pyplot.py 108 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
# Note: The first part of this file can be modified in place, but the latter
# part is autogenerated by the boilerplate.py script.

"""
`matplotlib.pyplot` is a state-based interface to matplotlib. It provides
a MATLAB-like way of plotting.

pyplot is mainly intended for interactive plots and simple cases of
programmatic plot generation::

    import numpy as np
    import matplotlib.pyplot as plt

    x = np.arange(0, 5, 0.1)
    y = np.sin(x)
    plt.plot(x, y)

The object-oriented API is recommended for more complex plots.
"""

import functools
import importlib
import inspect
import logging
from numbers import Number
import re
import sys
import time

from cycler import cycler
import matplotlib
import matplotlib.colorbar
import matplotlib.image
from matplotlib import rcsetup, style
from matplotlib import _pylab_helpers, interactive
from matplotlib import cbook
from matplotlib.cbook import dedent, deprecated, silent_list, warn_deprecated
from matplotlib import docstring
from matplotlib.backend_bases import FigureCanvasBase
from matplotlib.figure import Figure, figaspect
from matplotlib.gridspec import GridSpec
from matplotlib import rcParams, rcParamsDefault, get_backend, rcParamsOrig
from matplotlib import rc_context
from matplotlib.rcsetup import interactive_bk as _interactive_bk
from matplotlib.artist import getp, get, Artist
from matplotlib.artist import setp as _setp
from matplotlib.axes import Axes, Subplot
from matplotlib.projections import PolarAxes
from matplotlib import mlab  # for _csv2rec, detrend_none, window_hanning
from matplotlib.scale import get_scale_docs, get_scale_names

from matplotlib import cm
from matplotlib.cm import get_cmap, register_cmap

import numpy as np

# We may not need the following imports here:
from matplotlib.colors import Normalize
from matplotlib.lines import Line2D
from matplotlib.text import Text, Annotation
from matplotlib.patches import Polygon, Rectangle, Circle, Arrow
from matplotlib.widgets import SubplotTool, Button, Slider, Widget

from .ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\
           FuncFormatter, FormatStrFormatter, ScalarFormatter,\
           LogFormatter, LogFormatterExponent, LogFormatterMathtext,\
           Locator, IndexLocator, FixedLocator, NullLocator,\
           LinearLocator, LogLocator, AutoLocator, MultipleLocator,\
           MaxNLocator
from matplotlib.backends import _get_running_interactive_framework

_log = logging.getLogger(__name__)


## Global ##


_IP_REGISTERED = None
_INSTALL_FIG_OBSERVER = False


def install_repl_displayhook():
    """
    Install a repl display hook so that any stale figure are automatically
    redrawn when control is returned to the repl.

    This works both with IPython and with vanilla python shells.
    """
    global _IP_REGISTERED
    global _INSTALL_FIG_OBSERVER

    class _NotIPython(Exception):
        pass

    # see if we have IPython hooks around, if use them

    try:
        if 'IPython' in sys.modules:
            from IPython import get_ipython
            ip = get_ipython()
            if ip is None:
                raise _NotIPython()

            if _IP_REGISTERED:
                return

            def post_execute():
                if matplotlib.is_interactive():
                    draw_all()

            # IPython >= 2
            try:
                ip.events.register('post_execute', post_execute)
            except AttributeError:
                # IPython 1.x
                ip.register_post_execute(post_execute)

            _IP_REGISTERED = post_execute
            _INSTALL_FIG_OBSERVER = False

            # trigger IPython's eventloop integration, if available
            from IPython.core.pylabtools import backend2gui

            ipython_gui_name = backend2gui.get(get_backend())
            if ipython_gui_name:
                ip.enable_gui(ipython_gui_name)
        else:
            _INSTALL_FIG_OBSERVER = True

    # import failed or ipython is not running
    except (ImportError, _NotIPython):
        _INSTALL_FIG_OBSERVER = True


def uninstall_repl_displayhook():
    """
    Uninstall the matplotlib display hook.

    .. warning::

       Need IPython >= 2 for this to work.  For IPython < 2 will raise a
       ``NotImplementedError``

    .. warning::

       If you are using vanilla python and have installed another
       display hook this will reset ``sys.displayhook`` to what ever
       function was there when matplotlib installed it's displayhook,
       possibly discarding your changes.
    """
    global _IP_REGISTERED
    global _INSTALL_FIG_OBSERVER
    if _IP_REGISTERED:
        from IPython import get_ipython
        ip = get_ipython()
        try:
            ip.events.unregister('post_execute', _IP_REGISTERED)
        except AttributeError:
            raise NotImplementedError("Can not unregister events "
                                      "in IPython < 2.0")
        _IP_REGISTERED = None

    if _INSTALL_FIG_OBSERVER:
        _INSTALL_FIG_OBSERVER = False


draw_all = _pylab_helpers.Gcf.draw_all


@functools.wraps(matplotlib.set_loglevel)
def set_loglevel(*args, **kwargs):  # Ensure this appears in the pyplot docs.
    return matplotlib.set_loglevel(*args, **kwargs)


@docstring.copy(Artist.findobj)
def findobj(o=None, match=None, include_self=True):
    if o is None:
        o = gcf()
    return o.findobj(match, include_self=include_self)


def switch_backend(newbackend):
    """
    Close all open figures and set the Matplotlib backend.

    The argument is case-insensitive.  Switching to an interactive backend is
    possible only if no event loop for another interactive backend has started.
    Switching to and from non-interactive backends is always possible.

    Parameters
    ----------
    newbackend : str
        The name of the backend to use.
    """
    close("all")

    if newbackend is rcsetup._auto_backend_sentinel:
        # Don't try to fallback on the cairo-based backends as they each have
        # an additional dependency (pycairo) over the agg-based backend, and
        # are of worse quality.
        for candidate in [
                "macosx", "qt5agg", "qt4agg", "gtk3agg", "tkagg", "wxagg"]:
            try:
                switch_backend(candidate)
            except ImportError:
                continue
            else:
                rcParamsOrig['backend'] = candidate
                return
        else:
            # Switching to Agg should always succeed; if it doesn't, let the
            # exception propagate out.
            switch_backend("agg")
            rcParamsOrig["backend"] = "agg"
            return

    backend_name = (
        newbackend[9:] if newbackend.startswith("module://")
        else "matplotlib.backends.backend_{}".format(newbackend.lower()))

    backend_mod = importlib.import_module(backend_name)
    Backend = type(
        "Backend", (matplotlib.backends._Backend,), vars(backend_mod))
    _log.debug("Loaded backend %s version %s.",
               newbackend, Backend.backend_version)

    required_framework = getattr(
        Backend.FigureCanvas, "required_interactive_framework", None)
    if required_framework is not None:
        current_framework = \
            matplotlib.backends._get_running_interactive_framework()
        if (current_framework and required_framework
                and current_framework != required_framework):
            raise ImportError(
                "Cannot load backend {!r} which requires the {!r} interactive "
                "framework, as {!r} is currently running".format(
                    newbackend, required_framework, current_framework))

    rcParams['backend'] = rcParamsDefault['backend'] = newbackend

    global _backend_mod, new_figure_manager, draw_if_interactive, _show
    _backend_mod = backend_mod
    new_figure_manager = Backend.new_figure_manager
    draw_if_interactive = Backend.draw_if_interactive
    _show = Backend.show

    # Need to keep a global reference to the backend for compatibility reasons.
    # See https://github.com/matplotlib/matplotlib/issues/6092
    matplotlib.backends.backend = newbackend


def show(*args, **kw):
    """
    Display all figures.

    When running in ipython with its pylab mode, display all
    figures and return to the ipython prompt.

    In non-interactive mode, display all figures and block until
    the figures have been closed; in interactive mode it has no
    effect unless figures were created prior to a change from
    non-interactive to interactive mode (not recommended).  In
    that case it displays the figures but does not block.

    Parameters
    ----------
    block : bool, optional
        This is experimental, and may be set to ``True`` or ``False`` to
        override the blocking behavior described above.
    """
    global _show
    return _show(*args, **kw)


def isinteractive():
    """Return whether to redraw after every plotting command."""
    return matplotlib.is_interactive()


def ioff():
    """Turn the interactive mode off."""
    matplotlib.interactive(False)
    uninstall_repl_displayhook()


def ion():
    """Turn the interactive mode on."""
    matplotlib.interactive(True)
    install_repl_displayhook()


def pause(interval):
    """
    Pause for *interval* seconds.

    If there is an active figure, it will be updated and displayed before the
    pause, and the GUI event loop (if any) will run during the pause.

    This can be used for crude animation.  For more complex animation, see
    :mod:`matplotlib.animation`.

    Notes
    -----
    This function is experimental; its behavior may be changed or extended in a
    future release.
    """
    manager = _pylab_helpers.Gcf.get_active()
    if manager is not None:
        canvas = manager.canvas
        if canvas.figure.stale:
            canvas.draw_idle()
        show(block=False)
        canvas.start_event_loop(interval)
    else:
        time.sleep(interval)


@docstring.copy(matplotlib.rc)
def rc(group, **kwargs):
    matplotlib.rc(group, **kwargs)


@docstring.copy(matplotlib.rc_context)
def rc_context(rc=None, fname=None):
    return matplotlib.rc_context(rc, fname)


@docstring.copy(matplotlib.rcdefaults)
def rcdefaults():
    matplotlib.rcdefaults()
    if matplotlib.is_interactive():
        draw_all()


## Current image ##


def gci():
    """
    Get the current colorable artist.

    Specifically, returns the current `.ScalarMappable` instance (`.Image`
    created by `imshow` or `figimage`, `.Collection` created by `pcolor` or
    `scatter`, etc.), or *None* if no such instance has been defined.

    The current image is an attribute of the current axes, or the nearest
    earlier axes in the current figure that contains an image.

    Notes
    -----
    Historically, the only colorable artists were images; hence the name
    ``gci`` (get current image).
    """
    return gcf()._gci()


## Any Artist ##


# (getp is simply imported)
@docstring.copy(_setp)
def setp(obj, *args, **kwargs):
    return _setp(obj, *args, **kwargs)


def xkcd(scale=1, length=100, randomness=2):
    """
    Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode.
    This will only have effect on things drawn after this function is
    called.

    For best results, the "Humor Sans" font should be installed: it is
    not included with matplotlib.

    Parameters
    ----------
    scale : float, optional
        The amplitude of the wiggle perpendicular to the source line.
    length : float, optional
        The length of the wiggle along the line.
    randomness : float, optional
        The scale factor by which the length is shrunken or expanded.

    Notes
    -----
    This function works by a number of rcParams, so it will probably
    override others you have set before.

    If you want the effects of this function to be temporary, it can
    be used as a context manager, for example::

        with plt.xkcd():
            # This figure will be in XKCD-style
            fig1 = plt.figure()
            # ...

