 18.43 mN/m

Equilibrium Gas phase concentration, Ce 0.67 kg/m3

Diffusion coefficient, DM 8.9 × 10−6 m2/s
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The liquid evaporates at all evaporation interfaces, with the vapor diffusing through the gas
phase (if any) toward the top of the external surface. We assume that external and internal
mass transfer are decoupled in the sense that the thickness of the boundary layer remains
constant in time, and the concentration of the vapor is zero at the outer edge of that layer
(ζ = 0 or, equivalently, Φ = 0).

As the liquid evaporates, the gas phase enters the pore space through the interface throats
with the minimum capillary pressure, Pc, at the perimeter of each liquid cluster (percolation
front) where the films emanate. The local capillary pressure is calculated as;

Pc,i j = Pg − Pl = 2
γ

rt,i j
+ ρlgx x (20)

where the indices i j denote neighboring pores across the percolation front. Here x < 0, and
gx > 0 for the case of a gravity-stabilized front, gx < 0 for the case of gravity-enhancing
drying.

All partially empty pores are then emptied simultaneously, within a time interval δt ,
assuming a constant local rate je,cl . The time interval is selected such that it is just sufficient
for one liquid pore (located at the percolation front over the MLC and all DC’s) to become
fully empty. This actually corresponds to a transition from a liquid saturated to a film pore.
However, the liquid contained in the form of corner films is considered to be negligible
compared with the bulk liquid saturation, and it is thus not accounted for in our calculations.
The liquid saturation, Si , of each partially empty pore is then calculated as;

St+δt
i = Sti − je,cl

ρlVp,i
δt (21)

The receding of the percolation fronts is realized using a Hoshen–Kopelman algorithm
(Hoshen and Kopelman 1976) at each time step in order to identify all macroscopically
isolated liquid clusters (the MLC and DC’s), and to also identify the perimeter of each one.
A pore located at the perimeter of each identified cluster (adjacent to the throat with the
minimum capillary pressure) is selected and emptied at a drying rate proportional to the
surface integral of the gradient of Φ at the perimeter of the corresponding cluster (calculated
by Eq. (19). The spatial profile of Φ is determined by the solution of Eq. (17), using the
boundary conditions ΦP at the percolation front [as calculated from Eq. (13)] and Φ = 0 at
top of the mass boundary layer δ. While the number of pores that empty simultaneously is
equal to the number of isolated liquid clusters, each pore empties at its own rate. When the
first liquid pore becomes completely dry (namely a film pore), the whole process is repeated
to identify the newly formed isolated liquid clusters, the percolation front, the next pore throat
to be invaded, and so on.

For the solution of the Laplace equation for Φ in the dry and film pores [Eq. (17)], we
employ an iterative solver based on a complex successive over-relaxation (SOR) scheme
(see e.g., Young 1971). Note, however, that in the presence of gravity, Bo 	= 0, the boundary
condition for Φ at the percolation front is not fixed a-priori [see Eq. (13)]. Rather, it is a
function of the integral I x(ξ), which in turn requires the exact solution for the film thickness
ρ (and thus Φ) (in contrast to the case in the absence of gravity where Bo = 0 and thus
ΦP = 1). An implicit scheme based on two nested iterative SOR solvers is used: The inner
solver handles the Laplace equation and converges toward an approximate solution for Φ

based on the estimated value of I x(ξ) (and thus the boundary condition ΦP ) provided by the
outer solver. The outer solver then relaxes toward a new estimate for I x(ξ) (and thus ΦP )
based on the previous estimate for I x(ξ) and the current estimate for Φ from the inner loop.
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The iterative process is terminated when a convergence criterion is satisfied for both I x(ξ)

and Φ.
A short outline of the pore network model algorithm proposed in this study is the following:

1. Starting from an initial spatial distribution of fully liquid pores, a Hoshen–Kopelman
clustering algorithm is employed to identify all isolated liquid clusters (the MLC and
DC’s) and the liquid pores at the perimeter of each cluster.

