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History effects on nonwetting fluid residuals during desaturation flow through disordered
porous media

Thibaud Chevalier,* Dominique Salin, and Laurent Talon
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We investigate experimentally the sweeping of a nonwetting fluid by a wetting one in a quasi-two-dimensional
porous medium consisting of random obstacles. We focus primarily on the resulting phase distributions and the
residual nonwetting phase saturation as a function of the normalized wetting fluid flow rate—the capillary number
Ca—at steady state. The wetting liquid is then flowing in the medium partially saturated by immobile nonwetting
liquid blobs. The decrease of the nonwetting saturation is an irreversible process that depends strongly on flow
history and more specifically on the highest value of Ca reached in the past. At lower Ca values, when capillary
forces are dominant, the residual steady state saturation depends significantly on the initial phase configuration.
However, at higher Ca, the saturation becomes independent of the history and thus follows a master curve that
converges to an asymptotic residual value. Blob sizes range over four orders of magnitude in our experimental
domain, following a probability distribution function P that scales with the blob size s as P (s) ∝ s−2 for blob
sizes larger than the typical pore size. It also exhibits a maximum size cutoff smax, that decreases as smax ∝ Ca−1.
To determine the flow properties, we have measured the pressure drop (B) versus the flow rate (Ca). In the
ranges of low and high Ca values, the relationship between Ca and B is found to be linear, following Darcy’s
law (B ∝ Ca). In the intermediate regime, the progressive mobilization of blobs leads to a nonlinear dependence
B ∝ Ca0.65, due to an increase of the available flow paths.
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I. INTRODUCTION

Immiscible two-phase (2P) flow in porous media is a
process of significant scientific and technological impor-
tance, encountered in a series of environmental and energy-
related applications, such as Enhanced Oil Recovery from
pressure-depleted petroleum reservoirs, soil remediation from
anthropogenic highly toxic pollutants, and carbon dioxide
sequestration, among many others.

During immiscible 2P flow processes, several configu-
rations for the phase distributions of the wetting (w) and
nonwetting (nw) fluids are possible depending on flow
history, phase saturations, and the capillary number. Of crucial
importance for the flow response is the spatial connectivity of
each phases, that may or may not span the porous medium
[1], and particularly the existence of disconnected nw liquid
droplets. The latter configuration is typically encountered at
the later stages of imbibition displacement processes, where
a medium initially saturated by a nw fluid is flooded with a
wetting one.

As the w-phase saturation increases, the nw phase becomes
progressively disconnected and forms fluid blobs, otherwise
called droplets or ganglia [2]. Depending on the capillary
number of the flow, two kinds of populations may coexist. The
mobile blobs are swept by the w phase, whereas the stranded
blobs in weak flow regions reduce the effective medium
permeability. The sweep efficiency of the imbibition process
significantly depends on the porous medium heterogeneities,
where the formation of preferential pathways may bypass the
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trapped blobs. The recovery of such residuals, that may account
for a significant volume fraction of the total storage capacity
of the soil formation, is a rather challenging task. Indeed,
mobilizing the trapped blobs may require a significant pressure
drop and energy consumption.

Several classical experimental and theoretical studies of
immiscible 2P flow have focused on the conditions of blob
trapping and mobilization in porous domains, such as in pore
networks [3–6], model porous media [7,8], and bead-sand
packings [9]. Other works have also explored the interaction
between mobile and immobile blob populations and classified
the flow regimes [2,10]. It offers valuable insight on the effects
of flow conditions and flow history on interfacial stability
[11] and on the conditions of blob breakup and coalescence
[12–15]. A series of more recent studies have focused on
effective permeabilities at various flow conditions and nw-
phase saturations, based on pore scale experiments [16–20],
theoretical considerations [16,21], and direct numerical simu-
lations [22]. Such studies have highlighted the effects of blob
populations on nonlinear flow regimes, through blocking flow
paths and excluding them from the flow stream.

