polar.py 51.3 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
from collections import OrderedDict
import types

import numpy as np

from matplotlib import cbook, rcParams
from matplotlib.axes import Axes
import matplotlib.axis as maxis
import matplotlib.markers as mmarkers
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import matplotlib.spines as mspines


class PolarTransform(mtransforms.Transform):
    """
    The base polar transform.  This handles projection *theta* and
    *r* into Cartesian coordinate space *x* and *y*, but does not
    perform the ultimate affine transformation into the correct
    position.
    """
    input_dims = 2
    output_dims = 2
    is_separable = False

    def __init__(self, axis=None, use_rmin=True,
                 _apply_theta_transforms=True):
        mtransforms.Transform.__init__(self)
        self._axis = axis
        self._use_rmin = use_rmin
        self._apply_theta_transforms = _apply_theta_transforms

    def __str__(self):
        return ("{}(\n"
                    "{},\n"
                "    use_rmin={},\n"
                "    _apply_theta_transforms={})"
                .format(type(self).__name__,
                        mtransforms._indent_str(self._axis),
                        self._use_rmin,
                        self._apply_theta_transforms))

    def transform_non_affine(self, tr):
        # docstring inherited
        t, r = np.transpose(tr)
        # PolarAxes does not use the theta transforms here, but apply them for
        # backwards-compatibility if not being used by it.
        if self._apply_theta_transforms and self._axis is not None:
            t *= self._axis.get_theta_direction()
            t += self._axis.get_theta_offset()
        if self._use_rmin and self._axis is not None:
            r = (r - self._axis.get_rorigin()) * self._axis.get_rsign()
        r = np.where(r >= 0, r, np.nan)
        return np.column_stack([r * np.cos(t), r * np.sin(t)])

    def transform_path_non_affine(self, path):
        # docstring inherited
        vertices = path.vertices
        if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]:
            return mpath.Path(self.transform(vertices), path.codes)
        ipath = path.interpolated(path._interpolation_steps)
        return mpath.Path(self.transform(ipath.vertices), ipath.codes)

    def inverted(self):
        # docstring inherited
        return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin,
                                                self._apply_theta_transforms)


class PolarAffine(mtransforms.Affine2DBase):
    """
    The affine part of the polar projection.  Scales the output so
    that maximum radius rests on the edge of the axes circle.
    """
    def __init__(self, scale_transform, limits):
        """
        *limits* is the view limit of the data.  The only part of
        its bounds that is used is the y limits (for the radius limits).
        The theta range is handled by the non-affine transform.
        """
        mtransforms.Affine2DBase.__init__(self)
        self._scale_transform = scale_transform
        self._limits = limits
        self.set_children(scale_transform, limits)
        self._mtx = None

    def __str__(self):
        return ("{}(\n"
                    "{},\n"
                    "{})"
                .format(type(self).__name__,
                        mtransforms._indent_str(self._scale_transform),
                        mtransforms._indent_str(self._limits)))

    def get_matrix(self):
        # docstring inherited
        if self._invalid:
            limits_scaled = self._limits.transformed(self._scale_transform)
            yscale = limits_scaled.ymax - limits_scaled.ymin
            affine = mtransforms.Affine2D() \
                .scale(0.5 / yscale) \
                .translate(0.5, 0.5)
            self._mtx = affine.get_matrix()
            self._inverted = None
            self._invalid = 0
        return self._mtx


class InvertedPolarTransform(mtransforms.Transform):
    """
    The inverse of the polar transform, mapping Cartesian
    coordinate space *x* and *y* back to *theta* and *r*.
    """
    input_dims = 2
    output_dims = 2
    is_separable = False

    def __init__(self, axis=None, use_rmin=True,
                 _apply_theta_transforms=True):
        mtransforms.Transform.__init__(self)
        self._axis = axis
        self._use_rmin = use_rmin
        self._apply_theta_transforms = _apply_theta_transforms

    def __str__(self):
        return ("{}(\n"
                    "{},\n"
                "    use_rmin={},\n"
                "    _apply_theta_transforms={})"
                .format(type(self).__name__,
                        mtransforms._indent_str(self._axis),
                        self._use_rmin,
                        self._apply_theta_transforms))

    def transform_non_affine(self, xy):
        # docstring inherited
        x, y = xy.T
        r = np.hypot(x, y)
        theta = (np.arctan2(y, x) + 2 * np.pi) % (2 * np.pi)
        # PolarAxes does not use the theta transforms here, but apply them for
        # backwards-compatibility if not being used by it.
        if self._apply_theta_transforms and self._axis is not None:
            theta -= self._axis.get_theta_offset()
            theta *= self._axis.get_theta_direction()
            theta %= 2 * np.pi
        if self._use_rmin and self._axis is not None:
            r += self._axis.get_rorigin()
            r *= self._axis.get_rsign()
        return np.column_stack([theta, r])

    def inverted(self):
        # docstring inherited
        return PolarAxes.PolarTransform(self._axis, self._use_rmin,
                                        self._apply_theta_transforms)


class ThetaFormatter(mticker.Formatter):
    """
    Used to format the *theta* tick labels.  Converts the native
    unit of radians into degrees and adds a degree symbol.
    """
    def __call__(self, x, pos=None):
        vmin, vmax = self.axis.get_view_interval()
        d = np.rad2deg(abs(vmax - vmin))
        digits = max(-int(np.log10(d) - 1.5), 0)

        if rcParams['text.usetex'] and not rcParams['text.latex.unicode']:
            format_str = r"${value:0.{digits:d}f}^\circ$"
            return format_str.format(value=np.rad2deg(x), digits=digits)
        else:
            # we use unicode, rather than mathtext with \circ, so
            # that it will work correctly with any arbitrary font
            # (assuming it has a degree sign), whereas $5\circ$
            # will only work correctly with one of the supported
            # math fonts (Computer Modern and STIX)
            format_str = "{value:0.{digits:d}f}\N{DEGREE SIGN}"
            return format_str.format(value=np.rad2deg(x), digits=digits)


class _AxisWrapper:
    def __init__(self, axis):
        self._axis = axis

    def get_view_interval(self):
        return np.rad2deg(self._axis.get_view_interval())

    def set_view_interval(self, vmin, vmax):
        self._axis.set_view_interval(*np.deg2rad((vmin, vmax)))

    def get_minpos(self):
        return np.rad2deg(self._axis.get_minpos())

    def get_data_interval(self):
        return np.rad2deg(self._axis.get_data_interval())

    def set_data_interval(self, vmin, vmax):
        self._axis.set_data_interval(*np.deg2rad((vmin, vmax)))

    def get_tick_space(self):
        return self._axis.get_tick_space()


class ThetaLocator(mticker.Locator):
    """
    Used to locate theta ticks.

