
1 INTRODUCTION

 

In the latest United Nations’ framework for disaster risk reduction 2015-2030 (UNISDR, 2015), 

international financial institutions, such as the World Bank and regional development banks, are 

proposed to consider the priorities for providing financial support and loans for integrated 

disaster risk reduction. The pursued goal is: prevent new and reduce existing disaster risk 

through the implementation of integrated and inclusive economic, structural, legal, social, 

health, cultural, educational, environmental, technological, political and institutional measures 

that prevent and reduce hazard exposure and vulnerability to disaster, increase preparedness for 

response and recovery, and thus strengthen resilience. The framework continues the idea 

appeared over the past twenty years to integrate multi-disciplines (Munns et al. 2003; Sekizawa 

and Tanabe 2005) and the integrated databases (Fedra 1998) to provide a systematic overview 

of the sources of risks or hazards. In the framework, “integrated risk assessment” has been 

developed to be integrated disaster risk reduction. In a sense, the bureaucrats are more 

interested in how to get more resources to reduce disaster risk, rather than to know what is 

integrated risk caused by multi-hazards, such as both of earthquake and flood. 

Until today no body really knows if the integrated risk assessment is always better than the 

classical risk assessment before we use. And, there are quite a few researchers interested in 

distinguishing between integrated ‘‘risk assessment’’ and ‘‘integrated risk’’ assessment. 

Therefore, there is not any commonly accepted approach to assess integrated risk of multi-

hazards.  

In this paper, in a point of view of probability risk, we define the integrated risk of multi-

hazards. Reviewing some efforts in theoretically combining random variables, we develop the 

information diffusion technique to construct a discrete probability distribution and a discrete 

disaster function to assess an integrated risk caused by two hazards. 
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2 INTEGRATED RISK CAUSED BY MULTI-HAZARDS 

Risk, similar as a ghost, is a scene in the future associated with some adverse incident (Huang 

and Ruan, 2008). If we can accurately predict the scene, it is called a pseudo risk. In the case, it 

is not a wandering ghost, but a familiar thing. For example, if a person falls to the ground from 

a plane in 500 meters high without parachute, he will die. There is not any suspense, it is a 

pseudo risk. 77% of the risk definitions are suggested with the probability, which is employed 

to measure random uncertainty. It implies that, the most of risk analysts are interested in 

probability risks, which can statistically predict by using probability models with a lot of data. 

For example, there are powerful probability models and a lot of data to study traffic incidents. 

To accident insurance, the traffic incident is a probability risk. 

There are three methods to profile a probability risk. The first is risk = (Event, Loss, 

Probability) generally in a tabular format; the second is risk matrix, it can be constructed in two 

ways; and the third is risk curve (real probabilistic loss distribution). Particularly, when the 

connotation of a probability risk is defined as the expected value of disaster, the risk is 

represented as: 
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where p(x) is the probability distribution about an index x measuring adverse event, such as 

earthquake or flood, and f(x) is the disaster function caused by x. u0 is the minimum of x that 

could cause a disaster, and u1 is the maximum of x that would occur. For example, if x is 

employed to measure earthquake magnitude occurred in China, u0 is 4.5 and u1 is 8.5. 

Extending equation (1), we formally give the definition of an integrated probability risk 

of multi-hazards as the following. 

Definition 1 Let x1, x2, …, xn be n random variables for measuring n hazards, respectively. Let 

p(x1,x2,…,xn) be the joint probability distribution of the n random variables, f (x1,x2,…,xn) be the 

disaster function caused by the n hazards, and 
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the i-th hazard, respectively, i=1,2,…,n. The expected value of disaster is called the integrated 

risk caused by n hazards, represented as: 
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It is necessary to verify whether a probability distribution and a disaster function are 

reliable before they can be employed to assess a probability risk. For example, we suppose that 

a set of observations of earthquake magnitude x and loss y is recorded in the past T years. The 

set as a sample provides statistical data to estimate a probability distribution of earthquake 

magnitude x occurring, denoted as p(x), and to estimate a loss function as a relationship 

between x and loss y, denoted as y=f(x). There are a lot of models are recommended for 

estimating probability distributions, and there is a sea of models are suggested for estimating 

input-output relation functions. Some have been demonstrated with practical effects, and others 

would be proven by using mathematical theory.  

However, when the type of the population from which the sample is drawn is unknown, it is 

impossible to precisely estimate the underlying probability distribution. When the size of the 

sample of input-output observations is small, it is difficult to reasonably estimate the underlying 

input-output relation function. 