        # This figure will be in regular style
        fig2 = plt.figure()
    """
    if rcParams['text.usetex']:
        raise RuntimeError(
            "xkcd mode is not compatible with text.usetex = True")

    from matplotlib import patheffects
    return rc_context({
        'font.family': ['xkcd', 'xkcd Script', 'Humor Sans', 'Comic Neue',
                        'Comic Sans MS'],
        'font.size': 14.0,
        'path.sketch': (scale, length, randomness),
        'path.effects': [patheffects.withStroke(linewidth=4, foreground="w")],
        'axes.linewidth': 1.5,
        'lines.linewidth': 2.0,
        'figure.facecolor': 'white',
        'grid.linewidth': 0.0,
        'axes.grid': False,
        'axes.unicode_minus': False,
        'axes.edgecolor': 'black',
        'xtick.major.size': 8,
        'xtick.major.width': 3,
        'ytick.major.size': 8,
        'ytick.major.width': 3,
    })


## Figures ##

def figure(num=None,  # autoincrement if None, else integer from 1-N
           figsize=None,  # defaults to rc figure.figsize
           dpi=None,  # defaults to rc figure.dpi
           facecolor=None,  # defaults to rc figure.facecolor
           edgecolor=None,  # defaults to rc figure.edgecolor
           frameon=True,
           FigureClass=Figure,
           clear=False,
           **kwargs
           ):
    """
    Create a new figure.

    Parameters
    ----------
    num : int or str, optional, default: None
        If not provided, a new figure will be created, and the figure number
        will be incremented. The figure objects holds this number in a `number`
        attribute.
        If num is provided, and a figure with this id already exists, make
        it active, and returns a reference to it. If this figure does not
        exists, create it and returns it.
        If num is a string, the window title will be set to this figure's
        *num*.

    figsize : (float, float), optional, default: None
        width, height in inches. If not provided, defaults to
        :rc:`figure.figsize` = ``[6.4, 4.8]``.

    dpi : integer, optional, default: None
        resolution of the figure. If not provided, defaults to
        :rc:`figure.dpi` = ``100``.

    facecolor : color
        the background color. If not provided, defaults to
        :rc:`figure.facecolor` = ``'w'``.

    edgecolor : color
        the border color. If not provided, defaults to
        :rc:`figure.edgecolor` = ``'w'``.

    frameon : bool, optional, default: True
        If False, suppress drawing the figure frame.

    FigureClass : subclass of `~matplotlib.figure.Figure`
        Optionally use a custom `.Figure` instance.

    clear : bool, optional, default: False
        If True and the figure already exists, then it is cleared.

    Returns
    -------
    figure : `~matplotlib.figure.Figure`
        The `.Figure` instance returned will also be passed to
        new_figure_manager in the backends, which allows to hook custom
        `.Figure` classes into the pyplot interface. Additional kwargs will be
        passed to the `.Figure` init function.

    Notes
    -----
    If you are creating many figures, make sure you explicitly call
    `.pyplot.close` on the figures you are not using, because this will
    enable pyplot to properly clean up the memory.

    `~matplotlib.rcParams` defines the default values, which can be modified
    in the matplotlibrc file.
    """

    if figsize is None:
        figsize = rcParams['figure.figsize']
    if dpi is None:
        dpi = rcParams['figure.dpi']
    if facecolor is None:
        facecolor = rcParams['figure.facecolor']
    if edgecolor is None:
        edgecolor = rcParams['figure.edgecolor']

    allnums = get_fignums()
    next_num = max(allnums) + 1 if allnums else 1
    figLabel = ''
    if num is None:
        num = next_num
    elif isinstance(num, str):
        figLabel = num
        allLabels = get_figlabels()
        if figLabel not in allLabels:
            if figLabel == 'all':
                cbook._warn_external(
                    "close('all') closes all existing figures")
            num = next_num
        else:
            inum = allLabels.index(figLabel)
            num = allnums[inum]
    else:
        num = int(num)  # crude validation of num argument

    figManager = _pylab_helpers.Gcf.get_fig_manager(num)
    if figManager is None:
        max_open_warning = rcParams['figure.max_open_warning']

        if len(allnums) >= max_open_warning >= 1:
            cbook._warn_external(
                "More than %d figures have been opened. Figures "
                "created through the pyplot interface "
                "(`matplotlib.pyplot.figure`) are retained until "
                "explicitly closed and may consume too much memory. "
                "(To control this warning, see the rcParam "
                "`figure.max_open_warning`)." %
                max_open_warning, RuntimeWarning)

        if get_backend().lower() == 'ps':
            dpi = 72

        figManager = new_figure_manager(num, figsize=figsize,
                                        dpi=dpi,
                                        facecolor=facecolor,
                                        edgecolor=edgecolor,
                                        frameon=frameon,
                                        FigureClass=FigureClass,
                                        **kwargs)

        if figLabel:
            figManager.set_window_title(figLabel)
            figManager.canvas.figure.set_label(figLabel)

        # make this figure current on button press event
        def make_active(event):
            _pylab_helpers.Gcf.set_active(figManager)

        cid = figManager.canvas.mpl_connect('button_press_event', make_active)
        figManager._cidgcf = cid

        _pylab_helpers.Gcf.set_active(figManager)
        fig = figManager.canvas.figure
        fig.number = num

        # make sure backends (inline) that we don't ship that expect this
        # to be called in plotting commands to make the figure call show
        # still work.  There is probably a better way to do this in the
        # FigureManager base class.
        if matplotlib.is_interactive():
            draw_if_interactive()

        if _INSTALL_FIG_OBSERVER:
            fig.stale_callback = _auto_draw_if_interactive

    if clear:
        figManager.canvas.figure.clear()

    return figManager.canvas.figure


def _auto_draw_if_interactive(fig, val):
    """
    This is an internal helper function for making sure that auto-redrawing
    works as intended in the plain python repl.

    Parameters
    ----------
    fig : Figure
        A figure object which is assumed to be associated with a canvas
    """
    if (val and matplotlib.is_interactive()
            and not fig.canvas.is_saving()
            and not fig.canvas._is_idle_drawing):
        # Some artists can mark themselves as stale in the middle of drawing
        # (e.g. axes position & tick labels being computed at draw time), but
        # this shouldn't trigger a redraw because the current redraw will
        # already take them into account.
        with fig.canvas._idle_draw_cntx():
            fig.canvas.draw_idle()


def gcf():
    """
    Get the current figure.

    If no current figure exists, a new one is created using
    `~.pyplot.figure()`.
    """
    figManager = _pylab_helpers.Gcf.get_active()
    if figManager is not None:
        return figManager.canvas.figure
    else:
        return figure()


def fignum_exists(num):
    """Return whether the figure with the given id exists."""
    return _pylab_helpers.Gcf.has_fignum(num) or num in get_figlabels()


def get_fignums():
    """Return a list of existing figure numbers."""
    return sorted(_pylab_helpers.Gcf.figs)


def get_figlabels():
    """Return a list of existing figure labels."""
    figManagers = _pylab_helpers.Gcf.get_all_fig_managers()
    figManagers.sort(key=lambda m: m.num)
    return [m.canvas.figure.get_label() for m in figManagers]


def get_current_fig_manager():
    """
    Return the figure manager of the current figure.

    The figure manager is a container for the actual backend-depended window
    that displays the figure on screen.

    If if no current figure exists, a new one is created an its figure
    manager is returned.

    Returns
    -------
    manager : `.FigureManagerBase` or backend-dependent subclass thereof
    """
    return gcf().canvas.manager


@docstring.copy(FigureCanvasBase.mpl_connect)
def connect(s, func):
    return gcf().canvas.mpl_connect(s, func)


@docstring.copy(FigureCanvasBase.mpl_disconnect)
def disconnect(cid):
    return gcf().canvas.mpl_disconnect(cid)


def close(fig=None):
    """
    Close a figure window.

    Parameters
    ----------
    fig : None or int or str or `.Figure`
        The figure to close. There are a number of ways to specify this:

        - *None*: the current figure
        - `.Figure`: the given `.Figure` instance
        - ``int``: a figure number
        - ``str``: a figure name
        - 'all': all figures

    """
    if fig is None:
        figManager = _pylab_helpers.Gcf.get_active()
        if figManager is None:
            return
        else:
            _pylab_helpers.Gcf.destroy(figManager.num)
    elif fig == 'all':
        _pylab_helpers.Gcf.destroy_all()
    elif isinstance(fig, int):
        _pylab_helpers.Gcf.destroy(fig)
    elif hasattr(fig, 'int'):
        # if we are dealing with a type UUID, we
        # can use its integer representation
        _pylab_helpers.Gcf.destroy(fig.int)
    elif isinstance(fig, str):
        allLabels = get_figlabels()
        if fig in allLabels:
            num = get_fignums()[allLabels.index(fig)]
            _pylab_helpers.Gcf.destroy(num)
    elif isinstance(fig, Figure):
        _pylab_helpers.Gcf.destroy_fig(fig)
    else:
        raise TypeError("close() argument must be a Figure, an int, a string, "
                        "or None, not '%s'")


def clf():
    """Clear the current figure."""
    gcf().clf()


def draw():
    """
    Redraw the current figure.

    This is used to update a figure that has been altered, but not
    automatically re-drawn.  If interactive mode is on (via `.ion()`), this
    should be only rarely needed, but there may be ways to modify the state of
    a figure without marking it as "stale".  Please report these cases as bugs.

    This is equivalent to calling ``fig.canvas.draw_idle()``, where ``fig`` is
    the current figure.
    """
    gcf().canvas.draw_idle()


@docstring.copy(Figure.savefig)
def savefig(*args, **kwargs):
    fig = gcf()
    res = fig.savefig(*args, **kwargs)
    fig.canvas.draw_idle()   # need this if 'transparent=True' to reset colors
    return res


## Putting things in figures ##


def figlegend(*args, **kwargs):
    return gcf().legend(*args, **kwargs)
if Figure.legend.__doc__:
    figlegend.__doc__ = Figure.legend.__doc__.replace("legend(", "figlegend(")


## Axes ##

@docstring.dedent_interpd
def axes(arg=None, **kwargs):
    """
    Add an axes to the current figure and make it the current axes.

    Call signatures::

        plt.axes()
        plt.axes(rect, projection=None, polar=False, **kwargs)
        plt.axes(ax)

    Parameters
    ----------
    arg : None or 4-tuple
        The exact behavior of this function depends on the type:

        - *None*: A new full window axes is added using
          ``subplot(111, **kwargs)``
        - 4-tuple of floats *rect* = ``[left, bottom, width, height]``.
          A new axes is added with dimensions *rect* in normalized
          (0, 1) units using `~.Figure.add_axes` on the current figure.

    projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \
'polar', 'rectilinear', str}, optional
        The projection type of the `~.axes.Axes`. *str* is the name of
        a custom projection, see `~matplotlib.projections`. The default
        None results in a 'rectilinear' projection.

    polar : boolean, optional
        If True, equivalent to projection='polar'.

    sharex, sharey : `~.axes.Axes`, optional
        Share the x or y `~matplotlib.axis` with sharex and/or sharey.
        The axis will have the same limits, ticks, and scale as the axis
        of the shared axes.


    label : str
        A label for the returned axes.

    Other Parameters
    ----------------
    **kwargs
        This method also takes the keyword arguments for
        the returned axes class. The keyword arguments for the
        rectilinear axes class `~.axes.Axes` can be found in
        the following table but there might also be other keyword
        arguments if another projection is used, see the actual axes
        class.