    This will work the same as the base locator except in the case that the
    view spans the entire circle. In such cases, the previously used default
    locations of every 45 degrees are returned.
    """
    def __init__(self, base):
        self.base = base
        self.axis = self.base.axis = _AxisWrapper(self.base.axis)

    def set_axis(self, axis):
        self.axis = _AxisWrapper(axis)
        self.base.set_axis(self.axis)

    def __call__(self):
        lim = self.axis.get_view_interval()
        if _is_full_circle_deg(lim[0], lim[1]):
            return np.arange(8) * 2 * np.pi / 8
        else:
            return np.deg2rad(self.base())

    @cbook.deprecated("3.2")
    def autoscale(self):
        return self.base.autoscale()

    def pan(self, numsteps):
        return self.base.pan(numsteps)

    def refresh(self):
        # docstring inherited
        return self.base.refresh()

    def view_limits(self, vmin, vmax):
        vmin, vmax = np.rad2deg((vmin, vmax))
        return np.deg2rad(self.base.view_limits(vmin, vmax))

    def zoom(self, direction):
        return self.base.zoom(direction)


class ThetaTick(maxis.XTick):
    """
    A theta-axis tick.

    This subclass of `XTick` provides angular ticks with some small
    modification to their re-positioning such that ticks are rotated based on
    tick location. This results in ticks that are correctly perpendicular to
    the arc spine.

    When 'auto' rotation is enabled, labels are also rotated to be parallel to
    the spine. The label padding is also applied here since it's not possible
    to use a generic axes transform to produce tick-specific padding.
    """
    def __init__(self, axes, *args, **kwargs):
        self._text1_translate = mtransforms.ScaledTranslation(
            0, 0,
            axes.figure.dpi_scale_trans)
        self._text2_translate = mtransforms.ScaledTranslation(
            0, 0,
            axes.figure.dpi_scale_trans)
        super().__init__(axes, *args, **kwargs)

    def _get_text1(self):
        t = super()._get_text1()
        t.set_rotation_mode('anchor')
        t.set_transform(t.get_transform() + self._text1_translate)
        return t

    def _get_text2(self):
        t = super()._get_text2()
        t.set_rotation_mode('anchor')
        t.set_transform(t.get_transform() + self._text2_translate)
        return t

    def _apply_params(self, **kw):
        super()._apply_params(**kw)

        # Ensure transform is correct; sometimes this gets reset.
        trans = self.label1.get_transform()
        if not trans.contains_branch(self._text1_translate):
            self.label1.set_transform(trans + self._text1_translate)
        trans = self.label2.get_transform()
        if not trans.contains_branch(self._text2_translate):
            self.label2.set_transform(trans + self._text2_translate)

    def _update_padding(self, pad, angle):
        padx = pad * np.cos(angle) / 72
        pady = pad * np.sin(angle) / 72
        self._text1_translate._t = (padx, pady)
        self._text1_translate.invalidate()
        self._text2_translate._t = (-padx, -pady)
        self._text2_translate.invalidate()

    def update_position(self, loc):
        super().update_position(loc)
        axes = self.axes
        angle = loc * axes.get_theta_direction() + axes.get_theta_offset()
        text_angle = np.rad2deg(angle) % 360 - 90
        angle -= np.pi / 2

        marker = self.tick1line.get_marker()
        if marker in (mmarkers.TICKUP, '|'):
            trans = mtransforms.Affine2D().scale(1, 1).rotate(angle)
        elif marker == mmarkers.TICKDOWN:
            trans = mtransforms.Affine2D().scale(1, -1).rotate(angle)
        else:
            # Don't modify custom tick line markers.
            trans = self.tick1line._marker._transform
        self.tick1line._marker._transform = trans

        marker = self.tick2line.get_marker()
        if marker in (mmarkers.TICKUP, '|'):
            trans = mtransforms.Affine2D().scale(1, 1).rotate(angle)
        elif marker == mmarkers.TICKDOWN:
            trans = mtransforms.Affine2D().scale(1, -1).rotate(angle)
        else:
            # Don't modify custom tick line markers.
            trans = self.tick2line._marker._transform
        self.tick2line._marker._transform = trans

        mode, user_angle = self._labelrotation
        if mode == 'default':
            text_angle = user_angle
        else:
            if text_angle > 90:
                text_angle -= 180
            elif text_angle < -90:
                text_angle += 180
            text_angle += user_angle
        self.label1.set_rotation(text_angle)
        self.label2.set_rotation(text_angle)

        # This extra padding helps preserve the look from previous releases but
        # is also needed because labels are anchored to their center.
        pad = self._pad + 7
        self._update_padding(pad,
                             self._loc * axes.get_theta_direction() +
                             axes.get_theta_offset())


class ThetaAxis(maxis.XAxis):
    """
    A theta Axis.