Motivated by such results, we performed an extensive
experimental study of immiscible displacement of nw-phase
residuals by an imbibing liquid within a model porous medium
that consists of a two-dimensional transparent Hele-Shaw type
cell with solid patches as flow obstacles. The inner walls
of the cell were microengineered according to a random
field pattern in order to produce flow obstacles which mimic
contact areas of a fractured rock sample. This experimental
approach allows for the direct monitoring of the blob sizes,
shapes and mobility during the process. In the present paper,
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FIG. 1. (Color online) (a) Schematic of the experimental setup
of our study that shows the microengineered porous domain and
the flow inlet and outlets. (b) Typical snapshot (closeup of size
120 mm × 80 mm) of the porous medium saturated with both phases
at steady state. In the enlarged closeup, we can distiguish the stranded
nonwetting phase blobs (blue-dyed water), the continuous wetting
phase (heptane with light blue color), and the solid obstacles of
random shape and size that appear as transparent isolated patches.

we focus on steady-state configurations, where the wetting
liquid is flowing through porous medium partially saturated by
immobile nonwetting liquid blobs. The main control parameter
is the capillary number, Ca, which represents the normalized
wetting fluid flow rate. Our experimental setup is able to
cover a rather large range of Ca values (over three orders of
magnitude) and blob sizes, allowing thus for the study of flow
history effects, the identification of different flow regimes, and
the calculation of the blob size probability distribution function
(PDF).

II. EXPERIMENTAL SETUP AND PROCEDURE

The porous domain is constructed by gluing together
two transparent PMMA [poly(methyl methacrylate)] plates
l = 325 mm long and b = 120 mm wide. The bottom plate
is engraved using a computerized milling machine following
a stochastically generated pattern (see [22]). This produces
obstacles of random size and shape with typical correlation
length of 900 μm. The distance between the two surfaces is
e = 300 μm and the porosity is equal to � = 0.82. A V-shaped
region is also engraved below the flow inlet in order to better
homogenize the mixing of the two phases in this transient
zone. Thus the porous medium is a kind of Hele-Shaw cell
(two parallel plates separated by a small gap e) with solid
patches (flow obstacles) as shown in the sketch of Fig. 1(a).

The phase distribution patterns are recorded using a digital
camera (Nikon D800) over a field further downstream in
the flow of size 180 mm × 120 mm. The images are then
processed in order to compute phase saturations and blob
size distributions. The bottom of Fig. 1 is a typical snapshot
of the porous medium during a desaturation experiment at
steady-state conditions. The water phase (dark blue) is the nw

fluid, the oily phase (continuous light blue) is the w fluid,
whereas the solid obstacles appear as transparent isolated
patches (see also closeup view in the right bottom of Fig. 1).
It is worth noting the wide range of obstacle sizes and
their rough surface shapes, which provides a significantly
different configuration than the single layer of glass beads
in a Hele-Shaw cell used in earlier studies [16,17,20,23]. In
our system, the typical solid and void sizes range from ∼1 mm
up to 30 mm, thus producing a wide distribution of blob sizes,
as we will discuss in more detail in the following sections.

The dry cell is initially fully saturated with the n-heptane
w phase. Both liquids are injected from a single inlet
from one side of the cell using one gear pump (Ismatec,
0.1–100 cm3/min) for each fluid. This allows for the fine
tuning of the flow ratio of water and oil at the inlet of the
medium, leading to a precise control over the mobile saturation
ratio at steady state conditions. The liquids exit from three
outlets at the downstream end of the cell as shown in Fig. 1.

The permeability k of the medium is measured by per-
forming single phase flow experiments with n-heptane while
measuring the pressure drop versus the flow rate Qw, leading
to k = μQw/(b e |∇P |) ≈ 2.0 × 10−9 m2, where μ is the
dynamic fluid viscosity. The latter can be compared to the
Hele-Shaw cell permeability without solid obstacles, kHS =
e2/12 = 7.5 × 10−9 m2, which demonstrates the crucial effect
of only 18% of obstacles (k ∼ 0.27kHS).

