quiver.py 46.9 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
"""
Support for plotting vector fields.

Presently this contains Quiver and Barb. Quiver plots an arrow in the
direction of the vector, with the size of the arrow related to the
magnitude of the vector.

Barbs are like quiver in that they point along a vector, but
the magnitude of the vector is given schematically by the presence of barbs
or flags on the barb.

This will also become a home for things such as standard
deviation ellipses, which can and will be derived very easily from
the Quiver code.
"""

import math
import weakref

import numpy as np
from numpy import ma

from matplotlib import cbook, docstring, font_manager
import matplotlib.artist as martist
import matplotlib.collections as mcollections
from matplotlib.patches import CirclePolygon
import matplotlib.text as mtext
import matplotlib.transforms as transforms


_quiver_doc = """
Plot a 2D field of arrows.

Call signature::

  quiver([X, Y], U, V, [C], **kw)

Where *X*, *Y* define the arrow locations, *U*, *V* define the arrow
directions, and *C* optionally sets the color.

**Arrow size**

The default settings auto-scales the length of the arrows to a reasonable size.
To change this behavior see the *scale* and *scale_units* parameters.

**Arrow shape**

The defaults give a slightly swept-back arrow; to make the head a
triangle, make *headaxislength* the same as *headlength*. To make the
arrow more pointed, reduce *headwidth* or increase *headlength* and
*headaxislength*. To make the head smaller relative to the shaft,
scale down all the head parameters. You will probably do best to leave
minshaft alone.

**Arrow outline**

*linewidths* and *edgecolors* can be used to customize the arrow
outlines.

Parameters
----------
X, Y : 1D or 2D array-like, optional
    The x and y coordinates of the arrow locations.

    If not given, they will be generated as a uniform integer meshgrid based
    on the dimensions of *U* and *V*.

    If *X* and *Y* are 1D but *U*, *V* are 2D, *X*, *Y* are expanded to 2D
    using ``X, Y = np.meshgrid(X, Y)``. In this case ``len(X)`` and ``len(Y)``
    must match the column and row dimensions of *U* and *V*.

U, V : 1D or 2D array-like
    The x and y direction components of the arrow vectors.

    They must have the same number of elements, matching the number of arrow
    locations. *U* and *V* may be masked. Only locations unmasked in
    *U*, *V*, and *C* will be drawn.

C : 1D or 2D array-like, optional
    Numeric data that defines the arrow colors by colormapping via *norm* and
    *cmap*.

    This does not support explicit colors. If you want to set colors directly,
    use *color* instead.  The size of *C* must match the number of arrow
    locations.

units : {'width', 'height', 'dots', 'inches', 'x', 'y' 'xy'}, default: 'width'
    The arrow dimensions (except for *length*) are measured in multiples of
    this unit.

    The following values are supported:

    - 'width', 'height': The width or height of the axis.
    - 'dots', 'inches': Pixels or inches based on the figure dpi.
    - 'x', 'y', 'xy': *X*, *Y* or :math:`\\sqrt{X^2 + Y^2}` in data units.

    The arrows scale differently depending on the units.  For
    'x' or 'y', the arrows get larger as one zooms in; for other
    units, the arrow size is independent of the zoom state.  For
    'width or 'height', the arrow size increases with the width and
    height of the axes, respectively, when the window is resized;
    for 'dots' or 'inches', resizing does not change the arrows.

angles : {'uv', 'xy'} or array-like, optional, default: 'uv'
    Method for determining the angle of the arrows.

    - 'uv': The arrow axis aspect ratio is 1 so that
      if *U* == *V* the orientation of the arrow on the plot is 45 degrees
      counter-clockwise from the horizontal axis (positive to the right).

      Use this if the arrows symbolize a quantity that is not based on
      *X*, *Y* data coordinates.

    - 'xy': Arrows point from (x, y) to (x+u, y+v).
      Use this for plotting a gradient field, for example.