    This overrides certain properties of an `XAxis` to provide special-casing
    for an angular axis.
    """
    __name__ = 'thetaaxis'
    axis_name = 'theta'  #: Read-only name identifying the axis.

    def _get_tick(self, major):
        if major:
            tick_kw = self._major_tick_kw
        else:
            tick_kw = self._minor_tick_kw
        return ThetaTick(self.axes, 0, '', major=major, **tick_kw)

    def _wrap_locator_formatter(self):
        self.set_major_locator(ThetaLocator(self.get_major_locator()))
        self.set_major_formatter(ThetaFormatter())
        self.isDefault_majloc = True
        self.isDefault_majfmt = True

    def cla(self):
        super().cla()
        self.set_ticks_position('none')
        self._wrap_locator_formatter()

    def _set_scale(self, value, **kwargs):
        super()._set_scale(value, **kwargs)
        self._wrap_locator_formatter()

    def _copy_tick_props(self, src, dest):
        'Copy the props from src tick to dest tick'
        if src is None or dest is None:
            return
        super()._copy_tick_props(src, dest)

        # Ensure that tick transforms are independent so that padding works.
        trans = dest._get_text1_transform()[0]
        dest.label1.set_transform(trans + dest._text1_translate)
        trans = dest._get_text2_transform()[0]
        dest.label2.set_transform(trans + dest._text2_translate)


class RadialLocator(mticker.Locator):
    """
    Used to locate radius ticks.

    Ensures that all ticks are strictly positive.  For all other
    tasks, it delegates to the base
    :class:`~matplotlib.ticker.Locator` (which may be different
    depending on the scale of the *r*-axis.
    """

    def __init__(self, base, axes=None):
        self.base = base
        self._axes = axes

    def __call__(self):
        show_all = True
        # Ensure previous behaviour with full circle non-annular views.
        if self._axes:
            if _is_full_circle_rad(*self._axes.viewLim.intervalx):
                rorigin = self._axes.get_rorigin() * self._axes.get_rsign()
                if self._axes.get_rmin() <= rorigin:
                    show_all = False
        if show_all:
            return self.base()
        else:
            return [tick for tick in self.base() if tick > rorigin]

    @cbook.deprecated("3.2")
    def autoscale(self):
        return self.base.autoscale()

    def pan(self, numsteps):
        return self.base.pan(numsteps)

    def zoom(self, direction):
        return self.base.zoom(direction)

    def refresh(self):
        # docstring inherited
        return self.base.refresh()

    def nonsingular(self, vmin, vmax):
        # docstring inherited
        return ((0, 1) if (vmin, vmax) == (-np.inf, np.inf)  # Init. limits.
                else self.base.nonsingular(vmin, vmax))

    def view_limits(self, vmin, vmax):
        vmin, vmax = self.base.view_limits(vmin, vmax)
        if vmax > vmin:
            # this allows inverted r/y-lims
            vmin = min(0, vmin)
        return mtransforms.nonsingular(vmin, vmax)


class _ThetaShift(mtransforms.ScaledTranslation):
    """
    Apply a padding shift based on axes theta limits.

    This is used to create padding for radial ticks.

    Parameters
    ----------
    axes : `~matplotlib.axes.Axes`
        The owning axes; used to determine limits.
    pad : float
        The padding to apply, in points.
    mode : {'min', 'max', 'rlabel'}
        Whether to shift away from the start (``'min'``) or the end (``'max'``)
        of the axes, or using the rlabel position (``'rlabel'``).
    """
    def __init__(self, axes, pad, mode):
        mtransforms.ScaledTranslation.__init__(self, pad, pad,
                                               axes.figure.dpi_scale_trans)
        self.set_children(axes._realViewLim)
        self.axes = axes
        self.mode = mode
        self.pad = pad

    def __str__(self):
        return ("{}(\n"
                    "{},\n"
                    "{},\n"
                    "{})"
                .format(type(self).__name__,
                        mtransforms._indent_str(self.axes),
                        mtransforms._indent_str(self.pad),
                        mtransforms._indent_str(repr(self.mode))))

    def get_matrix(self):
        if self._invalid:
            if self.mode == 'rlabel':
                angle = (
                    np.deg2rad(self.axes.get_rlabel_position()) *
                    self.axes.get_theta_direction() +
                    self.axes.get_theta_offset()
                )
            else:
                if self.mode == 'min':
                    angle = self.axes._realViewLim.xmin
                elif self.mode == 'max':
                    angle = self.axes._realViewLim.xmax

            if self.mode in ('rlabel', 'min'):
                padx = np.cos(angle - np.pi / 2)
                pady = np.sin(angle - np.pi / 2)
            else:
                padx = np.cos(angle + np.pi / 2)
                pady = np.sin(angle + np.pi / 2)

            self._t = (self.pad * padx / 72, self.pad * pady / 72)
        return mtransforms.ScaledTranslation.get_matrix(self)


class RadialTick(maxis.YTick):
    """
    A radial-axis tick.

    This subclass of `YTick` provides radial ticks with some small modification
    to their re-positioning such that ticks are rotated based on axes limits.
    This results in ticks that are correctly perpendicular to the spine. Labels
    are also rotated to be perpendicular to the spine, when 'auto' rotation is
    enabled.
    """
    def _get_text1(self):
        t = super()._get_text1()
        t.set_rotation_mode('anchor')
        return t

    def _get_text2(self):
        t = super()._get_text2()
        t.set_rotation_mode('anchor')
        return t

    def _determine_anchor(self, mode, angle, start):
        # Note: angle is the (spine angle - 90) because it's used for the tick
        # & text setup, so all numbers below are -90 from (normed) spine angle.
        if mode == 'auto':
            if start:
                if -90 <= angle <= 90:
                    return 'left', 'center'
                else:
                    return 'right', 'center'
            else:
                if -90 <= angle <= 90:
                    return 'right', 'center'
                else:
                    return 'left', 'center'
        else:
            if start:
                if angle < -68.5:
                    return 'center', 'top'
                elif angle < -23.5:
                    return 'left', 'top'
                elif angle < 22.5:
                    return 'left', 'center'
                elif angle < 67.5:
                    return 'left', 'bottom'
                elif angle < 112.5:
                    return 'center', 'bottom'
                elif angle < 157.5:
                    return 'right', 'bottom'
                elif angle < 202.5:
                    return 'right', 'center'
                elif angle < 247.5:
                    return 'right', 'top'
                else:
                    return 'center', 'top'
            else:
                if angle < -68.5:
                    return 'center', 'bottom'
                elif angle < -23.5:
                    return 'right', 'bottom'
                elif angle < 22.5:
                    return 'right', 'center'
                elif angle < 67.5:
                    return 'right', 'top'
                elif angle < 112.5:
                    return 'center', 'top'
                elif angle < 157.5:
                    return 'left', 'top'
                elif angle < 202.5:
                    return 'left', 'center'
                elif angle < 247.5:
                    return 'left', 'bottom'
                else:
                    return 'center', 'bottom'