Experimental procedure. At the beginning of each experi-
ment, both the w phase (n-heptane with viscosity μw = 4.0 ×
10−4 Pa s) and the nw phase (blue-dyed water, μnw = 1.0 ×
10−3 Pa s) are co-injected using two separate gear pumps from
a single flow inlet according to a predefined flow ratio Qnw/Qw

in order to achieve a steady-state phase distribution pattern in
our domain. The co-injection is achieved by connecting the
two fluid pumps to a “Y-shaped” tube where the fluids form
a succession of “pearllike” droplets according to the ratio of
the pump flow rates. The interfacial tension between the two
fluids is γ = 5.2 × 10−2 N/m, while we assume that heptane
is totally wetting against water in the PMMA medium. We
define the capillary number as Ca = (μw/γ ) Qw/(b e), based
on heptane viscosity and velocity, and a dimensionless pressure
gradient, B = e2|∇P |/γ . With the particular set of pumps, we
can cover over three orders of magnitude of flow rates, and thus
the resulting capillary number ranges from Ca = 3.7 × 10−7

to Ca = 3.7 × 10−4. It is worth noting that at the largest flow
rate the Reynolds number is Re = ρwQw/(bμw) ∼ 20, where
the creeping flow assumption is no longer valid, and we can
thus anticipate the onset of inertial effects, as we will discuss
in more detail below. We define the nw-phase saturation S as
the volume ratio of the nw blue fluid over the total fluid.

After sufficient time of fluid co-injection (typically ranging
from minutes to a couple of hours), the system eventually
reaches a steady state configuration, where both the nw-phase
saturation S and the pressure drop B remain practically
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FIG. 2. (Color online) Linear-log plot of the residual saturation
of immobile nonwetting fluid S vs the capillary number Ca for
different initial conditions (see text). The saturation values on the left
side of the vertical axis correspond to the initial nonwetting phase
Sinit for each experimental series. The inset is a schematic of the
desaturation history. The blue curve denotes the “irreversible” branch
of the desaturation process, while black curves with double arrows
denote “reversible” branches of constant saturation, starting from
the historically maximum capillary number values for each “branch”
denoted CaM .

constant with time. We denote as Sinit this steady state nw

saturation for the particular flow ratio, that will serve as the
initial value for each set of desaturation experiments. This
value has been represented by symbols on the left side of the
vertical axis of Fig. 2. It is worth noting that the larger the
above flow rate ratio, the larger Sinit.

We then turn off the nw-phase injection and continue
injecting only the w phase starting from the lowest Ca value.
After a sufficient amount of time and for a fixed w-phase flow
rate, thus Ca, both the pressure drop and the phase distribution
patterns eventually reach a new steady state configuration,
leading to a new set of constant S and B values. We then
gradually increase the w-phase flow rate until the system
reaches a new steady state. This process is repeated over
three orders of magnitude of the capillary number. It is worth
noting that for a given Ca, when a constant saturation was
achieved, it is possible to decrease Ca without changing S as
sketched in the inset of Fig. 2 (“reversible” black branches).
This historically maximum capillary number is represented by
CaM . It allows also the direct measurement of their effective
medium permeability at this given saturation. After each set of
steady state experiments, we perform a single phase injection
of heptane at the maximum flow rate (Ca = 3.7 × 10−4) to
sweep off the effect of the previous set of experiments.

III. SATURATION EVOLUTION WITH FLOW RATE
AND HISTORY

Figure 2 represents the residual saturation S of the nw

fluid at steady state conditions versus the w-phase flow rate,
i.e., the capillary number Ca. Each point corresponds to
both a constant measured pressure drop and a constant nw

phase saturation. Each curve, uniquely marked by different
symbols, corresponds to a desaturation experiment set, where
the flow rate is progressively increased starting from the
lowest capillary number value Camin � 3.7 × 10−7. The initial

saturation Sinit is also reported on the left side of the vertical
axis. As expected, increasing the w fluid flow rate results in a
decrease of the nw saturation in all the series. As viscous forces
become progressively more important at the blob interfaces, it
results in the mobilization and the sweeping of several blobs.
When a new steady state configuration is established, the
nw-phase residual saturation consists of immobile blobs only.

In Fig. 2, we distinguish two types of behaviors. By
example, full (red) left-pointing triangles and full black squares
exhibit a plateau at low Ca in continuation from Sinit. The other
ones drop down from the initial saturation Sinit to a smaller S

value at Camin. The latter behavior corresponds to the larger
initial saturation, Sinit � 0.55.

Intuitively, one would have expected that all series exhibit
a plateau as sketched in the inset of Fig. 2: at very low Ca, the
pressure field generated by the flow is not able to move any nw

blobs, the nw saturation remains constant. This requires that
the initial wetting phase is percolating, where flow is allowed
without moving the other phase. One should then be able to
find a small enough Ca without modifying the initial saturation.