    - Alternatively, arbitrary angles may be specified explicitly as an array
      of values in degrees, counter-clockwise from the horizontal axis.

      In this case *U*, *V* is only used to determine the length of the
      arrows.

    Note: inverting a data axis will correspondingly invert the
    arrows only with ``angles='xy'``.

scale : float, optional
    Number of data units per arrow length unit, e.g., m/s per plot width; a
    smaller scale parameter makes the arrow longer. Default is *None*.

    If *None*, a simple autoscaling algorithm is used, based on the average
    vector length and the number of vectors. The arrow length unit is given by
    the *scale_units* parameter.

scale_units : {'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional
    If the *scale* kwarg is *None*, the arrow length unit. Default is *None*.

    e.g. *scale_units* is 'inches', *scale* is 2.0, and ``(u, v) = (1, 0)``,
    then the vector will be 0.5 inches long.

    If *scale_units* is 'width' or 'height', then the vector will be half the
    width/height of the axes.

    If *scale_units* is 'x' then the vector will be 0.5 x-axis
    units. To plot vectors in the x-y plane, with u and v having
    the same units as x and y, use
    ``angles='xy', scale_units='xy', scale=1``.

width : float, optional
    Shaft width in arrow units; default depends on choice of units,
    above, and number of vectors; a typical starting value is about
    0.005 times the width of the plot.

headwidth : float, optional, default: 3
    Head width as multiple of shaft width.

headlength : float, optional, default: 5
    Head length as multiple of shaft width.

headaxislength : float, optional, default: 4.5
    Head length at shaft intersection.

minshaft : float, optional, default: 1
    Length below which arrow scales, in units of head length. Do not
    set this to less than 1, or small arrows will look terrible!

minlength : float, optional, default: 1
    Minimum length as a multiple of shaft width; if an arrow length
    is less than this, plot a dot (hexagon) of this diameter instead.

pivot : {'tail', 'mid', 'middle', 'tip'}, optional, default: 'tail'
    The part of the arrow that is anchored to the *X*, *Y* grid. The arrow
    rotates about this point.

    'mid' is a synonym for 'middle'.

color : color or color sequence, optional
    Explicit color(s) for the arrows. If *C* has been set, *color* has no
    effect.

    This is a synonym for the `~.PolyCollection` *facecolor* parameter.

Other Parameters
----------------
**kwargs : `~matplotlib.collections.PolyCollection` properties, optional
    All other keyword arguments are passed on to `.PolyCollection`:

    %(PolyCollection)s

See Also
--------
quiverkey : Add a key to a quiver plot.
""" % docstring.interpd.params


class QuiverKey(martist.Artist):
    """Labelled arrow for use as a quiver plot scale key."""
    halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'}
    valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'}
    pivot = {'N': 'middle', 'S': 'middle', 'E': 'tip', 'W': 'tail'}

    def __init__(self, Q, X, Y, U, label,
                 *, angle=0, coordinates='axes', color=None, labelsep=0.1,
                 labelpos='N', labelcolor=None, fontproperties=None,
                 **kw):
        """
        Add a key to a quiver plot.

        The positioning of the key depends on *X*, *Y*, *coordinates*, and
        *labelpos*.  If *labelpos* is 'N' or 'S', *X*, *Y* give the position of
        the middle of the key arrow.  If *labelpos* is 'E', *X*, *Y* positions
        the head, and if *labelpos* is 'W', *X*, *Y* positions the tail; in
        either of these two cases, *X*, *Y* is somewhere in the middle of the
        arrow+label key object.