    def update_position(self, loc):
        super().update_position(loc)
        axes = self.axes
        thetamin = axes.get_thetamin()
        thetamax = axes.get_thetamax()
        direction = axes.get_theta_direction()
        offset_rad = axes.get_theta_offset()
        offset = np.rad2deg(offset_rad)
        full = _is_full_circle_deg(thetamin, thetamax)

        if full:
            angle = (axes.get_rlabel_position() * direction +
                     offset) % 360 - 90
            tick_angle = 0
        else:
            angle = (thetamin * direction + offset) % 360 - 90
            if direction > 0:
                tick_angle = np.deg2rad(angle)
            else:
                tick_angle = np.deg2rad(angle + 180)
        text_angle = (angle + 90) % 180 - 90  # between -90 and +90.
        mode, user_angle = self._labelrotation
        if mode == 'auto':
            text_angle += user_angle
        else:
            text_angle = user_angle

        if full:
            ha = self.label1.get_horizontalalignment()
            va = self.label1.get_verticalalignment()
        else:
            ha, va = self._determine_anchor(mode, angle, direction > 0)
        self.label1.set_horizontalalignment(ha)
        self.label1.set_verticalalignment(va)
        self.label1.set_rotation(text_angle)

        marker = self.tick1line.get_marker()
        if marker == mmarkers.TICKLEFT:
            trans = mtransforms.Affine2D().rotate(tick_angle)
        elif marker == '_':
            trans = mtransforms.Affine2D().rotate(tick_angle + np.pi / 2)
        elif marker == mmarkers.TICKRIGHT:
            trans = mtransforms.Affine2D().scale(-1, 1).rotate(tick_angle)
        else:
            # Don't modify custom tick line markers.
            trans = self.tick1line._marker._transform
        self.tick1line._marker._transform = trans

        if full:
            self.label2.set_visible(False)
            self.tick2line.set_visible(False)
        angle = (thetamax * direction + offset) % 360 - 90
        if direction > 0:
            tick_angle = np.deg2rad(angle)
        else:
            tick_angle = np.deg2rad(angle + 180)
        text_angle = (angle + 90) % 180 - 90  # between -90 and +90.
        mode, user_angle = self._labelrotation
        if mode == 'auto':
            text_angle += user_angle
        else:
            text_angle = user_angle

        ha, va = self._determine_anchor(mode, angle, direction < 0)
        self.label2.set_ha(ha)
        self.label2.set_va(va)
        self.label2.set_rotation(text_angle)

        marker = self.tick2line.get_marker()
        if marker == mmarkers.TICKLEFT:
            trans = mtransforms.Affine2D().rotate(tick_angle)
        elif marker == '_':
            trans = mtransforms.Affine2D().rotate(tick_angle + np.pi / 2)
        elif marker == mmarkers.TICKRIGHT:
            trans = mtransforms.Affine2D().scale(-1, 1).rotate(tick_angle)
        else:
            # Don't modify custom tick line markers.
            trans = self.tick2line._marker._transform
        self.tick2line._marker._transform = trans


class RadialAxis(maxis.YAxis):
    """
    A radial Axis.

    This overrides certain properties of a `YAxis` to provide special-casing
    for a radial axis.
    """
    __name__ = 'radialaxis'
    axis_name = 'radius'  #: Read-only name identifying the axis.

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.sticky_edges.y.append(0)

    def _get_tick(self, major):
        if major:
            tick_kw = self._major_tick_kw
        else:
            tick_kw = self._minor_tick_kw
        return RadialTick(self.axes, 0, '', major=major, **tick_kw)

    def _wrap_locator_formatter(self):
        self.set_major_locator(RadialLocator(self.get_major_locator(),
                                             self.axes))
        self.isDefault_majloc = True

    def cla(self):
        super().cla()
        self.set_ticks_position('none')
        self._wrap_locator_formatter()

    def _set_scale(self, value, **kwargs):
        super()._set_scale(value, **kwargs)
        self._wrap_locator_formatter()


def _is_full_circle_deg(thetamin, thetamax):
    """
    Determine if a wedge (in degrees) spans the full circle.

    The condition is derived from :class:`~matplotlib.patches.Wedge`.
    """
    return abs(abs(thetamax - thetamin) - 360.0) < 1e-12


def _is_full_circle_rad(thetamin, thetamax):
    """
    Determine if a wedge (in radians) spans the full circle.

    The condition is derived from :class:`~matplotlib.patches.Wedge`.
    """
    return abs(abs(thetamax - thetamin) - 2 * np.pi) < 1.74e-14


class _WedgeBbox(mtransforms.Bbox):
    """
    Transform (theta, r) wedge Bbox into axes bounding box.