We identified two reasons why some series does not
display a plateau. On one hand, if the wetting fluid is
not initially percolating, a small increase of Ca induces
an imbibition front which sweeps a significant amount of
nonwetting phase. On the other hand, even if the initial state
is percolating, the experimental Camin might be already too
large and thus mobilize some blobs. It is thus not surprising
that the most important saturation drops correspond to high
initial saturation, where the probability of having a percolating
wetting phase is smaller.

At low Ca numbers, the saturation path depends then on
the initial conditions. Interestingly, at large capillary numbers
Ca � 10−5, the data series tend to collapse to a single master
curve, meaning that the saturation does not depend any more on
the initial configuration and the flow history. Consequently, the
saturation is only a function of CaM . This could then imply that
a nw-phase rearrangement had occurred, leading to analogous
phase distribution patterns above that capillary number.

To enlighten this point, we plot in Fig. 3 the local mean
saturation of the nw phase at steady state averaged over all
realizations with the same capillary number but with different
initial conditions. A local average saturation equal to 1 (shown
in white color) denotes a location where the nw fluid is
persistently present in all realizations. On another hand, a zero
probability (shown in black color) indicates a location where
nw is practically never present. At initial states [Fig. 3(i)],
an almost spatially uniform probability coverage is observed,
with the exception of the locations occupied by the solid
obstacles, where the probability is always equal to 0 (black
color). This indicates the possibility of encountering one or
the other phase at any location. However, as Ca increases, we
observe a clear enhancement of the contrast which illustrates
the fact that phase distribution patterns become more and
more deterministic. Namely, there are clear locations where
the probability over all series is equal to 1, and others where it
is equal to 0. It is also important to note that the locations of
probability 1 at high capillary numbers [e.g., in Fig. 3(d)] are
already present at low Ca [e.g., in Fig. 3(a)]. This indicates that
a significant part of the saturation remains unmoved during the
entire desaturation process: around 90% of blobs present at the
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FIG. 3. Mean correlation maps between all experiments at initial
conditions (i) and at different capillary numbers: Ca = 3.7 × 10−7

(a), 7.4 × 10−6 (b), 3.0 × 10−5 (c), and 3.3 × 10−4 (d).

highest capillary number are also present at any Ca. We denote
as S0 this irreducible residual saturation.

To capture in more details the effects of Ca on S, we show
in Fig. 4 a log-log plot of S − S0 versus the capillary number,
where S0 ∼ 0.09. For Ca � 10−5, all desaturation experiments
collapse to a single curve scaling as

S − S0 ∝ Ca−0.52 ± 0.05
M . (1)

This scaling can be interpreted in the light of the numerical
work of Knudsen and Hansen [24] in a pore network model.
Starting from a given randomly distributed saturation, they
increased the Ca number in order to determine the transition
from single to two phase flow. This transition curve should be
comparable to our S(Ca) curve. Indeed, the onset of two-phase
flow requires few nw-phase mobilization which will be swept
out of our system, leading to desaturation. However, as we
have shown, this transition might not be relevant at low Ca
number since the flow history and the initial saturation strongly

FIG. 4. (Color online) Log-log plot of S − S0 as a function of Ca
with S0 = 0.09. The dotted line corresponds to Ca−1/2.

FIG. 5. (Color online) Probability distribution function P (s) of
nw blobs of area s at steady state for all experiments from Ca = 3.7 ×
10−7 to 3.7 × 10−4. Black lines are power law, P (s) ∝ s−1/2 (dotted
line) and P (s) ∝ s−2 (continuous line). The transition between those
power laws, at the size sc, is represented by a vertical grey dashed
line. The Ca dependance of the cutoff size smax is shown in the inset
where the line is smax ∝ Ca−1. The blob area unit is mm2.

influence the transition. The two curves are then comparable
only at high capillary numbers or low saturation. Despite the
fact that they empirically proposed an exponential law Ca ∝
e−αS , we note that our power law could equivalently match
their numerical points.