2. If all liquid pores of a cluster are fully saturated by liquid (namely, there does not exist
a liquid pore at the perimeter of the cluster that has been partially emptied at a previous
time), the throat with the minimum capillary pressure threshold is identified, according
to Eq. (20), and the corresponding liquid pore is then invaded by the gas phase.

3. The Laplace equation for Φ is solved [Eq. (17)] in order to locate the position of the
evaporation front (film tips) and identify film and dry pore regions.

4. The overall evaporation rate is calculated using Eq. (18).
5. The evaporation rate from each cluster is calculated using Eq. (19).
6. The time δt required to empty a partial empty liquid pore at the percolation front along

the perimeter of all clusters is calculated.
7. The saturation of all partially empty liquid pores at the percolation front is updated

assuming a constant evaporation rate during a time interval δt [Eq. (21)], and the algorithm
returns to the first step until a criterion for the residual liquid saturation is satisfied.

4 Results and Discussion

We performed a series of numerical simulations with 2-D square and 3-D cubic regular pore
networks in order to study a number of effects, including gravity, corner roundness and mass
boundary layer thickness on the drying curves and the underlying phase distribution patterns.
All lateral and bottom sides of the pore network were closed to flow and mass transfer, while
the top side was open to the mass transfer boundary layer, as shown in Fig. 1. The pore and
throat sizes in the network followed a Gaussian distribution with an average value r̄p and
r̄t, and standard deviations σp and σt for the pores and throats, respectively. The throat size
within the mass boundary layer was fixed according to rt,S+ = √

λt̄t in order to match the
required ratio of effective diffusivities above and below S. Pore network characteristics are
shown in Table 2. We note here that other common size distributions, such as a Gamma, are
equally feasible in our model.

Table 2 Pore network characteristics for the numerical simulations of this study

Connectivity 2-D 2-D square regular lattice, connectivity 4

Connectivity 3-D 3-D cubic regular lattice, connectivity 6

Distribution Gaussian for pores and throats

Distance between pore centers, l 500µm

Mean pore radius, r̄p 250µm

Standard deviation of pore radii, σp 5µm

Mean throat radius, r̄t 60µm

Standard deviation of throat radii, σt 0.1–10µm

Throat radius in the mass boundary layer, rt,S+ rt,S+ = √
λt̄t
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Effects of gravity, capillarity and mass boundary layer are expressed in terms of the three
dimensionless numbers: A film-based capillary number Ca′

f (again not to be confused with
Caf defined in Yiotis et al. (2012a) for a square capillary with sharp corners), that expresses
the ratio of viscous forces to capillary forces in the films;

Ca′
f = 4μlDMCe

ρlγ r̄t
(22)

The Bond number, Bo, that expresses the ratio of gravity to capillary forces;

Bo = gxρlr̄2
t

γ
, (23)

and a Sherwood number, Sh, that describes mass transfer conditions within the mass boundary
layer over the product surface, defined as;

Sh = λ

δ
= λr̄t

Δ
, (24)

where Δ is the thickness of the mass boundary layer and δ = Δ/r̄t is its corresponding
dimensionless value.

An additional important parameter is the disorder of the throat size distribution, expressed
in dimensionless notation by Σt = σt/ l, where l is the distance between the pore centers.
The mean position and the width of the percolation front of the main liquid cluster (the largest
liquid cluster of the domain) were defined as follows;

ξ̄p f =
´
ξ
ξp f (ξ)dξ´

ξ
p f (ξ)dξ

and σ 2
p f =

´
ξ
(ξ − ξ̄p f )

2 p f (ξ)dξ´
ξ
p f (ξ)dξ

(25)

where p f is the probability to find an interface pore [namely, one belonging to the percolation
front (P)] at distance ξ from the product surface, S. These can be also expressed in a more
meaningful dimensionless notation with respect to the distance between pore centers, l (rather

than the average throat size r̄t), as Ξ = x/ l, ξ = lΞ
r̄t

(e.g., Ξ̄p f = r̄t ξ̄p f
l and Σp f = r̄tσp f

l ).
The above definition accounts only for the interface between the main liquid cluster and the
film or dry pores, and does not include the interface of all disconnected clusters. Alternatively,
an average position, ξ̄2p , with a standard deviation, σ2p , of the front that includes all liquid
clusters (MLC and DC’s) can also be defined.