    Parameters
    ----------
    center : (float, float)
        Center of the wedge
    viewLim : `~matplotlib.transforms.Bbox`
        Bbox determining the boundaries of the wedge
    originLim : `~matplotlib.transforms.Bbox`
        Bbox determining the origin for the wedge, if different from *viewLim*
    """
    def __init__(self, center, viewLim, originLim, **kwargs):
        mtransforms.Bbox.__init__(self,
                                  np.array([[0.0, 0.0], [1.0, 1.0]], np.float),
                                  **kwargs)
        self._center = center
        self._viewLim = viewLim
        self._originLim = originLim
        self.set_children(viewLim, originLim)

    def __str__(self):
        return ("{}(\n"
                    "{},\n"
                    "{},\n"
                    "{})"
                .format(type(self).__name__,
                        mtransforms._indent_str(self._center),
                        mtransforms._indent_str(self._viewLim),
                        mtransforms._indent_str(self._originLim)))

    def get_points(self):
        # docstring inherited
        if self._invalid:
            points = self._viewLim.get_points().copy()
            # Scale angular limits to work with Wedge.
            points[:, 0] *= 180 / np.pi
            if points[0, 0] > points[1, 0]:
                points[:, 0] = points[::-1, 0]

            # Scale radial limits based on origin radius.
            points[:, 1] -= self._originLim.y0

            # Scale radial limits to match axes limits.
            rscale = 0.5 / points[1, 1]
            points[:, 1] *= rscale
            width = min(points[1, 1] - points[0, 1], 0.5)

            # Generate bounding box for wedge.
            wedge = mpatches.Wedge(self._center, points[1, 1],
                                   points[0, 0], points[1, 0],
                                   width=width)
            self.update_from_path(wedge.get_path())

            # Ensure equal aspect ratio.
            w, h = self._points[1] - self._points[0]
            deltah = max(w - h, 0) / 2
            deltaw = max(h - w, 0) / 2
            self._points += np.array([[-deltaw, -deltah], [deltaw, deltah]])

            self._invalid = 0

        return self._points


class PolarAxes(Axes):
    """
    A polar graph projection, where the input dimensions are *theta*, *r*.

    Theta starts pointing east and goes anti-clockwise.
    """
    name = 'polar'

    def __init__(self, *args,
                 theta_offset=0, theta_direction=1, rlabel_position=22.5,
                 **kwargs):
        # docstring inherited
        self._default_theta_offset = theta_offset
        self._default_theta_direction = theta_direction
        self._default_rlabel_position = np.deg2rad(rlabel_position)
        super().__init__(*args, **kwargs)
        self.use_sticky_edges = True
        self.set_aspect('equal', adjustable='box', anchor='C')
        self.cla()

    def cla(self):
        Axes.cla(self)

        self.title.set_y(1.05)

        start = self.spines.get('start', None)
        if start:
            start.set_visible(False)
        end = self.spines.get('end', None)
        if end:
            end.set_visible(False)
        self.set_xlim(0.0, 2 * np.pi)

        self.grid(rcParams['polaraxes.grid'])
        inner = self.spines.get('inner', None)
        if inner:
            inner.set_visible(False)

        self.set_rorigin(None)
        self.set_theta_offset(self._default_theta_offset)
        self.set_theta_direction(self._default_theta_direction)

    def _init_axis(self):
        "move this out of __init__ because non-separable axes don't use it"
        self.xaxis = ThetaAxis(self)
        self.yaxis = RadialAxis(self)
        # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla()
        # results in weird artifacts. Therefore we disable this for
        # now.
        # self.spines['polar'].register_axis(self.yaxis)
        self._update_transScale()

    def _set_lim_and_transforms(self):
        # A view limit where the minimum radius can be locked if the user
        # specifies an alternate origin.
        self._originViewLim = mtransforms.LockableBbox(self.viewLim)

        # Handle angular offset and direction.
        self._direction = mtransforms.Affine2D() \
            .scale(self._default_theta_direction, 1.0)
        self._theta_offset = mtransforms.Affine2D() \
            .translate(self._default_theta_offset, 0.0)
        self.transShift = mtransforms.composite_transform_factory(
            self._direction,
            self._theta_offset)
        # A view limit shifted to the correct location after accounting for
        # orientation and offset.
        self._realViewLim = mtransforms.TransformedBbox(self.viewLim,
                                                        self.transShift)

        # Transforms the x and y axis separately by a scale factor
        # It is assumed that this part will have non-linear components
        self.transScale = mtransforms.TransformWrapper(
            mtransforms.IdentityTransform())

        # Scale view limit into a bbox around the selected wedge. This may be
        # smaller than the usual unit axes rectangle if not plotting the full
        # circle.
        self.axesLim = _WedgeBbox((0.5, 0.5),
                                  self._realViewLim, self._originViewLim)

        # Scale the wedge to fill the axes.
        self.transWedge = mtransforms.BboxTransformFrom(self.axesLim)

        # Scale the axes to fill the figure.
        self.transAxes = mtransforms.BboxTransformTo(self.bbox)

        # A (possibly non-linear) projection on the (already scaled)
        # data.  This one is aware of rmin
        self.transProjection = self.PolarTransform(
            self,
            _apply_theta_transforms=False)
        # Add dependency on rorigin.
        self.transProjection.set_children(self._originViewLim)

        # An affine transformation on the data, generally to limit the
        # range of the axes
        self.transProjectionAffine = self.PolarAffine(self.transScale,
                                                      self._originViewLim)

        # The complete data transformation stack -- from data all the
        # way to display coordinates
        self.transData = (
            self.transScale + self.transShift + self.transProjection +
            (self.transProjectionAffine + self.transWedge + self.transAxes))

        # This is the transform for theta-axis ticks.  It is
        # equivalent to transData, except it always puts r == 0.0 and r == 1.0
        # at the edge of the axis circles.
        self._xaxis_transform = (
            mtransforms.blended_transform_factory(
                mtransforms.IdentityTransform(),
                mtransforms.BboxTransformTo(self.viewLim)) +
            self.transData)
        # The theta labels are flipped along the radius, so that text 1 is on
        # the outside by default. This should work the same as before.
        flipr_transform = mtransforms.Affine2D() \
            .translate(0.0, -0.5) \
            .scale(1.0, -1.0) \
            .translate(0.0, 0.5)
        self._xaxis_text_transform = flipr_transform + self._xaxis_transform