        Parameters
        ----------
        Q : `matplotlib.quiver.Quiver`
            A `.Quiver` object as returned by a call to `~.Axes.quiver()`.
        X, Y : float
            The location of the key.
        U : float
            The length of the key.
        label : str
            The key label (e.g., length and units of the key).
        angle : float, default: 0
            The angle of the key arrow, in degrees anti-clockwise from the
            x-axis.
        coordinates : {'axes', 'figure', 'data', 'inches'}, default: 'axes'
            Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are
            normalized coordinate systems with (0, 0) in the lower left and
            (1, 1) in the upper right; 'data' are the axes data coordinates
            (used for the locations of the vectors in the quiver plot itself);
            'inches' is position in the figure in inches, with (0, 0) at the
            lower left corner.
        color : color
            Overrides face and edge colors from *Q*.
        labelpos : {'N', 'S', 'E', 'W'}
            Position the label above, below, to the right, to the left of the
            arrow, respectively.
        labelsep : float, default: 0.1
            Distance in inches between the arrow and the label.
        labelcolor : color, default: :rc:`text.color`
            Label color.
        fontproperties : dict, optional
            A dictionary with keyword arguments accepted by the
            `~matplotlib.font_manager.FontProperties` initializer:
            *family*, *style*, *variant*, *size*, *weight*.
        **kwargs
            Any additional keyword arguments are used to override vector
            properties taken from *Q*.
        """
        martist.Artist.__init__(self)
        self.Q = Q
        self.X = X
        self.Y = Y
        self.U = U
        self.angle = angle
        self.coord = coordinates
        self.color = color
        self.label = label
        self._labelsep_inches = labelsep
        self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi)

        # try to prevent closure over the real self
        weak_self = weakref.ref(self)

        def on_dpi_change(fig):
            self_weakref = weak_self()
            if self_weakref is not None:
                self_weakref.labelsep = self_weakref._labelsep_inches * fig.dpi
                # simple brute force update works because _init is called at
                # the start of draw.
                self_weakref._initialized = False

        self._cid = Q.ax.figure.callbacks.connect('dpi_changed',
                                                  on_dpi_change)

        self.labelpos = labelpos
        self.labelcolor = labelcolor
        self.fontproperties = fontproperties or dict()
        self.kw = kw
        _fp = self.fontproperties
        # boxprops = dict(facecolor='red')
        self.text = mtext.Text(
                        text=label,  # bbox=boxprops,
                        horizontalalignment=self.halign[self.labelpos],
                        verticalalignment=self.valign[self.labelpos],
                        fontproperties=font_manager.FontProperties(**_fp))

        if self.labelcolor is not None:
            self.text.set_color(self.labelcolor)
        self._initialized = False
        self.zorder = Q.zorder + 0.1

    def remove(self):
        """
        Overload the remove method
        """
        self.Q.ax.figure.callbacks.disconnect(self._cid)
        self._cid = None
        # pass the remove call up the stack
        martist.Artist.remove(self)

    def _init(self):
        if True:  # not self._initialized:
            if not self.Q._initialized:
                self.Q._init()
            self._set_transform()
            _pivot = self.Q.pivot
            self.Q.pivot = self.pivot[self.labelpos]
            # Hack: save and restore the Umask
            _mask = self.Q.Umask
            self.Q.Umask = ma.nomask
            u = self.U * np.cos(np.radians(self.angle))
            v = self.U * np.sin(np.radians(self.angle))
            angle = self.Q.angles if isinstance(self.Q.angles, str) else 'uv'
            self.verts = self.Q._make_verts(
                np.array([u]), np.array([v]), angle)
            self.Q.Umask = _mask
            self.Q.pivot = _pivot
            kw = self.Q.polykw
            kw.update(self.kw)
            self.vector = mcollections.PolyCollection(
                                        self.verts,
                                        offsets=[(self.X, self.Y)],
                                        transOffset=self.get_transform(),
                                        **kw)
            if self.color is not None:
                self.vector.set_color(self.color)
            self.vector.set_transform(self.Q.get_transform())
            self.vector.set_figure(self.get_figure())
            self._initialized = True

    def _text_x(self, x):
        if self.labelpos == 'E':
            return x + self.labelsep
        elif self.labelpos == 'W':
            return x - self.labelsep
        else:
            return x

    def _text_y(self, y):
        if self.labelpos == 'N':
            return y + self.labelsep
        elif self.labelpos == 'S':
            return y - self.labelsep
        else:
            return y