4.1 Validation

To validate the pore network model proposed in this contribution we compare our numerical
results with the 1-D solution presented in one of our previous studies (Yiotis et al. 2012a, b),
using a 2-D simulation in the case when gravity is strong and opposing drying, and when the
pore-throat disorder is relatively small, so that the percolation front is practically flat (and thus
the problem reduces to a 1-D equivalent). We should note here that our earlier 1-D solution
compared very favorably with experimental results of drying glass bead packings using a
single adjustable parameter to account for the corner roundness of the medium (Yiotis et al.
2012b). The 1-D solution however does not capture the gradual desaturation of the product
surface due to the disorder of the underlying percolation front, which for lower values of the Bo
number and high values of the pore-throat disorder, Σt , would lead to smoother transitions
between the CRP and the FRP. This effect is captured using the proposed pore network
model.
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Fig. 3 2-D simulations in a 150 × 30 pore network at different times and values of the liquid saturations
S, shown above each figure. (Top) Phase distribution patterns: Mass Boundary Layer (White), Dry Region
(Blue), Film region (Green), Liquid region (Red); (Bottom) Φ profiles. Red color corresponds to larger values
of Φ. Note the discontinuity of Φ at the product surface for S > 0.70. δ = 15l/r̄t, rt = 60 ± 0.5µm,
rp = 250 ± 5µm, Ca′

f = 1.01 × 10−5, Bo = −8.93 × 10−4, Sh = 2.22 × 10−2, λ = 2.77, p = 0.5

Figure 3 shows the phase distribution patterns and the Φ profiles in such a ’stable’ perco-
lation front case with Bo = −8.93 × 10−4 and Σt = 10−3 for different times in the process
(expressed through the liquid saturation, S). At early stages, the film region (in green color
in the figure) extends all the way from the percolation front to the surface of the medium, in
contact with the mass boundary layer (in white color). The Φ profile is discontinuous at S,
showing that the film region has a nonzero film thickness just below the product surface, S-,
while the film thickness becomes equal to the corner roundness, p, on the S+ side. During
this period, the product surface remains wet, and the process is controlled by mass transfer
within the mass boundary layer, leading to a constant rate drying period (as also shown in
Fig. 4).

For a liquid saturation slightly higher than 0.60, the film tips (evaporation front) detach
from S−, under the effects of gravity and viscosity. The evaporation front (much flatter than
the percolation front), recedes in the pore space, and a completely dry region of pores (in
dark blue color) develops below S−. The process is now controlled by diffusive mass transfer
through the developing dry region, leading to a falling rate period regime, as also shown in
Fig. 4. The latter figure plots the resulting drying rate (normalized with the CRP value) and
compares it with the 1-D solution of Yiotis et al. (2012b). The two results perfectly match
each other, showing that the pore network closely captures the expected behavior in this
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Fig. 4 Drying curve in a 2-D simulation with a 150×30 pore network model in the limit of a practically stable
(flat) percolation front. The drying rate is made dimensionless with the corresponding CRP value. The results
compare very well with the numerical solution of Yiotis et al. (2012b) (continuous line) for the same values of
the dimensionless parameters: δ = 15l/r̄t , rt = 60 ± 0.5µm, rp = 250 ± 5µm, Ca′