        # This is the transform for r-axis ticks.  It scales the theta
        # axis so the gridlines from 0.0 to 1.0, now go from thetamin to
        # thetamax.
        self._yaxis_transform = (
            mtransforms.blended_transform_factory(
                mtransforms.BboxTransformTo(self.viewLim),
                mtransforms.IdentityTransform()) +
            self.transData)
        # The r-axis labels are put at an angle and padded in the r-direction
        self._r_label_position = mtransforms.Affine2D() \
            .translate(self._default_rlabel_position, 0.0)
        self._yaxis_text_transform = mtransforms.TransformWrapper(
            self._r_label_position + self.transData)

    def get_xaxis_transform(self, which='grid'):
        cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which)
        return self._xaxis_transform

    def get_xaxis_text1_transform(self, pad):
        return self._xaxis_text_transform, 'center', 'center'

    def get_xaxis_text2_transform(self, pad):
        return self._xaxis_text_transform, 'center', 'center'

    def get_yaxis_transform(self, which='grid'):
        if which in ('tick1', 'tick2'):
            return self._yaxis_text_transform
        elif which == 'grid':
            return self._yaxis_transform
        else:
            cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which)

    def get_yaxis_text1_transform(self, pad):
        thetamin, thetamax = self._realViewLim.intervalx
        if _is_full_circle_rad(thetamin, thetamax):
            return self._yaxis_text_transform, 'bottom', 'left'
        elif self.get_theta_direction() > 0:
            halign = 'left'
            pad_shift = _ThetaShift(self, pad, 'min')
        else:
            halign = 'right'
            pad_shift = _ThetaShift(self, pad, 'max')
        return self._yaxis_text_transform + pad_shift, 'center', halign

    def get_yaxis_text2_transform(self, pad):
        if self.get_theta_direction() > 0:
            halign = 'right'
            pad_shift = _ThetaShift(self, pad, 'max')
        else:
            halign = 'left'
            pad_shift = _ThetaShift(self, pad, 'min')
        return self._yaxis_text_transform + pad_shift, 'center', halign

    def draw(self, *args, **kwargs):
        thetamin, thetamax = np.rad2deg(self._realViewLim.intervalx)
        if thetamin > thetamax:
            thetamin, thetamax = thetamax, thetamin
        rmin, rmax = ((self._realViewLim.intervaly - self.get_rorigin()) *
                        self.get_rsign())
        if isinstance(self.patch, mpatches.Wedge):
            # Backwards-compatibility: Any subclassed Axes might override the
            # patch to not be the Wedge that PolarAxes uses.
            center = self.transWedge.transform((0.5, 0.5))
            self.patch.set_center(center)
            self.patch.set_theta1(thetamin)
            self.patch.set_theta2(thetamax)

            edge, _ = self.transWedge.transform((1, 0))
            radius = edge - center[0]
            width = min(radius * (rmax - rmin) / rmax, radius)
            self.patch.set_radius(radius)
            self.patch.set_width(width)

            inner_width = radius - width
            inner = self.spines.get('inner', None)
            if inner:
                inner.set_visible(inner_width != 0.0)

        visible = not _is_full_circle_deg(thetamin, thetamax)
        # For backwards compatibility, any subclassed Axes might override the
        # spines to not include start/end that PolarAxes uses.
        start = self.spines.get('start', None)
        end = self.spines.get('end', None)
        if start:
            start.set_visible(visible)
        if end:
            end.set_visible(visible)
        if visible:
            yaxis_text_transform = self._yaxis_transform
        else:
            yaxis_text_transform = self._r_label_position + self.transData
        if self._yaxis_text_transform != yaxis_text_transform:
            self._yaxis_text_transform.set(yaxis_text_transform)
            self.yaxis.reset_ticks()
            self.yaxis.set_clip_path(self.patch)

        Axes.draw(self, *args, **kwargs)

    def _gen_axes_patch(self):
        return mpatches.Wedge((0.5, 0.5), 0.5, 0.0, 360.0)

    def _gen_axes_spines(self):
        spines = OrderedDict([
            ('polar', mspines.Spine.arc_spine(self, 'top',
                                              (0.5, 0.5), 0.5, 0.0, 360.0)),
            ('start', mspines.Spine.linear_spine(self, 'left')),
            ('end', mspines.Spine.linear_spine(self, 'right')),
            ('inner', mspines.Spine.arc_spine(self, 'bottom',
                                              (0.5, 0.5), 0.0, 0.0, 360.0))
        ])
        spines['polar'].set_transform(self.transWedge + self.transAxes)
        spines['inner'].set_transform(self.transWedge + self.transAxes)
        spines['start'].set_transform(self._yaxis_transform)
        spines['end'].set_transform(self._yaxis_transform)
        return spines

    def set_thetamax(self, thetamax):
        """Set the maximum theta limit in degrees."""
        self.viewLim.x1 = np.deg2rad(thetamax)

    def get_thetamax(self):
        """Return the maximum theta limit in degrees."""
        return np.rad2deg(self.viewLim.xmax)

    def set_thetamin(self, thetamin):
        """Set the minimum theta limit in degrees."""
        self.viewLim.x0 = np.deg2rad(thetamin)

    def get_thetamin(self):
        """Get the minimum theta limit in degrees."""
        return np.rad2deg(self.viewLim.xmin)

    def set_thetalim(self, *args, **kwargs):
        """
        Set the minimum and maximum theta values.

        Parameters
        ----------
        thetamin : float
            Minimum value in degrees.
        thetamax : float
            Maximum value in degrees.
        """
        if 'thetamin' in kwargs:
            kwargs['xmin'] = np.deg2rad(kwargs.pop('thetamin'))
        if 'thetamax' in kwargs:
            kwargs['xmax'] = np.deg2rad(kwargs.pop('thetamax'))
        return tuple(np.rad2deg(self.set_xlim(*args, **kwargs)))

    def set_theta_offset(self, offset):
        """
        Set the offset for the location of 0 in radians.
        """
        mtx = self._theta_offset.get_matrix()
        mtx[0, 2] = offset
        self._theta_offset.invalidate()

    def get_theta_offset(self):
        """
        Get the offset for the location of 0 in radians.
        """
        return self._theta_offset.get_matrix()[0, 2]

    def set_theta_zero_location(self, loc, offset=0.0):
        """
        Sets the location of theta's zero.  (Calls set_theta_offset
        with the correct value in radians under the hood.)