Nonwetting blob size distribution. Of significant interest in
our analysis is the probability distribution function (PDF) P (s)
of blob sizes s at steady state conditions. Our experimental
layout and the high resolution of the pictures (1 pixel = 2.7 ×
10−3 mm2) allow for covering an extensive range of blob sizes,
ranging from two orders of magnitude smaller than the typical
pore size (order sc ∼ 10 mm2) up to two orders of magnitude
larger. Figure 5 shows the corresponding blob size distribution
averaged over all realizations at fixed Ca values.

Several important scaling behaviors are observed in Fig. 5.
For blob sizes smaller than sc, the PDF decreases smoothly
with the same trend for all Ca values. If we were to fit these
data with a power law, it would follow quite reasonably a decay
P (s) ∝ s−1/2. This distribution may correspond then to the
residual saturation S0 of nonwetting blob which is noticeably
smaller than sc. For blob sizes larger than sc, the PDF depends
strongly on the Ca value. Increasing Ca from the lowest value
(Ca = 3.7 × 10−7), the data series depart from the power law
scaling, P (s) ∼ s−1.95 ± 0.1, exhibiting a large size cutoff smax.
After determining the cutoff area smax as being the largest
observed blob, we plot its evolution with Ca in the inset of
Fig. 5. It can be seen that smax decreases with Ca following a
scaling law:

smax ∝ Ca−1.1 ± 0.1. (2)

We note, however, that smax displays an upper bound which
is rather large (equivalent diameter

√
900 mm2 � 3 cm) and

this may be attributed to the finite size of our sample. This
upper bound is reached for capillary number around Ca �
10−5, which is comparable to the value at which the saturation
S starts to become independent of the initial saturation (Fig. 4).
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FIG. 6. (Color online) Scaling relation defined by Eq. (3) for
blobs larger than sc, P (s)Ca−2 versus ŝ = sCa. The continuous line is
proportional to ŝ−2 exp(−ŝ).

By analogy with critical behavior (e.g., percolation theory
[25]), we can propose the following scaling function:

P (s) ∝ Ca2f (Cas) with f (x) = x−2e−x, (3)

according to Eq. (2). This renormalization is tested with our
data for s > sc in Fig. 6 showing a rather good collapse for all
the data series. Moreover, the above proposed scaling function
is also validated by this figure (continuous black curve).

The scaling expressions of Eqs. (2) and (3) are similar
to the ones observed in [16,17], in which the cluster size
distribution was found to scale as P (s) ∝ s−τ e−s/smax with
smax ∝ Ca−ζ . Their fit to the data led to ζ � 0.98 ± 0.07 and
τ = 2.07 ± 0.18. The latter is reminiscent to the correspond-
ing percolation exponent. The exponents measured in our study
(ζ = 1.1 ± 0.1 and τ = 1.95 ± 0.1) are interestingly very
close to the above values, despite the significant differences
in the experimental setups between the two studies. Indeed, in
Refs. [16,23] the fluids are a liquid and air (negligible viscosity
compared to the liquid) which flow simultaneously (co-
injection) in the quasi -two-dimensional glass beads porous
medium. Moreover, the measured air blob size distributions
include both mobile and immobile blobs, that could follow
different distributions as shown in numerical simulations [22].
Additionally, Aursjo et al. [20] have recently showed the
strong deviation of those coefficients by replacing the air by
a viscous liquid in the same system as [16,23]. The reported
exponents, τ ranging from 1.32 to 1.48 and ζ from 0.89 to
0.51, depend on the flow rate ratio of the two simultaneously
injected liquids and are definitively smaller than their previous
air-liquid ones. Besides, in the three-dimensional (3D) packed
beads experiments of [18], while the cutoff was not really
scaling as Eq. (2), the PDF of the linear extension of the
blobs was compared to 3D percolation theory. Therefore, this
supports the contention that the exponent τ = 2 accounting for
our data of wetting fluid flowing across a porous medium with
immobile nonwetting blobs is consistent with 2D percolation.