        %(Axes)s

    Returns
    -------
    axes : `~.axes.Axes` (or a subclass of `~.axes.Axes`)
        The returned axes class depends on the projection used. It is
        `~.axes.Axes` if rectilinear projection are used and
        `.projections.polar.PolarAxes` if polar projection
        are used.

    Notes
    -----
    If the figure already has a axes with key (*args*,
    *kwargs*) then it will simply make that axes current and
    return it.  This behavior is deprecated. Meanwhile, if you do
    not want this behavior (i.e., you want to force the creation of a
    new axes), you must use a unique set of args and kwargs.  The axes
    *label* attribute has been exposed for this purpose: if you want
    two axes that are otherwise identical to be added to the figure,
    make sure you give them unique labels.

    See Also
    --------
    .Figure.add_axes
    .pyplot.subplot
    .Figure.add_subplot
    .Figure.subplots
    .pyplot.subplots

    Examples
    --------
    ::

        # Creating a new full window axes
        plt.axes()

        # Creating a new axes with specified dimensions and some kwargs
        plt.axes((left, bottom, width, height), facecolor='w')
    """

    if arg is None:
        return subplot(111, **kwargs)
    else:
        return gcf().add_axes(arg, **kwargs)


def delaxes(ax=None):
    """
    Remove the `Axes` *ax* (defaulting to the current axes) from its figure.

    A KeyError is raised if the axes doesn't exist.
    """
    if ax is None:
        ax = gca()
    ax.figure.delaxes(ax)


def sca(ax):
    """
    Set the current Axes instance to *ax*.

    The current Figure is updated to the parent of *ax*.
    """
    managers = _pylab_helpers.Gcf.get_all_fig_managers()
    for m in managers:
        if ax in m.canvas.figure.axes:
            _pylab_helpers.Gcf.set_active(m)
            m.canvas.figure.sca(ax)
            return
    raise ValueError("Axes instance argument was not found in a figure")


def gca(**kwargs):
    """
    Get the current :class:`~matplotlib.axes.Axes` instance on the
    current figure matching the given keyword args, or create one.

    Examples
    --------
    To get the current polar axes on the current figure::

        plt.gca(projection='polar')

    If the current axes doesn't exist, or isn't a polar one, the appropriate
    axes will be created and then returned.

    See Also
    --------
    matplotlib.figure.Figure.gca : The figure's gca method.
    """
    return gcf().gca(**kwargs)


## More ways of creating axes ##

@docstring.dedent_interpd
def subplot(*args, **kwargs):
    """
    Add a subplot to the current figure.

    Wrapper of `.Figure.add_subplot` with a difference in behavior
    explained in the notes section.

    Call signatures::

       subplot(nrows, ncols, index, **kwargs)
       subplot(pos, **kwargs)
       subplot(ax)

    Parameters
    ----------
    *args
        Either a 3-digit integer or three separate integers
        describing the position of the subplot. If the three
        integers are *nrows*, *ncols*, and *index* in order, the
        subplot will take the *index* position on a grid with *nrows*
        rows and *ncols* columns. *index* starts at 1 in the upper left
        corner and increases to the right.

        *pos* is a three digit integer, where the first digit is the
        number of rows, the second the number of columns, and the third
        the index of the subplot. i.e. fig.add_subplot(235) is the same as
        fig.add_subplot(2, 3, 5). Note that all integers must be less than
        10 for this form to work.

    projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \
'polar', 'rectilinear', str}, optional
        The projection type of the subplot (`~.axes.Axes`). *str* is the name
        of a custom projection, see `~matplotlib.projections`. The default
        None results in a 'rectilinear' projection.

    polar : boolean, optional
        If True, equivalent to projection='polar'.

    sharex, sharey : `~.axes.Axes`, optional
        Share the x or y `~matplotlib.axis` with sharex and/or sharey. The
        axis will have the same limits, ticks, and scale as the axis of the
        shared axes.

    label : str
        A label for the returned axes.

    Other Parameters
    ----------------
    **kwargs
        This method also takes the keyword arguments for the returned axes
        base class; except for the *figure* argument. The keyword arguments
        for the rectilinear base class `~.axes.Axes` can be found in
        the following table but there might also be other keyword
        arguments if another projection is used.

        %(Axes)s

    Returns
    -------
    axes : an `.axes.SubplotBase` subclass of `~.axes.Axes` (or a subclass \
    of `~.axes.Axes`)

        The axes of the subplot. The returned axes base class depends on
        the projection used. It is `~.axes.Axes` if rectilinear projection
        are used and `.projections.polar.PolarAxes` if polar projection
        are used. The returned axes is then a subplot subclass of the
        base class.

    Notes
    -----
    Creating a subplot will delete any pre-existing subplot that overlaps
    with it beyond sharing a boundary::

        import matplotlib.pyplot as plt
        # plot a line, implicitly creating a subplot(111)
        plt.plot([1, 2, 3])
        # now create a subplot which represents the top plot of a grid
        # with 2 rows and 1 column. Since this subplot will overlap the
        # first, the plot (and its axes) previously created, will be removed
        plt.subplot(211)

    If you do not want this behavior, use the `.Figure.add_subplot` method
    or the `.pyplot.axes` function instead.

    If the figure already has a subplot with key (*args*,
    *kwargs*) then it will simply make that subplot current and
    return it.  This behavior is deprecated. Meanwhile, if you do
    not want this behavior (i.e., you want to force the creation of a
    new subplot), you must use a unique set of args and kwargs.  The axes
    *label* attribute has been exposed for this purpose: if you want
    two subplots that are otherwise identical to be added to the figure,
    make sure you give them unique labels.

    In rare circumstances, `.add_subplot` may be called with a single
    argument, a subplot axes instance already created in the
    present figure but not in the figure's list of axes.

    See Also
    --------
    .Figure.add_subplot
    .pyplot.subplots
    .pyplot.axes
    .Figure.subplots

    Examples
    --------
    ::

        plt.subplot(221)

        # equivalent but more general
        ax1=plt.subplot(2, 2, 1)

        # add a subplot with no frame
        ax2=plt.subplot(222, frameon=False)

        # add a polar subplot
        plt.subplot(223, projection='polar')

        # add a red subplot that shares the x-axis with ax1
        plt.subplot(224, sharex=ax1, facecolor='red')

        # delete ax2 from the figure
        plt.delaxes(ax2)

        # add ax2 to the figure again
        plt.subplot(ax2)
    """

    # if subplot called without arguments, create subplot(1, 1, 1)
    if len(args) == 0:
        args = (1, 1, 1)

    # This check was added because it is very easy to type
    # subplot(1, 2, False) when subplots(1, 2, False) was intended
    # (sharex=False, that is). In most cases, no error will
    # ever occur, but mysterious behavior can result because what was
    # intended to be the sharex argument is instead treated as a
    # subplot index for subplot()
    if len(args) >= 3 and isinstance(args[2], bool):
        cbook._warn_external("The subplot index argument to subplot() appears "
                             "to be a boolean. Did you intend to use "
                             "subplots()?")

    fig = gcf()
    a = fig.add_subplot(*args, **kwargs)
    bbox = a.bbox
    byebye = []
    for other in fig.axes:
        if other == a:
            continue
        if bbox.fully_overlaps(other.bbox):
            byebye.append(other)
    for ax in byebye:
        delaxes(ax)

    return a


def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,
             subplot_kw=None, gridspec_kw=None, **fig_kw):
    """
    Create a figure and a set of subplots.

    This utility wrapper makes it convenient to create common layouts of
    subplots, including the enclosing figure object, in a single call.

    Parameters
    ----------
    nrows, ncols : int, optional, default: 1
        Number of rows/columns of the subplot grid.

    sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False
        Controls sharing of properties among x (`sharex`) or y (`sharey`)
        axes:

        - True or 'all': x- or y-axis will be shared among all subplots.
        - False or 'none': each subplot x- or y-axis will be independent.
        - 'row': each subplot row will share an x- or y-axis.
        - 'col': each subplot column will share an x- or y-axis.

        When subplots have a shared x-axis along a column, only the x tick
        labels of the bottom subplot are created. Similarly, when subplots
        have a shared y-axis along a row, only the y tick labels of the first
        column subplot are created. To later turn other subplots' ticklabels
        on, use `~matplotlib.axes.Axes.tick_params`.

    squeeze : bool, optional, default: True
        - If True, extra dimensions are squeezed out from the returned
          array of `~matplotlib.axes.Axes`:

          - if only one subplot is constructed (nrows=ncols=1), the
            resulting single Axes object is returned as a scalar.
          - for Nx1 or 1xM subplots, the returned object is a 1D numpy
            object array of Axes objects.
          - for NxM, subplots with N>1 and M>1 are returned as a 2D array.

        - If False, no squeezing at all is done: the returned Axes object is
          always a 2D array containing Axes instances, even if it ends up
          being 1x1.

    num : int or str, optional, default: None
        A `.pyplot.figure` keyword that sets the figure number or label.

    subplot_kw : dict, optional
        Dict with keywords passed to the
        `~matplotlib.figure.Figure.add_subplot` call used to create each
        subplot.

    gridspec_kw : dict, optional
        Dict with keywords passed to the `~matplotlib.gridspec.GridSpec`
        constructor used to create the grid the subplots are placed on.

    **fig_kw
        All additional keyword arguments are passed to the
        `.pyplot.figure` call.

    Returns
    -------
    fig : `~.figure.Figure`

    ax : `.axes.Axes` object or array of Axes objects.
        *ax* can be either a single `~matplotlib.axes.Axes` object or an
        array of Axes objects if more than one subplot was created.  The
        dimensions of the resulting array can be controlled with the squeeze
        keyword, see above.

        Typical idioms for handling the return value are::

            # using the variable ax for single a Axes
            fig, ax = plt.subplots()

            # using the variable axs for multiple Axes
            fig, axs = plt.subplots(2, 2)

            # using tuple unpacking for multiple Axes
            fig, (ax1, ax2) = plt.subplot(1, 2)
            fig, ((ax1, ax2), (ax3, ax4)) = plt.subplot(2, 2)

        The names ``ax`` and pluralized ``axs`` are preferred over ``axes``
        because for the latter it's not clear if it refers to a single
        `~.axes.Axes` instance or a collection of these.