f = 1.01 × 10−5, Bo =
−8.93 × 10−4, Sh = 2.22 × 10−2, λ = 2.77, p = 0.5
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Fig. 5 Average extent of the film region ΔΞ f = Ξ̄i − Ξ̄p vs the average position of the percolation front
Ξ̄p for simulations with a 150 × 30 pore network at different values of the corner roundness, p. All other
parameter values are the same as those of the simulation of Fig. 3. The continuous curves correspond to the
numerical solution of Yiotis et al. (2012b) during the FRP only in order demonstrate the later detachment
(at lower Ξ̄p values) of the films from the product surface with decreasing p values, leading to increasingly
longer film regions

limit. Similarly, an excellent agreement is obtained in the average extent of the film region,
ΔΞ f = Ξ̄i − Ξ̄p as shown in Fig. 5, with the region extent increasing as the percolation
front recedes deeper in the pore space. The agreement is excellent for several values of the
corner roundness, p.
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Fig. 6 Phase distribution patterns at different times in the process for a 150 × 30 × 30 pore network. Liquid-
saturated pores are shown in gray color, the position of the evaporation front is shown in red color, and the
mass boundary layer is shown in blue. The corresponding liquid saturations are shown above each snapshot.
δ = 15l/r̄t, rt = 60 ± 10µm, rp = 250 ± 5µm, Ca′

f = 1.01 × 10−5, Bo = −8.93 × 10−4, Sh =
2.22 × 10−2, λ = 2.77, p = 0.5

4.2 Effects of Gravity and Medium Disorder when Bo < 0

Consider now the more general case of a 3-D porous medium represented by a regular cubic
pore network of size 150 × 30 × 30. The phase distribution patterns for a typical simulation
with a more disordered medium when gravity opposes drying (Bo = −8.93 × 10−4 and
Σt = 2 × 10−2) are shown in Fig. 6 for different values of the residual liquid saturation. The
parameters used in this simulation will serve as the base state for the subsequent simulations.
As previously, the evaporation front (red-colored surface here) remains in contact with the
product surface and the mass boundary layer (transparent blue region) for S > 0.60. Below
this saturation, the evaporation front detaches from the product surface, under the effects of
gravity, and recedes in the pore space following the underlying percolation front, while a
completely dry region of pores develops above the evaporation front.

In this case, an estimate of the effects of gravity and pore-throat disorder can be obtained
by considering the extent (roughness) of the resulting percolation front. We anticipate that
after some initial period, the percolation front thickness will scale with the Bond number and
the standard deviation of the throat size distribution as;

Σp f ∝
( |Bo|

2Σt

)− ν
ν+1

(26)

where the critical exponent ν comes from the Percolation theory (Chaouche et al. 1994;
Tsimpanogiannis et al. 1999; Prat and Bouleux 1999).

Figure 7-(left) shows the temporal evolution of the percolation front in the pore space for
various values of the parameter Bo∗ = |Bo|

2Σt
, corresponding to fronts of different roughness

and disorder. The extent of the percolation front of the main liquid cluster is found to be
practically constant with time, but remains a strong function of Bo∗. Figure 7-(right) shows
that the power law dependence of Eq. (26) is nicely satisfied, although with a scaling exponent
equal to 0.55, somewhat higher than the theoretical value of 0.47 for a 3-D problem. We
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Fig. 7 (Left) Snapshots of the percolation front (in gray color) within the medium for various values of Bo∗
and fixed Bo = −8.93 × 10−4. The corresponding liquid saturations are shown on the left of the figure.
δ = 15l/r̄t, r̄t = 60µm, rp = 250 ± 5µm, Ca′

f = 1.01 × 10−5, Sh = 2.22 × 10−2, λ = 2.77, p = 0.5;
(Right) Scaling of the percolation front with Bo∗. The slope is obtained from a single series of realizations
with the same pore network at different Bo∗ values

believe that finite-size effects are the reason for this slight mismatch. Furthermore, a scaling
of the overall two-phase region (both MLC and DC’s) with the average position of the
percolation front should be anticipated due to the magnitude of concentration gradients above
the percolation front, as described in Tsimpanogiannis et al. (1999). This effect, however, is
not clearly measurable in the finite domains of our study.