IV. FLOW REGIMES

As discussed earlier, the permeability of our experimental
domain is significantly lower than the permeability of a Hele-
Shaw cell of the same thickness. This is due to the presence

FIG. 7. Nondimensional pressure drop B vs nondimensional flow
rate Ca at steady state. The lines through the data are guide lines with
their corresponding slopes. (a) Data corresponding to an increase Ca
from its lowest value. (b) Illustration of the hysteresis-history effect.
The plot is identical but with including three Ca decrease from CaM

(1, 2, 3). The double arrows indicates a reversible process with respect
to Ca whereas the one way arrows indicates an irreversible one. For
sake of clarity, we have plotted the decrease from Ca(3) (full black
circle) as inset.

of the engraved solid obstacles that modify the flow stream.
We thus expect that the presence of immobile nw phase blobs
has also a profound impact on the “effective” permeability
of the medium, as experienced by the flowing w phase. To
address this issue, we measure the pressure drop along the
medium versus the imposed w phase flow rate. The effective
permeability of the medium is then defined as Keff = k kr =
e2Ca/B, where k is the intrinsic medium permeability and
kr < 1 is the relative permeability for the w phase.

Figure 7 displays the nondimensional pressure drop B

versus the nondimensional wetting flow rate Ca. The top figure
corresponds to an increase of Ca according to the experimental
procedure described in the previous sections. Three different
flow regimes can be clearly identified in this figure:

(i) At low Ca values, the pressure drop is linear with the
flow rate (slope ∼1).

(ii) At intermediate Ca values and over one order of
magnitude, the slope is significantly smaller, around 0.65 ±
0.1.

(iii) For larger Ca values, the slope increases again to a
value larger than 1, around 1.4 ± 0.1.
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To account for these different regimes, we need to compare
with the saturation evolution. The low capillary number regime
corresponds to the situation where the immobile nw-phase
saturation remains constant, that is on the saturation plateau
in Fig. 2. Therefore the observed linear dependence of the
pressure drop with Ca is a classical Darcy’s law for the
continuous w phase through a medium of solid obstacles
and immobile blobs. It is worth noting that this regime is
“reversible” with respect to an increase or decrease of the flow
rate.

In the intermediate regime, as the capillary number in-
creases, part of the nw phase is mobilized and swept by the
flowing w phase, leading to a continuous decrease in residual
nw saturation (see Fig. 2). Therefore the increase of pressure
drop results from two competing effects. On one hand, the
pressure loss increases with the flow rate, but on the other
hand the increase of number of flow paths results in a decrease
of the hydraulic resistance. The resulting slope of the curves is
then smaller than 1 (0.65 ± 0.1). Such non-Darcy flow regimes
have also been reported in the literature without the other
regimes, but with somehow different coefficients (0.54 ± 0.08
in Ref. [17] and 0.35 ± 0.08 in Ref. [26]). From a theoretical
model, Sinha and Hansen [21], based on an analogy with yield
stress fluid in porous media [27,28], obtained a coefficient 1/2.
As the extension of the intermediate regime is rather small, we
can barely conclude that the exponent we get is consistent with
the theoretical one.

We note that the desaturation process during this inter-
mediate regime is “irreversible,” namely, decreasing the flow
rate leads to a different slope ∼1 (see bottom of Fig. 7).
It is also very interesting to note the larger than 1 slope
(1.4) in the case of Ca > 10−4 values, despite the fact that
the residual saturation remains practically unchanged in this
region. We would have thus expected a constant effective
permeability and a Darcy-type dependance between the flow
rate and the pressure drop. This effect should be attributed to
the onset of inertial forces, as also discussed earlier, since the
corresponding Reynolds number is of the order of Re ∼ 5. To
test this conjecture, we have plotted (inset, bottom of Fig. 7)
the pressure drop versus Ca but decreasing the flow rate from
the black full circle. The slope first remains of the same order
(∼1.5) and below Ca ∼ 10−4 tends to 1. Therefore, the slope
change corresponds to the inertial correction from a linear
Darcy regime to the “so-called” Forchheimer [1] one. We also
note that this process is reversible.

To sum up, Fig. 8 gives a schematic of the “ideal” history
effect on the relation between pressure drop (B) versus flow
rate (Ca) in the case of creeping flow, Re � 1 and thus
negligible inertial effects.

For each point on the increasing Ca curve [Fig. 7(a)], we
can measure the relative permeability directly from the slope
1 regime or by decreasing Ca enough to fall into a slope 1
regime, to avoid any Forchheimer effects.