    Examples
    --------
    ::

        # First create some toy data:
        x = np.linspace(0, 2*np.pi, 400)
        y = np.sin(x**2)

        # Create just a figure and only one subplot
        fig, ax = plt.subplots()
        ax.plot(x, y)
        ax.set_title('Simple plot')

        # Create two subplots and unpack the output array immediately
        f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
        ax1.plot(x, y)
        ax1.set_title('Sharing Y axis')
        ax2.scatter(x, y)

        # Create four polar axes and access them through the returned array
        fig, axs = plt.subplots(2, 2, subplot_kw=dict(polar=True))
        axs[0, 0].plot(x, y)
        axs[1, 1].scatter(x, y)

        # Share a X axis with each column of subplots
        plt.subplots(2, 2, sharex='col')

        # Share a Y axis with each row of subplots
        plt.subplots(2, 2, sharey='row')

        # Share both X and Y axes with all subplots
        plt.subplots(2, 2, sharex='all', sharey='all')

        # Note that this is the same as
        plt.subplots(2, 2, sharex=True, sharey=True)

        # Create figure number 10 with a single subplot
        # and clears it if it already exists.
        fig, ax = plt.subplots(num=10, clear=True)

    See Also
    --------
    .pyplot.figure
    .pyplot.subplot
    .pyplot.axes
    .Figure.subplots
    .Figure.add_subplot

    """
    fig = figure(**fig_kw)
    axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey,
                       squeeze=squeeze, subplot_kw=subplot_kw,
                       gridspec_kw=gridspec_kw)
    return fig, axs


def subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs):
    """
    Create an axis at specific location inside a regular grid.

    Parameters
    ----------
    shape : sequence of 2 ints
        Shape of grid in which to place axis.
        First entry is number of rows, second entry is number of columns.

    loc : sequence of 2 ints
        Location to place axis within grid.
        First entry is row number, second entry is column number.

    rowspan : int
        Number of rows for the axis to span to the right.

    colspan : int
        Number of columns for the axis to span downwards.

    fig : `Figure`, optional
        Figure to place axis in. Defaults to current figure.

    **kwargs
        Additional keyword arguments are handed to `add_subplot`.


    Notes
    -----
    The following call ::

        subplot2grid(shape, loc, rowspan=1, colspan=1)

    is identical to ::

        gridspec=GridSpec(shape[0], shape[1])
        subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan)
        subplot(subplotspec)
    """

    if fig is None:
        fig = gcf()

    s1, s2 = shape
    subplotspec = GridSpec(s1, s2).new_subplotspec(loc,
                                                   rowspan=rowspan,
                                                   colspan=colspan)
    a = fig.add_subplot(subplotspec, **kwargs)
    bbox = a.bbox
    byebye = []
    for other in fig.axes:
        if other == a:
            continue
        if bbox.fully_overlaps(other.bbox):
            byebye.append(other)
    for ax in byebye:
        delaxes(ax)

    return a


def twinx(ax=None):
    """
    Make and return a second axes that shares the *x*-axis.  The new axes will
    overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be
    on the right.

    Examples
    --------
    :doc:`/gallery/subplots_axes_and_figures/two_scales`
    """
    if ax is None:
        ax = gca()
    ax1 = ax.twinx()
    return ax1


def twiny(ax=None):
    """
    Make and return a second axes that shares the *y*-axis.  The new axes will
    overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be
    on the top.

    Examples
    --------
    :doc:`/gallery/subplots_axes_and_figures/two_scales`
    """
    if ax is None:
        ax = gca()
    ax1 = ax.twiny()
    return ax1


def subplots_adjust(left=None, bottom=None, right=None, top=None,
                    wspace=None, hspace=None):
    """
    Tune the subplot layout.

    The parameter meanings (and suggested defaults) are::

      left = 0.125  # the left side of the subplots of the figure
      right = 0.9   # the right side of the subplots of the figure
      bottom = 0.1  # the bottom of the subplots of the figure
      top = 0.9     # the top of the subplots of the figure
      wspace = 0.2  # the amount of width reserved for space between subplots,
                    # expressed as a fraction of the average axis width
      hspace = 0.2  # the amount of height reserved for space between subplots,
                    # expressed as a fraction of the average axis height

    The actual defaults are controlled by the rc file
    """
    fig = gcf()
    fig.subplots_adjust(left, bottom, right, top, wspace, hspace)


def subplot_tool(targetfig=None):
    """
    Launch a subplot tool window for a figure.

    A :class:`matplotlib.widgets.SubplotTool` instance is returned.
    """
    if targetfig is None:
        targetfig = gcf()

    tbar = rcParams['toolbar']  # Turn off navigation toolbar for the toolfig.
    rcParams['toolbar'] = 'None'
    toolfig = figure(figsize=(6, 3))
    toolfig.subplots_adjust(top=0.9)
    rcParams['toolbar'] = tbar

    if hasattr(targetfig.canvas, "manager"):  # Restore the current figure.
        _pylab_helpers.Gcf.set_active(targetfig.canvas.manager)

    return SubplotTool(targetfig, toolfig)


def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None):
    """
    Automatically adjust subplot parameters to give specified padding.

    Parameters
    ----------
    pad : float
        Padding between the figure edge and the edges of subplots,
        as a fraction of the font size.
    h_pad, w_pad : float, optional
        Padding (height/width) between edges of adjacent subplots,
        as a fraction of the font size.  Defaults to *pad*.
    rect : tuple (left, bottom, right, top), optional
        A rectangle (left, bottom, right, top) in the normalized
        figure coordinate that the whole subplots area (including
        labels) will fit into. Default is (0, 0, 1, 1).
    """
    gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)


def box(on=None):
    """
    Turn the axes box on or off on the current axes.

    Parameters
    ----------
    on : bool or None
        The new `~matplotlib.axes.Axes` box state. If ``None``, toggle
        the state.

    See Also
    --------
    :meth:`matplotlib.axes.Axes.set_frame_on`
    :meth:`matplotlib.axes.Axes.get_frame_on`
    """
    ax = gca()
    if on is None:
        on = not ax.get_frame_on()
    ax.set_frame_on(on)

## Axis ##


def xlim(*args, **kwargs):
    """
    Get or set the x limits of the current axes.

    Call signatures::

        left, right = xlim()  # return the current xlim
        xlim((left, right))   # set the xlim to left, right
        xlim(left, right)     # set the xlim to left, right

    If you do not specify args, you can pass *left* or *right* as kwargs,
    i.e.::

        xlim(right=3)  # adjust the right leaving left unchanged
        xlim(left=1)  # adjust the left leaving right unchanged

    Setting limits turns autoscaling off for the x-axis.

    Returns
    -------
    left, right
        A tuple of the new x-axis limits.

    Notes
    -----
    Calling this function with no arguments (e.g. ``xlim()``) is the pyplot
    equivalent of calling `~.Axes.get_xlim` on the current axes.
    Calling this function with arguments is the pyplot equivalent of calling
    `~.Axes.set_xlim` on the current axes. All arguments are passed though.
    """
    ax = gca()
    if not args and not kwargs:
        return ax.get_xlim()
    ret = ax.set_xlim(*args, **kwargs)
    return ret


def ylim(*args, **kwargs):
    """
    Get or set the y-limits of the current axes.

    Call signatures::

        bottom, top = ylim()  # return the current ylim
        ylim((bottom, top))   # set the ylim to bottom, top
        ylim(bottom, top)     # set the ylim to bottom, top

    If you do not specify args, you can alternatively pass *bottom* or
    *top* as kwargs, i.e.::

        ylim(top=3)  # adjust the top leaving bottom unchanged
        ylim(bottom=1)  # adjust the bottom leaving top unchanged

    Setting limits turns autoscaling off for the y-axis.

    Returns
    -------
    bottom, top
        A tuple of the new y-axis limits.

    Notes
    -----
    Calling this function with no arguments (e.g. ``ylim()``) is the pyplot
    equivalent of calling `~.Axes.get_ylim` on the current axes.
    Calling this function with arguments is the pyplot equivalent of calling
    `~.Axes.set_ylim` on the current axes. All arguments are passed though.
    """
    ax = gca()
    if not args and not kwargs:
        return ax.get_ylim()
    ret = ax.set_ylim(*args, **kwargs)
    return ret


def xticks(ticks=None, labels=None, **kwargs):
    """
    Get or set the current tick locations and labels of the x-axis.

    Pass no arguments to return the current values without modifying them.

    Parameters
    ----------
    ticks : array-like, optional
        The list of xtick locations.  Passing an empty list removes all xticks.
    labels : array-like, optional
        The labels to place at the given *ticks* locations.  This argument can
        only be passed if *ticks* is passed as well.
    **kwargs
        `.Text` properties can be used to control the appearance of the labels.

    Returns
    -------
    locs
        The list of xtick locations.
    labels
        The list of xlabel `.Text` objects.

    Notes
    -----
    Calling this function with no arguments (e.g. ``xticks()``) is the pyplot
    equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on
    the current axes.
    Calling this function with arguments is the pyplot equivalent of calling
    `~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes.

    Examples
    --------
    >>> locs, labels = xticks()  # Get the current locations and labels.
    >>> xticks(np.arange(0, 1, step=0.2))  # Set label locations.
    >>> xticks(np.arange(3), ['Tom', 'Dick', 'Sue'])  # Set text labels.
    >>> xticks([0, 1, 2], ['January', 'February', 'March'],
    ...        rotation=20)  # Set text labels and properties.
    >>> xticks([])  # Disable xticks.
    """
    ax = gca()

    if ticks is None and labels is None:
        locs = ax.get_xticks()
        labels = ax.get_xticklabels()
    elif labels is None:
        locs = ax.set_xticks(ticks)
        labels = ax.get_xticklabels()
    else:
        locs = ax.set_xticks(ticks)
        labels = ax.set_xticklabels(labels, **kwargs)
    for l in labels:
        l.update(kwargs)

    return locs, labels


def yticks(ticks=None, labels=None, **kwargs):
    """
    Get or set the current tick locations and labels of the y-axis.

    Pass no arguments to return the current values without modifying them.

    Parameters
    ----------
    ticks : array-like, optional
        The list of xtick locations.  Passing an empty list removes all xticks.
    labels : array-like, optional
        The labels to place at the given *ticks* locations.  This argument can
        only be passed if *ticks* is passed as well.
    **kwargs
        `.Text` properties can be used to control the appearance of the labels.

    Returns
    -------
    locs
        The list of ytick locations.
    labels
        The list of ylabel `.Text` objects.

    Notes
    -----
    Calling this function with no arguments (e.g. ``yticks()``) is the pyplot
    equivalent of calling `~.Axes.get_yticks` and `~.Axes.get_yticklabels` on
    the current axes.
    Calling this function with arguments is the pyplot equivalent of calling
    `~.Axes.set_yticks` and `~.Axes.set_yticklabels` on the current axes.

    Examples
    --------
    >>> locs, labels = yticks()  # Get the current locations and labels.
    >>> yticks(np.arange(0, 1, step=0.2))  # Set label locations.
    >>> yticks(np.arange(3), ['Tom', 'Dick', 'Sue'])  # Set text labels.
    >>> yticks([0, 1, 2], ['January', 'February', 'March'],
    ...        rotation=45)  # Set text labels and properties.
    >>> yticks([])  # Disable yticks.
    """
    ax = gca()

    if ticks is None and labels is None:
        locs = ax.get_yticks()
        labels = ax.get_yticklabels()
    elif labels is None:
        locs = ax.set_yticks(ticks)
        labels = ax.get_yticklabels()
    else:
        locs = ax.set_yticks(ticks)
        labels = ax.set_yticklabels(labels, **kwargs)
    for l in labels:
        l.update(kwargs)

    return locs, labels


def rgrids(*args, **kwargs):
    """
    Get or set the radial gridlines on the current polar plot.