        loc : str
            May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE".

        offset : float, optional
            An offset in degrees to apply from the specified `loc`. **Note:**
            this offset is *always* applied counter-clockwise regardless of
            the direction setting.
        """
        mapping = {
            'N': np.pi * 0.5,
            'NW': np.pi * 0.75,
            'W': np.pi,
            'SW': np.pi * 1.25,
            'S': np.pi * 1.5,
            'SE': np.pi * 1.75,
            'E': 0,
            'NE': np.pi * 0.25}
        return self.set_theta_offset(mapping[loc] + np.deg2rad(offset))

    def set_theta_direction(self, direction):
        """
        Set the direction in which theta increases.

        clockwise, -1:
           Theta increases in the clockwise direction

        counterclockwise, anticlockwise, 1:
           Theta increases in the counterclockwise direction
        """
        mtx = self._direction.get_matrix()
        if direction in ('clockwise', -1):
            mtx[0, 0] = -1
        elif direction in ('counterclockwise', 'anticlockwise', 1):
            mtx[0, 0] = 1
        else:
            cbook._check_in_list(
                [-1, 1, 'clockwise', 'counterclockwise', 'anticlockwise'],
                direction=direction)
        self._direction.invalidate()

    def get_theta_direction(self):
        """
        Get the direction in which theta increases.

        -1:
           Theta increases in the clockwise direction

        1:
           Theta increases in the counterclockwise direction
        """
        return self._direction.get_matrix()[0, 0]

    def set_rmax(self, rmax):
        """
        Set the outer radial limit.

        Parameters
        ----------
        rmax : float
        """
        self.viewLim.y1 = rmax

    def get_rmax(self):
        """
        Returns
        -------
        float
            Outer radial limit.
        """
        return self.viewLim.ymax

    def set_rmin(self, rmin):
        """
        Set the inner radial limit.

        Parameters
        ----------
        rmin : float
        """
        self.viewLim.y0 = rmin

    def get_rmin(self):
        """
        Returns
        -------
        float
            The inner radial limit.
        """
        return self.viewLim.ymin

    def set_rorigin(self, rorigin):
        """
        Update the radial origin.

        Parameters
        ----------
        rorigin : float
        """
        self._originViewLim.locked_y0 = rorigin

    def get_rorigin(self):
        """
        Returns
        -------
        float
        """
        return self._originViewLim.y0

    def get_rsign(self):
        return np.sign(self._originViewLim.y1 - self._originViewLim.y0)

    def set_rlim(self, bottom=None, top=None, emit=True, auto=False, **kwargs):
        """
        See `~.polar.PolarAxes.set_ylim`.
        """
        if 'rmin' in kwargs:
            if bottom is None:
                bottom = kwargs.pop('rmin')
            else:
                raise ValueError('Cannot supply both positional "bottom"'
                                 'argument and kwarg "rmin"')
        if 'rmax' in kwargs:
            if top is None:
                top = kwargs.pop('rmax')
            else:
                raise ValueError('Cannot supply both positional "top"'
                                 'argument and kwarg "rmax"')
        return self.set_ylim(bottom=bottom, top=top, emit=emit, auto=auto,
                             **kwargs)

    def set_ylim(self, bottom=None, top=None, emit=True, auto=False,
                 *, ymin=None, ymax=None):
        """
        Set the data limits for the radial axis.

        Parameters
        ----------
        bottom : scalar, optional
            The bottom limit (default: None, which leaves the bottom
            limit unchanged).
            The bottom and top ylims may be passed as the tuple
            (*bottom*, *top*) as the first positional argument (or as
            the *bottom* keyword argument).

        top : scalar, optional
            The top limit (default: None, which leaves the top limit
            unchanged).

        emit : bool, optional
            Whether to notify observers of limit change (default: True).

        auto : bool or None, optional
            Whether to turn on autoscaling of the y-axis. True turns on,
            False turns off (default action), None leaves unchanged.

        ymin, ymax : scalar, optional
            These arguments are deprecated and will be removed in a future
            version.  They are equivalent to *bottom* and *top* respectively,
            and it is an error to pass both *ymin* and *bottom* or
            *ymax* and *top*.

        Returns
        -------
        bottom, top : (float, float)
            The new y-axis limits in data coordinates.
        """
        if ymin is not None:
            if bottom is not None:
                raise ValueError('Cannot supply both positional "bottom" '
                                 'argument and kwarg "ymin"')
            else:
                bottom = ymin
        if ymax is not None:
            if top is not None:
                raise ValueError('Cannot supply both positional "top" '
                                 'argument and kwarg "ymax"')
            else:
                top = ymax
        if top is None and np.iterable(bottom):
            bottom, top = bottom[0], bottom[1]
        return super().set_ylim(bottom=bottom, top=top, emit=emit, auto=auto)

    def get_rlabel_position(self):
        """
        Returns
        -------
        float
            The theta position of the radius labels in degrees.
        """
        return np.rad2deg(self._r_label_position.get_matrix()[0, 2])

    def set_rlabel_position(self, value):
        """Updates the theta position of the radius labels.

        Parameters
        ----------
        value : number
            The angular position of the radius labels in degrees.
        """
        self._r_label_position.clear().translate(np.deg2rad(value), 0.0)

    def set_yscale(self, *args, **kwargs):
        Axes.set_yscale(self, *args, **kwargs)
        self.yaxis.set_major_locator(
            self.RadialLocator(self.yaxis.get_major_locator(), self))

    def set_rscale(self, *args, **kwargs):
        return Axes.set_yscale(self, *args, **kwargs)

    def set_rticks(self, *args, **kwargs):
        return Axes.set_yticks(self, *args, **kwargs)

    def set_thetagrids(self, angles, labels=None, fmt=None, **kwargs):
        """
        Set the theta gridlines in a polar plot.