Particularly, to multivariate random variables x1, x2,…, xn, it is more difficult to estimate 

p(x1,x2,…,xn) and f (x1,x2,…,xn) with traditional statistical methods.  



Despite the difficulties to estimate joint probability distributions, many researchers are hard 

working to do that. A key limitation of the existing parametric methods is that the distribution 

needs to be assumed a priori. Evidently, this is a strong assumption, since the form of the 

distribution is frequently unknown. Even the nonparametric models still make some 

assumptions regarding the form of the distribution. In addition, the nonparametric methods have 

other limitations (Alghalith, 2016; Talamakrouni et al, 2016).  

The current popular approach is “copulas”. Copulas are functions that fully define the 

multivariate distribution of a random vector or a set of random variables (Nelsen, 2006). They 

link or join multivariate distributions functions of random variables to their univariate marginal 

distributions. According to Sklar’s theorem (Sklar, 1959; Salvadori et al., 2007), any 

multivariate joint distribution can be written in terms of a copula function and marginal 

distribution functions. However, the existence of a copula function does not mean that we can 

get it. There are a lot of copula models to construct a copula function with given marginal 

distribution functions, such as Gaussian copulas and Archimedean copulas. There are many 

families of Archimedean copulas, such as Frank, Gumbel, Clayton, which are uniparametric 

(Montes-Iturrizagaand Heredia-Zavoni, 2016). Estimating marginal distribution functions, 

finding an applicable copula function more difficult! 

To estimate a disaster function f (x1,x2,…,xn), the most coarsest method is multiple linear 

regression, the more popular is bio inspired computing, such as neural networks, leaping frog  

and bat algorithm. All of these algorithms try to replicate the way biological organisms and sub-

organism entities operate to achieve high level of efficiency, even if sometimes the actual 

optimal solution is not achieved (Kar, 2016). However, none bio-inspired algorithm is a 

practical universal algorithm. For example, it has been theoretically proven that multilayer 

neural networks using arbitrary squashing functions can approximate any continuous function 

to any degree of accuracy, provided enough hidden units are available (Hornik et al., 1989). 

However, the neural networks has the problem of becoming trapped in local minima, which 

may lead to failure in finding a global optimal solution (Marco and Alberto, 1992). Besides, the 

convergence rate of algorithm is still too slow even if learning can be achieved. When a trained 

neural network is performing as a mapping from input space to output space, it is a black box. 

This means it is not possible to understand how a neural system works, and it is very hard to 

incorporate human a priori knowledge into a neural network. 

It is clear that an integrated probability risk caused by multi-hazards can be regarded as the 

expected value of disaster excited by a multivariate random variable and a multivariate disaster 

function. And, it is not easy to estimate a joint probability distribution and a disaster function 

with given sample.  

There is no loss in generality when we suppose that the n in equation (2) is 2. In the case, 

the integrated risk caused by two hazards could be represented as: 
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When we discuss a bivariate random variable with two components x1, x2, their joint 

probability distribution 

),Pr(),( 221121 xXxXxxP                           (4) 

is defined by the probability of a product event：In a random trial, events 11 xX  and 22 xX   

simultaneously occur. 

Obviously, the probability of that two kinds of disasters, such as earthquake and flood, 

simultaneously occur in a region is almost zero. In other words, there is not bivariate random 

sample in the strict sense in terms of respective two hazards. 

To understand the phenomena, let us consider an experiment that consists of tossing a dice 

and a coin at the same time. We will assign an indicator random variable to the result of tossing 



the coin. If it comes up head we assign 1 to the variable, and if it comes up tail we assign 0 to 

the variable. Consider the following random variables: 

X1: The number of dots appearing on the dice. 

X2: The sum of the number of dots on the dice and the indicator for the coin. 

Strictly speaking, the probability of that the dice and the coin land at the same time is 

almost zero. In the strict sense of “simultaneously occur”, the experiment cannot give any 

bivariate random sample. In practice case of a random experiment, X1 and X2 are recorded after 

a trial. Extending the time length of a trial to be a year, we can regard the disaster events 

occurred in a year that occurred simultaneously. 

Let W be a sample of observations on disaster D caused by two hazards S and Z in T years. 

We write the sample in equation (5).  

)},,(,),,,(),,,{( 222111 TTT dzsdzsdzsW                       (5) 

si and zi represent the magnitudes of hazards S and Z in i-th year and di is the disaster caused by 

the hazards in the year. 