    Call signatures::

     lines, labels = rgrids()
     lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None, **kwargs)

    When called with no arguments, `.rgrids` simply returns the tuple
    (*lines*, *labels*). When called with arguments, the labels will
    appear at the specified radial distances and angle.

    Parameters
    ----------
    radii : tuple with floats
        The radii for the radial gridlines

    labels : tuple with strings or None
        The labels to use at each radial gridline. The
        `matplotlib.ticker.ScalarFormatter` will be used if None.

    angle : float
        The angular position of the radius labels in degrees.

    fmt : str or None
        Format string used in `matplotlib.ticker.FormatStrFormatter`.
        For example '%f'.

    Returns
    -------
    lines, labels : list of `.lines.Line2D`, list of `.text.Text`
        *lines* are the radial gridlines and *labels* are the tick labels.

    Other Parameters
    ----------------
    **kwargs
        *kwargs* are optional `~.Text` properties for the labels.

    Examples
    --------
    ::

      # set the locations of the radial gridlines
      lines, labels = rgrids( (0.25, 0.5, 1.0) )

      # set the locations and labels of the radial gridlines
      lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ))

    See Also
    --------
    .pyplot.thetagrids
    .projections.polar.PolarAxes.set_rgrids
    .Axis.get_gridlines
    .Axis.get_ticklabels
    """
    ax = gca()
    if not isinstance(ax, PolarAxes):
        raise RuntimeError('rgrids only defined for polar axes')
    if len(args) == 0:
        lines = ax.yaxis.get_gridlines()
        labels = ax.yaxis.get_ticklabels()
    else:
        lines, labels = ax.set_rgrids(*args, **kwargs)
    return lines, labels


def thetagrids(*args, **kwargs):
    """
    Get or set the theta gridlines on the current polar plot.

    Call signatures::

     lines, labels = thetagrids()
     lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs)

    When called with no arguments, `.thetagrids` simply returns the tuple
    (*lines*, *labels*). When called with arguments, the labels will
    appear at the specified angles.

    Parameters
    ----------
    angles : tuple with floats, degrees
        The angles of the theta gridlines.

    labels : tuple with strings or None
        The labels to use at each radial gridline. The
        `.projections.polar.ThetaFormatter` will be used if None.

    fmt : str or None
        Format string used in `matplotlib.ticker.FormatStrFormatter`.
        For example '%f'. Note that the angle in radians will be used.

    Returns
    -------
    lines, labels : list of `.lines.Line2D`, list of `.text.Text`
        *lines* are the theta gridlines and *labels* are the tick labels.

    Other Parameters
    ----------------
    **kwargs
        *kwargs* are optional `~.Text` properties for the labels.

    Examples
    --------
    ::

      # set the locations of the angular gridlines
      lines, labels = thetagrids(range(45, 360, 90))

      # set the locations and labels of the angular gridlines
      lines, labels = thetagrids(range(45, 360, 90), ('NE', 'NW', 'SW', 'SE'))

    See Also
    --------
    .pyplot.rgrids
    .projections.polar.PolarAxes.set_thetagrids
    .Axis.get_gridlines
    .Axis.get_ticklabels
    """
    ax = gca()
    if not isinstance(ax, PolarAxes):
        raise RuntimeError('thetagrids only defined for polar axes')
    if len(args) == 0:
        lines = ax.xaxis.get_ticklines()
        labels = ax.xaxis.get_ticklabels()
    else:
        lines, labels = ax.set_thetagrids(*args, **kwargs)
    return lines, labels


## Plotting Info ##


def plotting():
    pass


def get_plot_commands():
    """
    Get a sorted list of all of the plotting commands.
    """
    # This works by searching for all functions in this module and removing
    # a few hard-coded exclusions, as well as all of the colormap-setting
    # functions, and anything marked as private with a preceding underscore.
    exclude = {'colormaps', 'colors', 'connect', 'disconnect',
               'get_plot_commands', 'get_current_fig_manager', 'ginput',
               'plotting', 'waitforbuttonpress'}
    exclude |= set(colormaps())
    this_module = inspect.getmodule(get_plot_commands)
    return sorted(
        name for name, obj in globals().items()
        if not name.startswith('_') and name not in exclude
           and inspect.isfunction(obj)
           and inspect.getmodule(obj) is this_module)


def colormaps():
    """
    Matplotlib provides a number of colormaps, and others can be added using
    :func:`~matplotlib.cm.register_cmap`.  This function documents the built-in
    colormaps, and will also return a list of all registered colormaps if
    called.

    You can set the colormap for an image, pcolor, scatter, etc,
    using a keyword argument::

      imshow(X, cmap=cm.hot)

    or using the :func:`set_cmap` function::

      imshow(X)
      pyplot.set_cmap('hot')
      pyplot.set_cmap('jet')

    In interactive mode, :func:`set_cmap` will update the colormap post-hoc,
    allowing you to see which one works best for your data.

    All built-in colormaps can be reversed by appending ``_r``: For instance,
    ``gray_r`` is the reverse of ``gray``.

    There are several common color schemes used in visualization:

    Sequential schemes
      for unipolar data that progresses from low to high
    Diverging schemes
      for bipolar data that emphasizes positive or negative deviations from a
      central value
    Cyclic schemes
      for plotting values that wrap around at the endpoints, such as phase
      angle, wind direction, or time of day
    Qualitative schemes
      for nominal data that has no inherent ordering, where color is used
      only to distinguish categories

    Matplotlib ships with 4 perceptually uniform color maps which are
    the recommended color maps for sequential data:

      =========   ===================================================
      Colormap    Description
      =========   ===================================================
      inferno     perceptually uniform shades of black-red-yellow
      magma       perceptually uniform shades of black-red-white
      plasma      perceptually uniform shades of blue-red-yellow
      viridis     perceptually uniform shades of blue-green-yellow
      =========   ===================================================

    The following colormaps are based on the `ColorBrewer
    <http://colorbrewer2.org>`_ color specifications and designs developed by
    Cynthia Brewer:

    ColorBrewer Diverging (luminance is highest at the midpoint, and
    decreases towards differently-colored endpoints):

      ========  ===================================
      Colormap  Description
      ========  ===================================
      BrBG      brown, white, blue-green
      PiYG      pink, white, yellow-green
      PRGn      purple, white, green
      PuOr      orange, white, purple
      RdBu      red, white, blue
      RdGy      red, white, gray
      RdYlBu    red, yellow, blue
      RdYlGn    red, yellow, green
      Spectral  red, orange, yellow, green, blue
      ========  ===================================

    ColorBrewer Sequential (luminance decreases monotonically):

      ========  ====================================
      Colormap  Description
      ========  ====================================
      Blues     white to dark blue
      BuGn      white, light blue, dark green
      BuPu      white, light blue, dark purple
      GnBu      white, light green, dark blue
      Greens    white to dark green
      Greys     white to black (not linear)
      Oranges   white, orange, dark brown
      OrRd      white, orange, dark red
      PuBu      white, light purple, dark blue
      PuBuGn    white, light purple, dark green
      PuRd      white, light purple, dark red
      Purples   white to dark purple
      RdPu      white, pink, dark purple
      Reds      white to dark red
      YlGn      light yellow, dark green
      YlGnBu    light yellow, light green, dark blue
      YlOrBr    light yellow, orange, dark brown
      YlOrRd    light yellow, orange, dark red
      ========  ====================================

    ColorBrewer Qualitative:

    (For plotting nominal data, :class:`ListedColormap` is used,
    not :class:`LinearSegmentedColormap`.  Different sets of colors are
    recommended for different numbers of categories.)

    * Accent
    * Dark2
    * Paired
    * Pastel1
    * Pastel2
    * Set1
    * Set2
    * Set3

    A set of colormaps derived from those of the same name provided
    with Matlab are also included:

      =========   =======================================================
      Colormap    Description
      =========   =======================================================
      autumn      sequential linearly-increasing shades of red-orange-yellow
      bone        sequential increasing black-white color map with
                  a tinge of blue, to emulate X-ray film
      cool        linearly-decreasing shades of cyan-magenta
      copper      sequential increasing shades of black-copper
      flag        repetitive red-white-blue-black pattern (not cyclic at
                  endpoints)
      gray        sequential linearly-increasing black-to-white
                  grayscale
      hot         sequential black-red-yellow-white, to emulate blackbody
                  radiation from an object at increasing temperatures
      jet         a spectral map with dark endpoints, blue-cyan-yellow-red;
                  based on a fluid-jet simulation by NCSA [#]_
      pink        sequential increasing pastel black-pink-white, meant
                  for sepia tone colorization of photographs
      prism       repetitive red-yellow-green-blue-purple-...-green pattern
                  (not cyclic at endpoints)
      spring      linearly-increasing shades of magenta-yellow
      summer      sequential linearly-increasing shades of green-yellow
      winter      linearly-increasing shades of blue-green
      =========   =======================================================

    A set of palettes from the `Yorick scientific visualisation
    package <https://dhmunro.github.io/yorick-doc/>`_, an evolution of
    the GIST package, both by David H. Munro are included:

      ============  =======================================================
      Colormap      Description
      ============  =======================================================
      gist_earth    mapmaker's colors from dark blue deep ocean to green
                    lowlands to brown highlands to white mountains
      gist_heat     sequential increasing black-red-orange-white, to emulate
                    blackbody radiation from an iron bar as it grows hotter
      gist_ncar     pseudo-spectral black-blue-green-yellow-red-purple-white
                    colormap from National Center for Atmospheric
                    Research [#]_
      gist_rainbow  runs through the colors in spectral order from red to
                    violet at full saturation (like *hsv* but not cyclic)
      gist_stern    "Stern special" color table from Interactive Data
                    Language software
      ============  =======================================================

    A set of cyclic color maps:

      ================  =================================================
      Colormap          Description
      ================  =================================================
      hsv               red-yellow-green-cyan-blue-magenta-red, formed by
                        changing the hue component in the HSV color space
      twilight          perceptually uniform shades of
                        white-blue-black-red-white
      twilight_shifted  perceptually uniform shades of
                        black-blue-white-red-black
      ================  =================================================


    Other miscellaneous schemes:

      ============= =======================================================
      Colormap      Description
      ============= =======================================================
      afmhot        sequential black-orange-yellow-white blackbody
                    spectrum, commonly used in atomic force microscopy
      brg           blue-red-green
      bwr           diverging blue-white-red
      coolwarm      diverging blue-gray-red, meant to avoid issues with 3D
                    shading, color blindness, and ordering of colors [#]_
      CMRmap        "Default colormaps on color images often reproduce to
                    confusing grayscale images. The proposed colormap
                    maintains an aesthetically pleasing color image that
                    automatically reproduces to a monotonic grayscale with
                    discrete, quantifiable saturation levels." [#]_
      cubehelix     Unlike most other color schemes cubehelix was designed
                    by D.A. Green to be monotonically increasing in terms
                    of perceived brightness. Also, when printed on a black
                    and white postscript printer, the scheme results in a
                    greyscale with monotonically increasing brightness.
                    This color scheme is named cubehelix because the (r, g, b)
                    values produced can be visualised as a squashed helix
                    around the diagonal in the (r, g, b) color cube.
      gnuplot       gnuplot's traditional pm3d scheme
                    (black-blue-red-yellow)
      gnuplot2      sequential color printable as gray
                    (black-blue-violet-yellow-white)
      ocean         green-blue-white
      rainbow       spectral purple-blue-green-yellow-orange-red colormap
                    with diverging luminance
      seismic       diverging blue-white-red
      nipy_spectral black-purple-blue-green-yellow-red-white spectrum,
                    originally from the Neuroimaging in Python project
      terrain       mapmaker's colors, blue-green-yellow-brown-white,
                    originally from IGOR Pro
      ============= =======================================================

    The following colormaps are redundant and may be removed in future
    versions.  It's recommended to use the names in the descriptions
    instead, which produce identical output:

      =========  =======================================================
      Colormap   Description
      =========  =======================================================
      gist_gray  identical to *gray*
      gist_yarg  identical to *gray_r*
      binary     identical to *gray_r*
      =========  =======================================================

    .. rubric:: Footnotes

    .. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor
      choice for scientific visualization by many researchers: `Rainbow Color
      Map (Still) Considered Harmful
      <http://ieeexplore.ieee.org/document/4118486/?arnumber=4118486>`_

    .. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command
      Language. See `Color Table Gallery
      <https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_

    .. [#] See `Diverging Color Maps for Scientific Visualization
      <http://www.kennethmoreland.com/color-maps/>`_ by Kenneth Moreland.