Despite the increasing disorder of the percolation fronts in Fig. 7, the overlying evaporation
front remains essentially flat in our numerical simulations, even in the case of a significantly
disordered percolation front. The effect of gravity, in this case of gravity-opposing drying, is
thus primarily through limiting the extent of the film region, rather than through the stability
(disorder) of the percolation front. These effects are demonstrated in Fig. 8 that shows the
effects of gravity on the drying curves and the phase distribution patterns for a fixed disorder
of the percolation front (fixed Bo∗ value). As the magnitude of the Bond number increases
in Fig. 8-(left), the CRP is considerably diminished, which also corresponds to an earlier
detachment of the evaporation front from the product surface, as shown in Fig. 8-(right).
In the limiting case of very strong gravity, |Bo| → ∞, the percolation front is flat and the
evaporation front practically collapses to the percolation front (resulting into a negligible
film region).

As we have discussed earlier, the 1-D solution of Yiotis et al. (2012b) adequately describes
the drying process at sufficiently large Bond numbers that lead to relatively flat percolation
fronts, but also finite extents of the film region, as shown in Figs. 4–5. Conversely, when
gravity is weak, or when the porous medium disorder dominates, the process should be ade-
quately described with the case in the absence of gravity described by Prat (1993), Furuberg
et al. (1988) (although with film effects added).

The effect of gravity in the film region can be also demonstrated by plotting the average
film thickness ρx as a function of the depth from the product surface Ξ = x/ l < 0, defined
as follows;

ρx (Ξ) =
´
Syz

ρdS´
Syz

dS
(27)

where Syz is a surface in the y-z plane.
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Fig. 8 Effects of gravity for fixed disorder of the percolation front, Bo∗ = 2.2 × 10−2, in 3-D simulations
with a 150 × 30 × 30 pore network. (Left) Drying curves. Also shown is the drying curve in the limit when
|Bo| → ∞, where the percolation front is flat and the film region is absent (red-colored curve); (Right) Phase
distribution patterns at various residual liquid saturations shown above each snapshot. Liquid-saturated pores
are shown in gray color, the position of the evaporation front is shown in red color, and the mass boundary
layer is shown in blue; (Right Top) Weaker gravity case, Bo = −3.0 × 10−4 and Σt = 6.6 × 10−3, and
(Right Bottom) a stronger gravity case, Bo = −8.9 × 10−4 and Σt = 2 × 10−2. (δ = 15l/r̄t, rt = 60µm,
rp = 250 ± 5µm, Ca′

f = 1.01 × 10−5, Sh = 2.22 × 10−2, λ = 2.77, p = 0.5.)

The effect is demonstrated in Fig. 9 which shows the film thickness profiles for var-
ious residual liquid saturations for two different values of Bo, but for the same disorder
of the percolation front (Bo∗ = 2.2 × 10−2). Taking into account that flow through the
films is driven by the combined action of capillary pressure gradients (due to gradients in
film size) and gravity (see Eq. 1), this figure shows that the film thickness profiles adjust
to the opposing effect of gravity in order to produce higher capillary pressure gradients and
thus drive flow toward the evaporating interface. For lower Bo values [Fig. 9-(left)], the
film thickness gradients, and thus the capillary pressure gradients, become smaller with a
sharper decrease close to the evaporation front (film tips). The dimensionless film thick-
ness in the film region scales as ρ ∝ Ξ1/3, as shown in our earlier studies in the absence
of gravity (Yiotis et al. 2003). As Bo increases [Fig. 9-(right)], the capillary pressure
gradients become larger in order to overcome the opposing effect of gravity and the film
profiles are more complex. As described in the 1-D analysis (Yiotis et al. 2012a), this effect
eventually leads to shorter film regions and shorter CRP’s, especially in the case of fast
drying conditions (i.e., high Sh numbers). The latter case will be discussed in more detail
below.
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Fig. 9 Effect of gravity on the average film thickness ρx for the gravity-opposed case and for a fixed roughness
of the percolation front (constant Bo∗ = 2.2 × 10−2). 3-D simulations with a 150 × 30 × 30 pore network.
(Left) Weaker gravity case, Bo = −3.0 × 10−4 and Σt = 6.6 × 10−3; (Right) Stronger gravity case,
Bo = −9.0 × 10−4 and Σt = 2 × 10−2. (δ = 15l/r̄t, rt = 60µm, rp = 250 ± 5µm, Ca′