In Fig. 9, we have plotted the measured permeability,
normalized by the porous medium permeability without blobs
(k ∼ 2 × 10−9 m2), kr , the relative permeability, along with
the saturation evolution (S, Fig. 2). This figure summarizes the
main features described above getting rid of the inertia effect.
At low and high Ca regimes, the permeability is constant.
In the intermediate regime, the increase of flow rate induces

FIG. 8. (Color online) Sketch of the history of the different flow
regimes without non-linear effect (see text). (1) and (2) refer to two
CaM below which the variation of the capillary number is reversible.
The arrows (double or single) correspond respectively to reversible
(dashed line) and irreversible regimes (continuous blue line).

an irreversible increase of the permeability associated to a
decrease of saturation which saturates at a larger value (twice
the low Ca one) at large Ca.

V. FINAL DISCUSSION AND CONCLUSION

We have investigated experimentally the displacement of a
nonwetting fluid by a wetting one in a quasi-two-dimensional
porous media. Since, blobs fragmentation and/or mobilization
require a minimum amount of stress, the decrease of nw

saturation of the medium is an irreversible process. An increase
of flow rate might then desaturate the media whereas a
decrease is enabled to change the blob configuration. Thus,
the nw saturation depends necessarily on the flow history and
more specifically on the highest capillary number reached in
the past, noted CaM . Depending on this maximal value, we
have observed two different behaviors. At low CaM , the final
saturation significantly depends on the initial configuration.
However, for large CaM , the saturation is independent of the
flow history. Moreover, the evolution of the saturation with
CaM follows a power-law scaling towards an asymptotic as S −
S0 ∝ (CaM )−1/2. The physical reason behind this observation

FIG. 9. Relative permeability (full symbol) and saturation (empty
symbol) as a function of capillary number. The permeability is
normalized with k, the single phase one.
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is the existence of an irreducible residual nonwetting fluid, that
cannot be removed from one realization to the other.

The blob size distribution was measured over four orders of
magnitude. For blob sizes smaller than the typical pore size, the
PDF decrease can be reasonably described with a power law
P (s) ∝ s−1/2. For larger sizes, the PDF follows another power
law P (s) ∝ s−2, with a cutoff at large sizes, smax ∝ Ca−1.

Three different flow regimes have been clearly identified.
At low Ca, the flow rate is linear with the applied pressure drop:
the flow takes place in the preexisting percolating paths but it is
not large enough to mobilize the nonwetting fluid. This regime
is reversible but it depends strongly on the initial conditions.
At intermediate flow rate, the viscous drag becomes sufficient
to start moving some immobile fluids and creating new flow
paths. This regime is irreversible, and thus depends on CaM .
The dependence seems to follow also a power law: B ∝ Ca0.65

M

which might be understood from an analogy with yield stress
fluid in porous media. For larger Ca, we should expect to
recover a linear regime. However, due to inertial effects, we
observed a nonlinear power law B ∝ Ca1.4.

It is worth noting that thanks to our rather wide range of Ca
values we have been able to observe these three flow regimes
and to depict in more detail the intermediate one. Using our
extrapolation procedure we have been able to determine the
history of the relative permeability with the capillary number.

In the present work we have used a particular 2D porous
medium which requires a porosity higher than 0.5 to percolate.
An interesting extension of this work could be to investigate
different types of media.

It would be interesting to pursue this work to investigate the
implications of those results to simultaneous two phase flow
experiments. In particular, if one distinguishes the mobile and
immobile fluid, one could idealize the problem by conjecturing
that the immobile part is distributed similarly as in the present
paper whereas the mobile nw blobs flow only inside the opened
channels. One could then expect that the relative permeabilities
present similar properties as in this work (irreversibility,
strong dependence to the initial configuration at low Ca, etc).
Moreover, this picture could be more complicated as in the
permanent regime, the immobile blobs can become mobile,
and vice versa as discussed in [22].
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Måløy, R. Toussaint, and E. G. Flekkøy, Phys. Rev. Lett. 102,
074502 (2009).

[18] S. S. Datta, J.-B. Dupin, and D. A. Weitz, Phys. Fluids 26,
062004 (2014).

[19] S. S. Datta, T. S. Ramakrishnan, and D. A. Weitz, Phys. Fluids
26, 022002 (2014).

[20] O. Aursjø, M. Erpelding, K. T. Tallakstad, E. G. Flekkøy, A.
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