    .. [#] See `A Color Map for Effective Black-and-White Rendering of
      Color-Scale Images
      <https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_
      by Carey Rappaport
    """
    return sorted(cm.cmap_d)


def _setup_pyplot_info_docstrings():
    """
    Generates the plotting docstring.

    These must be done after the entire module is imported, so it is
    called from the end of this module, which is generated by
    boilerplate.py.
    """
    commands = get_plot_commands()

    first_sentence = re.compile(r"(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL)

    # Collect the first sentence of the docstring for all of the
    # plotting commands.
    rows = []
    max_name = len("Function")
    max_summary = len("Description")
    for name in commands:
        doc = globals()[name].__doc__
        summary = ''
        if doc is not None:
            match = first_sentence.match(doc)
            if match is not None:
                summary = inspect.cleandoc(match.group(0)).replace('\n', ' ')
        name = '`%s`' % name
        rows.append([name, summary])
        max_name = max(max_name, len(name))
        max_summary = max(max_summary, len(summary))

    separator = '=' * max_name + ' ' + '=' * max_summary
    lines = [
        separator,
        '{:{}} {:{}}'.format('Function', max_name, 'Description', max_summary),
        separator,
    ] + [
        '{:{}} {:{}}'.format(name, max_name, summary, max_summary)
        for name, summary in rows
    ] + [
        separator,
    ]
    plotting.__doc__ = '\n'.join(lines)


## Plotting part 1: manually generated functions and wrappers ##


def colorbar(mappable=None, cax=None, ax=None, **kw):
    if mappable is None:
        mappable = gci()
        if mappable is None:
            raise RuntimeError('No mappable was found to use for colorbar '
                               'creation. First define a mappable such as '
                               'an image (with imshow) or a contour set ('
                               'with contourf).')
    if ax is None:
        ax = gca()
    ret = gcf().colorbar(mappable, cax=cax, ax=ax, **kw)
    return ret
colorbar.__doc__ = matplotlib.colorbar.colorbar_doc


def clim(vmin=None, vmax=None):
    """
    Set the color limits of the current image.

    If either *vmin* or *vmax* is None, the image min/max respectively
    will be used for color scaling.

    If you want to set the clim of multiple images, use
    `~.ScalarMappable.set_clim` on every image, for example::

      for im in gca().get_images():
          im.set_clim(0, 0.5)

    """
    im = gci()
    if im is None:
        raise RuntimeError('You must first define an image, e.g., with imshow')

    im.set_clim(vmin, vmax)


def set_cmap(cmap):
    """
    Set the default colormap, and applies it to the current image if any.

    Parameters
    ----------
    cmap : `~matplotib.colors.Colormap` or str
        A colormap instance or the name of a registered colormap.

    See Also
    --------
    colormaps
    matplotlib.cm.register_cmap
    matplotlib.cm.get_cmap
    """
    cmap = cm.get_cmap(cmap)

    rc('image', cmap=cmap.name)
    im = gci()

    if im is not None:
        im.set_cmap(cmap)


@docstring.copy(matplotlib.image.imread)
def imread(fname, format=None):
    return matplotlib.image.imread(fname, format)


@docstring.copy(matplotlib.image.imsave)
def imsave(fname, arr, **kwargs):
    return matplotlib.image.imsave(fname, arr, **kwargs)


def matshow(A, fignum=None, **kwargs):
    """
    Display an array as a matrix in a new figure window.

    The origin is set at the upper left hand corner and rows (first
    dimension of the array) are displayed horizontally.  The aspect
    ratio of the figure window is that of the array, unless this would
    make an excessively short or narrow figure.

    Tick labels for the xaxis are placed on top.

    Parameters
    ----------
    A : array-like(M, N)
        The matrix to be displayed.

    fignum : None or int or False
        If *None*, create a new figure window with automatic numbering.

        If a nonzero integer, draw into the figure with the given number
        (create it if it does not exist).

        If 0, use the current axes (or create one if it does not exist).

        .. note::

           Because of how `.Axes.matshow` tries to set the figure aspect
           ratio to be the one of the array, strange things may happen if you
           reuse an existing figure.

    Returns
    -------
    image : `~matplotlib.image.AxesImage`

    Other Parameters
    ----------------
    **kwargs : `~matplotlib.axes.Axes.imshow` arguments

    """
    A = np.asanyarray(A)
    if fignum == 0:
        ax = gca()
    else:
        # Extract actual aspect ratio of array and make appropriately sized
        # figure.
        fig = figure(fignum, figsize=figaspect(A))
        ax = fig.add_axes([0.15, 0.09, 0.775, 0.775])
    im = ax.matshow(A, **kwargs)
    sci(im)
    return im


def polar(*args, **kwargs):
    """
    Make a polar plot.

    call signature::

      polar(theta, r, **kwargs)

    Multiple *theta*, *r* arguments are supported, with format strings, as in
    `plot`.
    """
    # If an axis already exists, check if it has a polar projection
    if gcf().get_axes():
        if not isinstance(gca(), PolarAxes):
            cbook._warn_external('Trying to create polar plot on an axis '
                                 'that does not have a polar projection.')
    ax = gca(polar=True)
    ret = ax.plot(*args, **kwargs)
    return ret


@cbook.deprecated("3.1")
def plotfile(fname, cols=(0,), plotfuncs=None,
             comments='#', skiprows=0, checkrows=5, delimiter=',',
             names=None, subplots=True, newfig=True, **kwargs):
    """
    Plot the data in a file.

    *cols* is a sequence of column identifiers to plot.  An identifier
    is either an int or a string.  If it is an int, it indicates the
    column number.  If it is a string, it indicates the column header.
    matplotlib will make column headers lower case, replace spaces with
    underscores, and remove all illegal characters; so ``'Adj Close*'``
    will have name ``'adj_close'``.

    - If len(*cols*) == 1, only that column will be plotted on the *y* axis.

    - If len(*cols*) > 1, the first element will be an identifier for
      data for the *x* axis and the remaining elements will be the
      column indexes for multiple subplots if *subplots* is *True*
      (the default), or for lines in a single subplot if *subplots*
      is *False*.

    *plotfuncs*, if not *None*, is a dictionary mapping identifier to
    an :class:`~matplotlib.axes.Axes` plotting function as a string.
    Default is 'plot', other choices are 'semilogy', 'fill', 'bar',
    etc.  You must use the same type of identifier in the *cols*
    vector as you use in the *plotfuncs* dictionary, e.g., integer
    column numbers in both or column names in both. If *subplots*
    is *False*, then including any function such as 'semilogy'
    that changes the axis scaling will set the scaling for all
    columns.

    - *comments*: the character used to indicate the start of a comment
      in the file, or *None* to switch off the removal of comments

    - *skiprows*: is the number of rows from the top to skip

    - *checkrows*: is the number of rows to check to validate the column
      data type.  When set to zero all rows are validated.

    - *delimiter*: is the character(s) separating row items

    - *names*: if not None, is a list of header names.  In this case, no
      header will be read from the file

    If *newfig* is *True*, the plot always will be made in a new figure;
    if *False*, it will be made in the current figure if one exists,
    else in a new figure.

    kwargs are passed on to plotting functions.

    Example usage::

      # plot the 2nd and 4th column against the 1st in two subplots
      plotfile(fname, (0, 1, 3))

      # plot using column names; specify an alternate plot type for volume
      plotfile(fname, ('date', 'volume', 'adj_close'),
               plotfuncs={'volume': 'semilogy'})

    Note: plotfile is intended as a convenience for quickly plotting
    data from flat files; it is not intended as an alternative
    interface to general plotting with pyplot or matplotlib.
    """

    if newfig:
        fig = figure()
    else:
        fig = gcf()

    if len(cols) < 1:
        raise ValueError('must have at least one column of data')

    if plotfuncs is None:
        plotfuncs = {}
    with cbook._suppress_matplotlib_deprecation_warning():
        r = mlab._csv2rec(fname, comments=comments, skiprows=skiprows,
                          checkrows=checkrows, delimiter=delimiter,
                          names=names)

    def getname_val(identifier):
        'return the name and column data for identifier'
        if isinstance(identifier, str):
            return identifier, r[identifier]
        elif isinstance(identifier, Number):
            name = r.dtype.names[int(identifier)]
            return name, r[name]
        else:
            raise TypeError('identifier must be a string or integer')

    xname, x = getname_val(cols[0])
    ynamelist = []

    if len(cols) == 1:
        ax1 = fig.add_subplot(1, 1, 1)
        funcname = plotfuncs.get(cols[0], 'plot')
        func = getattr(ax1, funcname)
        func(x, **kwargs)
        ax1.set_ylabel(xname)
    else:
        N = len(cols)
        for i in range(1, N):
            if subplots:
                if i == 1:
                    ax = ax1 = fig.add_subplot(N - 1, 1, i)
                else:
                    ax = fig.add_subplot(N - 1, 1, i, sharex=ax1)
            elif i == 1:
                ax = fig.add_subplot(1, 1, 1)

            yname, y = getname_val(cols[i])
            ynamelist.append(yname)

            funcname = plotfuncs.get(cols[i], 'plot')
            func = getattr(ax, funcname)

            func(x, y, **kwargs)
            if subplots:
                ax.set_ylabel(yname)
            if ax.is_last_row():
                ax.set_xlabel(xname)
            else:
                ax.set_xlabel('')

    if not subplots:
        ax.legend(ynamelist)

    if xname == 'date':
        fig.autofmt_xdate()