f = 1.01 ×
10−5, Sh = 2.22 × 10−2, λ = 2.77, p = 0.5)

Fig. 10 Effects of Sherwood number (Left) and corner roundness (Right) on the drying curves for a 150 ×
30 × 30 pore network simulation. Here, p = 0.5 for the left panel, and Sh = 2.22 × 10−2 for the right
panel, corresponding to δ = 15l/r̄t . (rt = 60 ± 10µm, rp = 250 ± 5µm, Ca′

f = 1.01 × 10−5, Bo =
−8.93 × 10−4, λ = 2.77.)

4.3 Effects of Mass Boundary Layer and Corner Roundness

Of significant importance, primarily to the extent of the film region, are the effects of the
external mass transfer and of the corner roundness of the pores throats. The latter affects both
the area available for flow and the dimensionless resistance to flow as described by Eq. (1)
(see also Chauvet et al. 2009).

Figure 10-(left) shows the effect of external mass transfer, expressed through the dimen-
sionless mass boundary layer thickness δ = Δ/r̄t , which enters the calculations through the
Sherwood number, Sh = λ/δ. For higher values of Sh, namely a thinner boundary layer, as
would be the case in fast convective drying, the increased evaporative flux at the evapora-
tion front produces higher capillary pressure gradients in the film region, and thus results in
shorter films and a shorter constant rate period. The limit of infinitely fast drying has been
investigated in our previous studies (Yiotis et al. 2003, 2004). Lower values of the Sh number,
corresponding to a mass transfer layer of increasing thickness and slower drying, results in a
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decrease in the magnitude of the capillary pressure gradients, thus allowing longer CRP’s, as
also shown in Yiotis et al. (2007) (although in the absence of gravity and for sharp corners).

Figure 10-(right) shows the effect of the corner roundness on the drying curves. In this
case, shorter CRPs develop due both to the increased resistance to flow and to the limited
cross-sectional area available for film flow, as the corner of the walls cavities become more
rounded (higher p values).

4.4 Effects of Gravity when it Enhances Drying, Bo > 0

The case where gravity enhances drying can be further subdivided into two categories (Yiotis
et al. 2012a), depending on the relative strengths of gravity, viscous forces and mass transfer;

1. When 3Bo > Caf Sh, then gravity is dominant and the percolation front becomes unstable
right from the onset of drying. Figure 11 shows a series of snapshots from a 2-D simulation
for this case at different values of the residual liquid saturation. A single gravity finger
forms that drains the fluid from the top of the medium, leaving behind in the far-field area
only film-containing pores, away from the product surface, S (which is now at the bottom
of the medium). Evaporation occurs at the bottom of the domain, which remains saturated
by liquid practically over the entire process, thus resulting in a single continuous CRP.
Note that the above condition was derived based on the assumption of sharp corners of
the pore walls (namely, p = 0). It is straightforward to take roundness into account.