   An integrated probability risk caused by S and Z is considered as the expected value of 

disaster caused by the hazards. According to equation (3), we know that, it is necessary to 

estimate a joint probability distribution of S and Z, ),( zsp , and a disaster function ),( zsfd  . 

In the case of that the given sample W does not come from too many years, we employ the 

information diffusion technique to estimate ),( zsp  and f (s,z )  with the sample.  

3 INFORMATION DIFFUSION TECHNIQUE 

The concept of information diffusion (Huang, 1997) was proposal in function learning from a 

small sample of data (Huang and Moraga, 2004). The approximate reasoning of information 

diffusion was used to estimate probabilities and fuzzy relationships from scant, incomplete data 

for grassland wildfires (Liu et al., 2010). The simplest models of information diffusion 

technique are the linear information distribution and the normal diffusion. The latter is more 

convenient to use. Mathematically, the normal diffusion can be illustrated in fuzzy set as the 

following (Huang, 2002). 

Let },,2,1|{ miwW i   be a given sample and let }{uU   be its universe. The 

function in equation (6) is called a normal diffusion function. 
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The diffusion coefficient h can be calculated by using equation (7) (Huang, 2012) 
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where }max{ iwb   and }.min{ iwa   

Using a diffusion function, ),( uw , we can change a given sample point w into a fuzzy set 

with membership function ),()( uwuw    on universe U. The principle of information 



diffusion guarantees that there are reasonable diffusion functions to improve the non-diffusion 

estimates when the given samples are incomplete. 

When we employ the normal diffusion to estimate a probability distribution, it is just the 

same as the Gaussian kernel estimate. It implies that Gaussian kernel connects to some simple 

diffusion without birth-death phenomenon. However, the coefficient from the kernel theory is 

both non-explanatory and rough. When the size m of a given sample is small, the method of 

normal diffusion is superior with respect to almost any distribution. 

When we employ the information diffusion technique to estimate an input-output relation 

function with a given sample, the first of all is to construct an information matrix with the 

sample.  

Let  
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be an r-dimensional random sample with input xi and output yi, and the input and output 

monitoring spaces of X be U and V, respectively, denoted as 
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The monitoring spaces serve for diffusing with some steps. For a sample point ),( ii yx  and 

a monitoring point ),( kj vu , with a diffusion function , we can obtain a value 

)),(),,(( kjii vuyx , called diffused information on ),( kj vu  from ),( ii yx , denoted as ijkq . 

Let 
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is called an information matrix of X on U×V. 

Then, according to the characteristic of the information matrix, we can change it to be a 

fuzzy relationship matrix. With an appropriate approximate reasoning operator, we can estimate 

the input-output relation function with respect to the given sample in equation (8). 

4 JOINT DISTRIBUTION CONSTRUCTED BY 2-DIMENSION NORMAL DIFFUSION 

From the sample in equation (5), we can have a sample of observations on hazards S and Z in T 

years. We write the sample in equation (12).  

)},(,),,(),,{( 22111 TT zszszsW                       (12) 

We employ S and Z to denote universes of the two hazards respectively: 
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The 2-dimension normal diffusion of W1 on S×Z is defined in equation (14). 
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The diffusion coefficient hg, },{ zsg , can be calculated by using equation (15). 
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we can obtain a joint probability distribution ),( kj vuP which is a discrete function.  

In above algorithm to estimate ( , )j kP u v , we ignore the normalizing to unity 

)),(),,(( kjii vuzs  on S×Z to guarantee that every diffused observation )),(),,(( kjii vuzs  

is equally important for constructing a joint distribution, because we can set discrete 

points ),( kj vu  so much to reduce the difference. 

5 DISASTER FUNCTION CONSTRUCTED BY 3-DIMENSION NORMAL DIFFUSION 

The sample W of observations in equation (5) is a 3-dimension random sample with hazards 

input ),( ii zs and disaster output id , i=1,2,…,T. We employ the 3-dimension normal diffusion 

to estimate a disaster function. 

Firstly, we employ S, Z and D to denote universes of the two hazards and the disaster, 

respectively: 
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The 3-dimension normal diffusion of W on S×Z×D is defined in equation (19). 