        Parameters
        ----------
        angles : tuple with floats, degrees
            The angles of the theta gridlines.

        labels : tuple with strings or None
            The labels to use at each theta gridline. The
            `.projections.polar.ThetaFormatter` will be used if None.

        fmt : str or None
            Format string used in `matplotlib.ticker.FormatStrFormatter`.
            For example '%f'. Note that the angle that is used is in
            radians.

        Returns
        -------
        lines, labels : list of `.lines.Line2D`, list of `.text.Text`
            *lines* are the theta gridlines and *labels* are the tick labels.

        Other Parameters
        ----------------
        **kwargs
            *kwargs* are optional `~.Text` properties for the labels.

        See Also
        --------
        .PolarAxes.set_rgrids
        .Axis.get_gridlines
        .Axis.get_ticklabels
        """

        # Make sure we take into account unitized data
        angles = self.convert_yunits(angles)
        angles = np.deg2rad(angles)
        self.set_xticks(angles)
        if labels is not None:
            self.set_xticklabels(labels)
        elif fmt is not None:
            self.xaxis.set_major_formatter(mticker.FormatStrFormatter(fmt))
        for t in self.xaxis.get_ticklabels():
            t.update(kwargs)
        return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels()

    def set_rgrids(self, radii, labels=None, angle=None, fmt=None,
                   **kwargs):
        """
        Set the radial gridlines on a polar plot.

        Parameters
        ----------
        radii : tuple with floats
            The radii for the radial gridlines

        labels : tuple with strings or None
            The labels to use at each radial gridline. The
            `matplotlib.ticker.ScalarFormatter` will be used if None.

        angle : float
            The angular position of the radius labels in degrees.

        fmt : str or None
            Format string used in `matplotlib.ticker.FormatStrFormatter`.
            For example '%f'.

        Returns
        -------
        lines, labels : list of `.lines.Line2D`, list of `.text.Text`
            *lines* are the radial gridlines and *labels* are the tick labels.

        Other Parameters
        ----------------
        **kwargs
            *kwargs* are optional `~.Text` properties for the labels.

        See Also
        --------
        .PolarAxes.set_thetagrids
        .Axis.get_gridlines
        .Axis.get_ticklabels
        """
        # Make sure we take into account unitized data
        radii = self.convert_xunits(radii)
        radii = np.asarray(radii)

        self.set_yticks(radii)
        if labels is not None:
            self.set_yticklabels(labels)
        elif fmt is not None:
            self.yaxis.set_major_formatter(mticker.FormatStrFormatter(fmt))
        if angle is None:
            angle = self.get_rlabel_position()
        self.set_rlabel_position(angle)
        for t in self.yaxis.get_ticklabels():
            t.update(kwargs)
        return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels()

    def set_xscale(self, scale, *args, **kwargs):
        if scale != 'linear':
            raise NotImplementedError(
                "You can not set the xscale on a polar plot.")

    def format_coord(self, theta, r):
        """
        Return a format string formatting the coordinate using Unicode
        characters.
        """
        if theta < 0:
            theta += 2 * np.pi
        theta /= np.pi
        return ('\N{GREEK SMALL LETTER THETA}=%0.3f\N{GREEK SMALL LETTER PI} '
                '(%0.3f\N{DEGREE SIGN}), r=%0.3f') % (theta, theta * 180.0, r)

    def get_data_ratio(self):
        '''
        Return the aspect ratio of the data itself.  For a polar plot,
        this should always be 1.0
        '''
        return 1.0

    # # # Interactive panning

    def can_zoom(self):
        """
        Return *True* if this axes supports the zoom box button functionality.

        Polar axes do not support zoom boxes.
        """
        return False

    def can_pan(self):
        """
        Return *True* if this axes supports the pan/zoom button functionality.

        For polar axes, this is slightly misleading. Both panning and
        zooming are performed by the same button. Panning is performed
        in azimuth while zooming is done along the radial.
        """
        return True

    def start_pan(self, x, y, button):
        angle = np.deg2rad(self.get_rlabel_position())
        mode = ''
        if button == 1:
            epsilon = np.pi / 45.0
            t, r = self.transData.inverted().transform((x, y))
            if angle - epsilon <= t <= angle + epsilon:
                mode = 'drag_r_labels'
        elif button == 3:
            mode = 'zoom'

        self._pan_start = types.SimpleNamespace(
            rmax=self.get_rmax(),
            trans=self.transData.frozen(),
            trans_inverse=self.transData.inverted().frozen(),
            r_label_angle=self.get_rlabel_position(),
            x=x,
            y=y,
            mode=mode)

    def end_pan(self):
        del self._pan_start

    def drag_pan(self, button, key, x, y):
        p = self._pan_start

        if p.mode == 'drag_r_labels':
            (startt, startr), (t, r) = p.trans_inverse.transform(
                [(p.x, p.y), (x, y)])

            # Deal with theta
            dt = np.rad2deg(startt - t)
            self.set_rlabel_position(p.r_label_angle - dt)

            trans, vert1, horiz1 = self.get_yaxis_text1_transform(0.0)
            trans, vert2, horiz2 = self.get_yaxis_text2_transform(0.0)
            for t in self.yaxis.majorTicks + self.yaxis.minorTicks:
                t.label1.set_va(vert1)
                t.label1.set_ha(horiz1)
                t.label2.set_va(vert2)
                t.label2.set_ha(horiz2)

        elif p.mode == 'zoom':
            (startt, startr), (t, r) = p.trans_inverse.transform(
                [(p.x, p.y), (x, y)])

            # Deal with r
            scale = r / startr
            self.set_rmax(p.rmax / scale)


# to keep things all self contained, we can put aliases to the Polar classes
# defined above. This isn't strictly necessary, but it makes some of the
# code more readable (and provides a backwards compatible Polar API)
PolarAxes.PolarTransform = PolarTransform
PolarAxes.PolarAffine = PolarAffine
PolarAxes.InvertedPolarTransform = InvertedPolarTransform
PolarAxes.ThetaFormatter = ThetaFormatter
PolarAxes.RadialLocator = RadialLocator
PolarAxes.ThetaLocator = ThetaLocator