2. When Caf Sh > 3Bo, then gravity is weaker and a stable evaporation front, receding
deeper in the pore space, can form. This occurrence is favored by stronger viscous forces
(compared to gravity) and faster mass transfer in the dry region and over the product
surface. Figures 12, 13 show phase distribution snapshots and the drying curve for a
simulation under this condition. The drying curve in Fig. 13 exhibits first a CRP corre-
sponding to evaporation at the product surface (now the bottom boundary) of the porous
medium. This CRP is next followed by a FRP, where evaporation occurs at the film
tips receding inside the porous medium. However, as the evaporation rate decreases,
capillary pressure gradients in the films become progressively negligible, and the film
thickness remains practically constant, and equal to ρ = 1 along the entire film region
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Fig. 11 Phase distribution patterns for a 150 × 50 pore network at different times and values of the liquid
saturation, S (values shown above each snapshot), for the case when gravity enhances drying and dominates
over mass transfer, namely when 3Bo > Caf Sh. Mass Boundary Layer (White color), Dry Region (Blue),
Film region (Green), Liquid region (Red). (δ = 15l/r̄t, rt = 60 ± 1µm, rp = 250 ± 5µm, Caf = 2.78 ×
10−3, Ca′

f = 1.01 × 10−5, Bo = 8.93 × 10−4, Sh = 2.22 × 10−2, λ = 2.77, p = 0.4)
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Fig. 12 2-D simulations in a 150 × 50 pore network at different times and values of the liquid saturations, S
(values shown above each snapshot), for the case when gravity enhances drying, but when evaporation is fast
enough to satisfy the condition Caf Sh > 3Bo. (Top) Phase distribution patterns: Mass Boundary Layer (White),
Dry Region (Blue), Film region (Green), Liquid region (Red); (Bottom) Φ profile. Red colors show higher Φ

values. (δ = 15l/r̄t, rt = 60 ± 1µm, rp = 250 ± 5µm, Caf = 1.56 × 10−1, Ca′
f = 5.69 × 10−4, Bo =

1.1 × 10−5, Sh = 2.22 × 10−2, λ = 2.77, p = 0.4, τ = 300.)

Fig. 13 Drying curve for the
gravity-enhancing case in a
250 × 25 pore network with the
“stable” condition Caf Sh > 3Bo
leading to two CRPs. (δ = 15l/r̄t ,
rt = 60 ± 0.5µm, rp = 250 ±
5µm, Caf = 2.7 × 10−1, Ca′

f =
1.01 × 10−3, Bo =
1.1 × 10−5, Sh = 2.22 × 10−2,

λ = 2.77, p = 0.1, τ = 560)
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(except very close to the evaporation front). In this case, liquid flow in the film region is
driven primarily by gravity, namely by the second term on the right-hand side of Eq. (1).
This leads to a situation where the evaporation front remains stationary thus leading to
a constant evaporation rate, while the percolation front continuously recedes to provide
for the evaporating liquid. The development of such a second CRP is clearly seen in
Fig. 13, consistent with the 1-D analysis in this case (Yiotis et al. 2012a). In the present
simulation, it occurs for saturations below S < 0.4, and corresponds to the case when
gravity-driven film flow exactly balances the evaporation rate from the film tips, and
capillary-driven flow is negligible.

5 Conclusion

In this contribution, we presented a pore network model for the evaporative drying of macro-
porous media that accounts for the major pore-scale mechanisms experimentally identified
to play an important role on the drying rates and phase distribution patterns. The model
accounts for viscous flow through liquid films, gravity, and for mass transfer, both within
the dry medium and also through a mass boundary layer over the external surface of the
medium. Also accounted are the heterogeneity of the pore size distribution and the pore
wall microstructure, expressed through the degree of pore wall roundness. The model is then
used to study capillary, gravity and external mass transfer effects through the variation of
the appropriate dimensionless numbers. The effect of gravity is particularly analyzed, for the
two cases, when gravity is opposing and when it is enhancing drying, respectively. In the
latter case, when viscous forces are strong and mass transfer in the dry region fast enough
compared to gravity forces, a two-CRP evaporation curve is found, as predicted by an ear-
lier 1-D analysis. In this regime, fluid flow is driven primarily by gravity to compensate for
evaporation at the film tips.
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