.,,2,1;,,2,1;,,2,1;,,2,1

],
2

)(
exp[]

2

)(
exp[]

2

)(
exp[)),,(),,,((

2

2

2

2

2

2

LlKkJjTi

h

od

h

vz

h

us
ovudzs

d

li

z

ki

s

ji

lkjiii

 










       (19)                  

where the diffusion coefficient hg, },,{ dzsg , also be calculated by using equation (15). 

Secondly, let 



 .,,2,1;,,2,1;,,2,1,)),,(),,,((
1

LlKkJjovudzsQ
T

i

lkjiiijkl  


        (20) 

We obtain an information matrix of W on S×Z×D shown in equation (21).  
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then 
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is a fuzzy relationship between input ( , )s z  and output d .  

For a fuzzy input A with membership function ( , ), ,A j k j ku v u S v Z   , employing the 

approximate reasoning operator represented in equation (25), we can obtain a fuzzy output B 

with membership function ( ),B l lo o D  .  
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Finally, using the center-of-gravity method, we obtain a crisp value ( , )j kd u v : 
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The ( , )j kd u v  is the disaster function constructed by 3-dimension normal diffusion with the 

given sample W in equation (5). It is a discrete function. 

6 INTEGRATED RISK CALCULATED BY JOINT DISTRIBUTION AND DISASTER 
FUNCTION 

Recalling equation (2) and considering the joint distribution and disaster function we 

obtained are discrete, we calculate the integrated risk by using formula (27).  
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where ( , )j kP u v  and ( , )j kd u v  are given in equations (17) and (26), respectively. The 

physical meaning of the “risk” in (27) is the expected value of disaster, which is assessed by 

using the sample of observations on disaster D caused by two hazards S and Z in T years, shown 

in equation (5).  

As we know that, a risk is a scene in the future associated with some adverse incident. When 

we use a random sample to assess a risk, we are in fact using the past to judge the future 

because the observations of the sample record historical events occurred in a stochastic system. 

The reliability of the assessment depends on the assumption that the stochastic system evolving 

over time in the study period is a stationary Markov process. 

In probability theory, a Markov process is a stochastic process that has the property that the 

next value of the Markov process depends on the current value, but it is conditionally 

independent of the previous values of the stochastic process. A Markov process is a stationary 

Markov process if the moments are not affected by a time shift. In other words, the stochastic 

behavior of the system in the future is the same as the stochastic behavior in the past.  

In fact, most of disaster systems are in change, the corresponding stochastic processes do not 

satisfy the stationary Markov process hypothesis. If we collect observations of historical 

disasters across hundred years to assess disaster risks, the reliability of the assessments will be 

low.  

When we use a traditional statistical method, such as parameter estimation method, to assess 

a risk caused by a hazard, if the observations are across 30 years, the result of the risk 

assessment would have some degree of reliability. However, to an integrated probability risk 

caused by two hazards, the size of a sample with observations across 30 years is too small. To 

estimate the joint distribution in equations (17) we need about 900 (i.e. 3030) observations if 

we require that the result has some degree of reliability. 

We believe that, for most regions, the observations used for assessing an integrated risk 

should not span more than 50 years. They are incomplete information to estimate the joint 

distribution and the disaster function. It is quite good for us to obtain a discrete joint 

distribution ( , )j kP u v and a discrete disaster function ( , )j kd u v  to estimate an integrated risk. 

When we have to make a choice between theoretical perfection and respect for reality, we 

should respect the reality to carry out the risk assessment. 

7 CONCLUSION AND DISCUSSION 

It is important to distinguish integrated ‘‘risk assessment’’ and ‘‘integrated risk’’ assessment. 

An integrated probability risk of multi-hazards is the expected value of disaster, which is 

determined by a joint probability distribution and a disaster function.  

When the type of the population from which the sample is drawn is unknown, it is difficult 

to estimate the distribution and the function. There are a lot of copula models to construct a 

copula function to be a joint probability distribution with given marginal distribution functions. 

Nobody knows which constructed distribution from “copula” should be one better to assess the 

integrated probability risk. 

The information diffusion technique regards small samples as fuzzy information. It can be 

employed to construct a discrete joint probability distribution and a discrete disaster function 

for assessing integrated probability risks.  

The proposed approach does not need to know the distribution type of the population from 

that the given sample is drawn, nor need to know the function form of the causal relationship, 

which can construct joint probability distribution and disaster function with clear physical 



meaning. So that, although the assessed risk is not accurate, but more credible. 

Due to limited length of this paper, a case study is omitted. It will be given in an extended 

version.  
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