# If rcParams['backend_fallback'] is true, and an interactive backend is
# requested, ignore rcParams['backend'] and force selection of a backend that
# is compatible with the current running interactive framework.
if (rcParams["backend_fallback"]
        and dict.__getitem__(rcParams, "backend") in (
            set(_interactive_bk) - {'WebAgg', 'nbAgg'})
        and _get_running_interactive_framework()):
    dict.__setitem__(rcParams, "backend", rcsetup._auto_backend_sentinel)
# Set up the backend.
switch_backend(rcParams["backend"])

# Just to be safe.  Interactive mode can be turned on without
# calling `plt.ion()` so register it again here.
# This is safe because multiple calls to `install_repl_displayhook`
# are no-ops and the registered function respect `mpl.is_interactive()`
# to determine if they should trigger a draw.
install_repl_displayhook()


################# REMAINING CONTENT GENERATED BY boilerplate.py ##############


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Figure.figimage)
def figimage(
        X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None,
        vmax=None, origin=None, resize=False, **kwargs):
    return gcf().figimage(
        X, xo=xo, yo=yo, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin,
        vmax=vmax, origin=origin, resize=resize, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Figure.text)
def figtext(
        x, y, s, fontdict=None,
        withdash=cbook.deprecation._deprecated_parameter, **kwargs):
    return gcf().text(
        x, y, s, fontdict=fontdict, withdash=withdash, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Figure.ginput)
def ginput(
        n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3,
        mouse_stop=2):
    return gcf().ginput(
        n=n, timeout=timeout, show_clicks=show_clicks,
        mouse_add=mouse_add, mouse_pop=mouse_pop,
        mouse_stop=mouse_stop)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Figure.suptitle)
def suptitle(t, **kwargs):
    return gcf().suptitle(t, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Figure.waitforbuttonpress)
def waitforbuttonpress(timeout=-1):
    return gcf().waitforbuttonpress(timeout=timeout)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.acorr)
def acorr(x, *, data=None, **kwargs):
    return gca().acorr(
        x, **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.angle_spectrum)
def angle_spectrum(
        x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *,
        data=None, **kwargs):
    return gca().angle_spectrum(
        x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.annotate)
def annotate(s, xy, *args, **kwargs):
    return gca().annotate(s, xy, *args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.arrow)
def arrow(x, y, dx, dy, **kwargs):
    return gca().arrow(x, y, dx, dy, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.autoscale)
def autoscale(enable=True, axis='both', tight=None):
    return gca().autoscale(enable=enable, axis=axis, tight=tight)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.axhline)
def axhline(y=0, xmin=0, xmax=1, **kwargs):
    return gca().axhline(y=y, xmin=xmin, xmax=xmax, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.axhspan)
def axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs):
    return gca().axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.axis)
def axis(*args, emit=True, **kwargs):
    return gca().axis(*args, emit=emit, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.axvline)
def axvline(x=0, ymin=0, ymax=1, **kwargs):
    return gca().axvline(x=x, ymin=ymin, ymax=ymax, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.axvspan)
def axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs):
    return gca().axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.bar)
def bar(
        x, height, width=0.8, bottom=None, *, align='center',
        data=None, **kwargs):
    return gca().bar(
        x, height, width=width, bottom=bottom, align=align,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.barbs)
def barbs(*args, data=None, **kw):
    return gca().barbs(
        *args, **({"data": data} if data is not None else {}), **kw)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.barh)
def barh(y, width, height=0.8, left=None, *, align='center', **kwargs):
    return gca().barh(
        y, width, height=height, left=left, align=align, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.boxplot)
def boxplot(
        x, notch=None, sym=None, vert=None, whis=None,
        positions=None, widths=None, patch_artist=None,
        bootstrap=None, usermedians=None, conf_intervals=None,
        meanline=None, showmeans=None, showcaps=None, showbox=None,
        showfliers=None, boxprops=None, labels=None, flierprops=None,
        medianprops=None, meanprops=None, capprops=None,
        whiskerprops=None, manage_ticks=True, autorange=False,
        zorder=None, *, data=None):
    return gca().boxplot(
        x, notch=notch, sym=sym, vert=vert, whis=whis,
        positions=positions, widths=widths, patch_artist=patch_artist,
        bootstrap=bootstrap, usermedians=usermedians,
        conf_intervals=conf_intervals, meanline=meanline,
        showmeans=showmeans, showcaps=showcaps, showbox=showbox,
        showfliers=showfliers, boxprops=boxprops, labels=labels,
        flierprops=flierprops, medianprops=medianprops,
        meanprops=meanprops, capprops=capprops,
        whiskerprops=whiskerprops, manage_ticks=manage_ticks,
        autorange=autorange, zorder=zorder, **({"data": data} if data
        is not None else {}))


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.broken_barh)
def broken_barh(xranges, yrange, *, data=None, **kwargs):
    return gca().broken_barh(
        xranges, yrange, **({"data": data} if data is not None else
        {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.cla)
def cla():
    return gca().cla()


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.clabel)
def clabel(CS, *args, **kwargs):
    return gca().clabel(CS, *args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.cohere)
def cohere(
        x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
        window=mlab.window_hanning, noverlap=0, pad_to=None,
        sides='default', scale_by_freq=None, *, data=None, **kwargs):
    return gca().cohere(
        x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window,
        noverlap=noverlap, pad_to=pad_to, sides=sides,
        scale_by_freq=scale_by_freq, **({"data": data} if data is not
        None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.contour)
def contour(*args, data=None, **kwargs):
    __ret = gca().contour(
        *args, **({"data": data} if data is not None else {}),
        **kwargs)
    if __ret._A is not None: sci(__ret)  # noqa
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.contourf)
def contourf(*args, data=None, **kwargs):
    __ret = gca().contourf(
        *args, **({"data": data} if data is not None else {}),
        **kwargs)
    if __ret._A is not None: sci(__ret)  # noqa
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.csd)
def csd(
        x, y, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
        return_line=None, *, data=None, **kwargs):
    return gca().csd(
        x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window,
        noverlap=noverlap, pad_to=pad_to, sides=sides,
        scale_by_freq=scale_by_freq, return_line=return_line,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.errorbar)
def errorbar(
        x, y, yerr=None, xerr=None, fmt='', ecolor=None,
        elinewidth=None, capsize=None, barsabove=False, lolims=False,
        uplims=False, xlolims=False, xuplims=False, errorevery=1,
        capthick=None, *, data=None, **kwargs):
    return gca().errorbar(
        x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor,
        elinewidth=elinewidth, capsize=capsize, barsabove=barsabove,
        lolims=lolims, uplims=uplims, xlolims=xlolims,
        xuplims=xuplims, errorevery=errorevery, capthick=capthick,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.eventplot)
def eventplot(
        positions, orientation='horizontal', lineoffsets=1,
        linelengths=1, linewidths=None, colors=None,
        linestyles='solid', *, data=None, **kwargs):
    return gca().eventplot(
        positions, orientation=orientation, lineoffsets=lineoffsets,
        linelengths=linelengths, linewidths=linewidths, colors=colors,
        linestyles=linestyles, **({"data": data} if data is not None
        else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.fill)
def fill(*args, data=None, **kwargs):
    return gca().fill(
        *args, **({"data": data} if data is not None else {}),
        **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.fill_between)
def fill_between(
        x, y1, y2=0, where=None, interpolate=False, step=None, *,
        data=None, **kwargs):
    return gca().fill_between(
        x, y1, y2=y2, where=where, interpolate=interpolate, step=step,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.fill_betweenx)
def fill_betweenx(
        y, x1, x2=0, where=None, step=None, interpolate=False, *,
        data=None, **kwargs):
    return gca().fill_betweenx(
        y, x1, x2=x2, where=where, step=step, interpolate=interpolate,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.grid)
def grid(b=None, which='major', axis='both', **kwargs):
    return gca().grid(b=b, which=which, axis=axis, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.hexbin)
def hexbin(
        x, y, C=None, gridsize=100, bins=None, xscale='linear',
        yscale='linear', extent=None, cmap=None, norm=None, vmin=None,
        vmax=None, alpha=None, linewidths=None, edgecolors='face',
        reduce_C_function=np.mean, mincnt=None, marginals=False, *,
        data=None, **kwargs):
    __ret = gca().hexbin(
        x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale,
        yscale=yscale, extent=extent, cmap=cmap, norm=norm, vmin=vmin,
        vmax=vmax, alpha=alpha, linewidths=linewidths,
        edgecolors=edgecolors, reduce_C_function=reduce_C_function,
        mincnt=mincnt, marginals=marginals, **({"data": data} if data
        is not None else {}), **kwargs)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.hist)
def hist(
        x, bins=None, range=None, density=False, weights=None,
        cumulative=False, bottom=None, histtype='bar', align='mid',
        orientation='vertical', rwidth=None, log=False, color=None,
        label=None, stacked=False, *, data=None, **kwargs):
    return gca().hist(
        x, bins=bins, range=range, density=density, weights=weights,
        cumulative=cumulative, bottom=bottom, histtype=histtype,
        align=align, orientation=orientation, rwidth=rwidth, log=log,
        color=color, label=label, stacked=stacked, **({"data": data}
        if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.hist2d)
def hist2d(
        x, y, bins=10, range=None, density=False, weights=None,
        cmin=None, cmax=None, *, data=None, **kwargs):
    __ret = gca().hist2d(
        x, y, bins=bins, range=range, density=density,
        weights=weights, cmin=cmin, cmax=cmax, **({"data": data} if
        data is not None else {}), **kwargs)
    sci(__ret[-1])
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.hlines)
def hlines(
        y, xmin, xmax, colors='k', linestyles='solid', label='', *,
        data=None, **kwargs):
    return gca().hlines(
        y, xmin, xmax, colors=colors, linestyles=linestyles,
        label=label, **({"data": data} if data is not None else {}),
        **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.imshow)
def imshow(
        X, cmap=None, norm=None, aspect=None, interpolation=None,
        alpha=None, vmin=None, vmax=None, origin=None, extent=None,
        shape=cbook.deprecation._deprecated_parameter, filternorm=1,
        filterrad=4.0, imlim=cbook.deprecation._deprecated_parameter,
        resample=None, url=None, *, data=None, **kwargs):
    __ret = gca().imshow(
        X, cmap=cmap, norm=norm, aspect=aspect,
        interpolation=interpolation, alpha=alpha, vmin=vmin,
        vmax=vmax, origin=origin, extent=extent, shape=shape,
        filternorm=filternorm, filterrad=filterrad, imlim=imlim,
        resample=resample, url=url, **({"data": data} if data is not
        None else {}), **kwargs)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.legend)
def legend(*args, **kwargs):
    return gca().legend(*args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.locator_params)
def locator_params(axis='both', tight=None, **kwargs):
    return gca().locator_params(axis=axis, tight=tight, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.loglog)
def loglog(*args, **kwargs):
    return gca().loglog(*args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.magnitude_spectrum)
def magnitude_spectrum(
        x, Fs=None, Fc=None, window=None, pad_to=None, sides=None,
        scale=None, *, data=None, **kwargs):
    return gca().magnitude_spectrum(
        x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides,
        scale=scale, **({"data": data} if data is not None else {}),
        **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.margins)
def margins(*margins, x=None, y=None, tight=True):
    return gca().margins(*margins, x=x, y=y, tight=tight)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.minorticks_off)
def minorticks_off():
    return gca().minorticks_off()


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.minorticks_on)
def minorticks_on():
    return gca().minorticks_on()


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.pcolor)
def pcolor(
        *args, alpha=None, norm=None, cmap=None, vmin=None,
        vmax=None, data=None, **kwargs):
    __ret = gca().pcolor(
        *args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin,
        vmax=vmax, **({"data": data} if data is not None else {}),
        **kwargs)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.pcolormesh)
def pcolormesh(
        *args, alpha=None, norm=None, cmap=None, vmin=None,
        vmax=None, shading='flat', antialiased=False, data=None,
        **kwargs):
    __ret = gca().pcolormesh(
        *args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin,
        vmax=vmax, shading=shading, antialiased=antialiased,
        **({"data": data} if data is not None else {}), **kwargs)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.phase_spectrum)
def phase_spectrum(
        x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *,
        data=None, **kwargs):
    return gca().phase_spectrum(
        x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.pie)
def pie(
        x, explode=None, labels=None, colors=None, autopct=None,
        pctdistance=0.6, shadow=False, labeldistance=1.1,
        startangle=None, radius=None, counterclock=True,
        wedgeprops=None, textprops=None, center=(0, 0), frame=False,
        rotatelabels=False, *, data=None):
    return gca().pie(
        x, explode=explode, labels=labels, colors=colors,
        autopct=autopct, pctdistance=pctdistance, shadow=shadow,
        labeldistance=labeldistance, startangle=startangle,
        radius=radius, counterclock=counterclock,
        wedgeprops=wedgeprops, textprops=textprops, center=center,
        frame=frame, rotatelabels=rotatelabels, **({"data": data} if
        data is not None else {}))


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.plot)
def plot(*args, scalex=True, scaley=True, data=None, **kwargs):
    return gca().plot(
        *args, scalex=scalex, scaley=scaley, **({"data": data} if data
        is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.plot_date)
def plot_date(
        x, y, fmt='o', tz=None, xdate=True, ydate=False, *,
        data=None, **kwargs):
    return gca().plot_date(
        x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate, **({"data":
        data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.psd)
def psd(
        x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
        return_line=None, *, data=None, **kwargs):
    return gca().psd(
        x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window,
        noverlap=noverlap, pad_to=pad_to, sides=sides,
        scale_by_freq=scale_by_freq, return_line=return_line,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.quiver)
def quiver(*args, data=None, **kw):
    __ret = gca().quiver(
        *args, **({"data": data} if data is not None else {}), **kw)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.quiverkey)
def quiverkey(Q, X, Y, U, label, **kw):
    return gca().quiverkey(Q, X, Y, U, label, **kw)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.scatter)
def scatter(
        x, y, s=None, c=None, marker=None, cmap=None, norm=None,
        vmin=None, vmax=None, alpha=None, linewidths=None,
        verts=cbook.deprecation._deprecated_parameter,
        edgecolors=None, *, plotnonfinite=False, data=None, **kwargs):
    __ret = gca().scatter(
        x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm,
        vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths,
        verts=verts, edgecolors=edgecolors,
        plotnonfinite=plotnonfinite, **({"data": data} if data is not
        None else {}), **kwargs)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.semilogx)
def semilogx(*args, **kwargs):
    return gca().semilogx(*args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.semilogy)
def semilogy(*args, **kwargs):
    return gca().semilogy(*args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.specgram)
def specgram(
        x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
        noverlap=None, cmap=None, xextent=None, pad_to=None,
        sides=None, scale_by_freq=None, mode=None, scale=None,
        vmin=None, vmax=None, *, data=None, **kwargs):
    __ret = gca().specgram(
        x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window,
        noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to,
        sides=sides, scale_by_freq=scale_by_freq, mode=mode,
        scale=scale, vmin=vmin, vmax=vmax, **({"data": data} if data
        is not None else {}), **kwargs)
    sci(__ret[-1])
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.spy)
def spy(
        Z, precision=0, marker=None, markersize=None, aspect='equal',
        origin='upper', **kwargs):
    __ret = gca().spy(
        Z, precision=precision, marker=marker, markersize=markersize,
        aspect=aspect, origin=origin, **kwargs)
    if isinstance(__ret, cm.ScalarMappable): sci(__ret)  # noqa
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.stackplot)
def stackplot(
        x, *args, labels=(), colors=None, baseline='zero', data=None,
        **kwargs):
    return gca().stackplot(
        x, *args, labels=labels, colors=colors, baseline=baseline,
        **({"data": data} if data is not None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.stem)
def stem(
        *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0,
        label=None, use_line_collection=False, data=None):
    return gca().stem(
        *args, linefmt=linefmt, markerfmt=markerfmt, basefmt=basefmt,
        bottom=bottom, label=label,
        use_line_collection=use_line_collection, **({"data": data} if
        data is not None else {}))


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.step)
def step(x, y, *args, where='pre', data=None, **kwargs):
    return gca().step(
        x, y, *args, where=where, **({"data": data} if data is not
        None else {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.streamplot)
def streamplot(
        x, y, u, v, density=1, linewidth=None, color=None, cmap=None,
        norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1,
        transform=None, zorder=None, start_points=None, maxlength=4.0,
        integration_direction='both', *, data=None):
    __ret = gca().streamplot(
        x, y, u, v, density=density, linewidth=linewidth, color=color,
        cmap=cmap, norm=norm, arrowsize=arrowsize,
        arrowstyle=arrowstyle, minlength=minlength,
        transform=transform, zorder=zorder, start_points=start_points,
        maxlength=maxlength,
        integration_direction=integration_direction, **({"data": data}
        if data is not None else {}))
    sci(__ret.lines)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.table)
def table(
        cellText=None, cellColours=None, cellLoc='right',
        colWidths=None, rowLabels=None, rowColours=None,
        rowLoc='left', colLabels=None, colColours=None,
        colLoc='center', loc='bottom', bbox=None, edges='closed',
        **kwargs):
    return gca().table(
        cellText=cellText, cellColours=cellColours, cellLoc=cellLoc,
        colWidths=colWidths, rowLabels=rowLabels,
        rowColours=rowColours, rowLoc=rowLoc, colLabels=colLabels,
        colColours=colColours, colLoc=colLoc, loc=loc, bbox=bbox,
        edges=edges, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.text)
def text(
        x, y, s, fontdict=None,
        withdash=cbook.deprecation._deprecated_parameter, **kwargs):
    return gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.tick_params)
def tick_params(axis='both', **kwargs):
    return gca().tick_params(axis=axis, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.ticklabel_format)
def ticklabel_format(
        *, axis='both', style='', scilimits=None, useOffset=None,
        useLocale=None, useMathText=None):
    return gca().ticklabel_format(
        axis=axis, style=style, scilimits=scilimits,
        useOffset=useOffset, useLocale=useLocale,
        useMathText=useMathText)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.tricontour)
def tricontour(*args, **kwargs):
    __ret = gca().tricontour(*args, **kwargs)
    if __ret._A is not None: sci(__ret)  # noqa
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.tricontourf)
def tricontourf(*args, **kwargs):
    __ret = gca().tricontourf(*args, **kwargs)
    if __ret._A is not None: sci(__ret)  # noqa
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.tripcolor)
def tripcolor(
        *args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None,
        shading='flat', facecolors=None, **kwargs):
    __ret = gca().tripcolor(
        *args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin,
        vmax=vmax, shading=shading, facecolors=facecolors, **kwargs)
    sci(__ret)
    return __ret


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.triplot)
def triplot(*args, **kwargs):
    return gca().triplot(*args, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.violinplot)
def violinplot(
        dataset, positions=None, vert=True, widths=0.5,
        showmeans=False, showextrema=True, showmedians=False,
        quantiles=None, points=100, bw_method=None, *, data=None):
    return gca().violinplot(
        dataset, positions=positions, vert=vert, widths=widths,
        showmeans=showmeans, showextrema=showextrema,
        showmedians=showmedians, quantiles=quantiles, points=points,
        bw_method=bw_method, **({"data": data} if data is not None
        else {}))


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.vlines)
def vlines(
        x, ymin, ymax, colors='k', linestyles='solid', label='', *,
        data=None, **kwargs):
    return gca().vlines(
        x, ymin, ymax, colors=colors, linestyles=linestyles,
        label=label, **({"data": data} if data is not None else {}),
        **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.xcorr)
def xcorr(
        x, y, normed=True, detrend=mlab.detrend_none, usevlines=True,
        maxlags=10, *, data=None, **kwargs):
    return gca().xcorr(
        x, y, normed=normed, detrend=detrend, usevlines=usevlines,
        maxlags=maxlags, **({"data": data} if data is not None else
        {}), **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes._sci)
def sci(im):
    return gca()._sci(im)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.set_title)
def title(label, fontdict=None, loc=None, pad=None, **kwargs):
    return gca().set_title(
        label, fontdict=fontdict, loc=loc, pad=pad, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.set_xlabel)
def xlabel(xlabel, fontdict=None, labelpad=None, **kwargs):
    return gca().set_xlabel(
        xlabel, fontdict=fontdict, labelpad=labelpad, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.set_ylabel)
def ylabel(ylabel, fontdict=None, labelpad=None, **kwargs):
    return gca().set_ylabel(
        ylabel, fontdict=fontdict, labelpad=labelpad, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.set_xscale)
def xscale(value, **kwargs):
    return gca().set_xscale(value, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
@docstring.copy(Axes.set_yscale)
def yscale(value, **kwargs):
    return gca().set_yscale(value, **kwargs)


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def autumn():
    """
    Set the colormap to "autumn".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("autumn")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def bone():
    """
    Set the colormap to "bone".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("bone")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def cool():
    """
    Set the colormap to "cool".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("cool")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def copper():
    """
    Set the colormap to "copper".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("copper")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def flag():
    """
    Set the colormap to "flag".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("flag")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def gray():
    """
    Set the colormap to "gray".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("gray")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def hot():
    """
    Set the colormap to "hot".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("hot")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def hsv():
    """
    Set the colormap to "hsv".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("hsv")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def jet():
    """
    Set the colormap to "jet".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("jet")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def pink():
    """
    Set the colormap to "pink".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("pink")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def prism():
    """
    Set the colormap to "prism".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("prism")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def spring():
    """
    Set the colormap to "spring".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("spring")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def summer():
    """
    Set the colormap to "summer".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("summer")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def winter():
    """
    Set the colormap to "winter".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("winter")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def magma():
    """
    Set the colormap to "magma".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("magma")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def inferno():
    """
    Set the colormap to "inferno".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("inferno")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def plasma():
    """
    Set the colormap to "plasma".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("plasma")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def viridis():
    """
    Set the colormap to "viridis".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("viridis")


# Autogenerated by boilerplate.py.  Do not edit as changes will be lost.
def nipy_spectral():
    """
    Set the colormap to "nipy_spectral".

    This changes the default colormap as well as the colormap of the current
    image if there is one. See ``help(colormaps)`` for more information.
    """
    set_cmap("nipy_spectral")

_setup_pyplot_info_docstrings()