    @martist.allow_rasterization
    def draw(self, renderer):
        self._init()
        self.vector.draw(renderer)
        x, y = self.get_transform().transform((self.X, self.Y))
        self.text.set_x(self._text_x(x))
        self.text.set_y(self._text_y(y))
        self.text.draw(renderer)
        self.stale = False

    def _set_transform(self):
        if self.coord == 'data':
            self.set_transform(self.Q.ax.transData)
        elif self.coord == 'axes':
            self.set_transform(self.Q.ax.transAxes)
        elif self.coord == 'figure':
            self.set_transform(self.Q.ax.figure.transFigure)
        elif self.coord == 'inches':
            self.set_transform(self.Q.ax.figure.dpi_scale_trans)
        else:
            raise ValueError('unrecognized coordinates')

    def set_figure(self, fig):
        martist.Artist.set_figure(self, fig)
        self.text.set_figure(fig)

    def contains(self, mouseevent):
        inside, info = self._default_contains(mouseevent)
        if inside is not None:
            return inside, info
        # Maybe the dictionary should allow one to
        # distinguish between a text hit and a vector hit.
        if (self.text.contains(mouseevent)[0] or
                self.vector.contains(mouseevent)[0]):
            return True, {}
        return False, {}

    @cbook.deprecated("3.2")
    @property
    def quiverkey_doc(self):
        return self.__init__.__doc__


def _parse_args(*args, caller_name='function'):
    """
    Helper function to parse positional parameters for colored vector plots.

    This is currently used for Quiver and Barbs.

    Parameters
    ----------
    *args : list
        list of 2-5 arguments. Depending on their number they are parsed to::

            U, V
            U, V, C
            X, Y, U, V
            X, Y, U, V, C

    caller_name : str
        Name of the calling method (used in error messages).
    """
    X = Y = C = None

    len_args = len(args)
    if len_args == 2:
        # The use of atleast_1d allows for handling scalar arguments while also
        # keeping masked arrays
        U, V = np.atleast_1d(*args)
    elif len_args == 3:
        U, V, C = np.atleast_1d(*args)
    elif len_args == 4:
        X, Y, U, V = np.atleast_1d(*args)
    elif len_args == 5:
        X, Y, U, V, C = np.atleast_1d(*args)
    else:
        raise TypeError(f'{caller_name} takes 2-5 positional arguments but '
                        f'{len_args} were given')

    nr, nc = (1, U.shape[0]) if U.ndim == 1 else U.shape

    if X is not None:
        X = X.ravel()
        Y = Y.ravel()
        if len(X) == nc and len(Y) == nr:
            X, Y = [a.ravel() for a in np.meshgrid(X, Y)]
        elif len(X) != len(Y):
            raise ValueError('X and Y must be the same size, but '
                             f'X.size is {X.size} and Y.size is {Y.size}.')
    else:
        indexgrid = np.meshgrid(np.arange(nc), np.arange(nr))
        X, Y = [np.ravel(a) for a in indexgrid]
    # Size validation for U, V, C is left to the set_UVC method.
    return X, Y, U, V, C


def _check_consistent_shapes(*arrays):
    all_shapes = {a.shape for a in arrays}
    if len(all_shapes) != 1:
        raise ValueError('The shapes of the passed in arrays do not match')


class Quiver(mcollections.PolyCollection):
    """
    Specialized PolyCollection for arrows.

    The only API method is set_UVC(), which can be used
    to change the size, orientation, and color of the
    arrows; their locations are fixed when the class is
    instantiated.  Possibly this method will be useful
    in animations.

    Much of the work in this class is done in the draw()
    method so that as much information as possible is available
    about the plot.  In subsequent draw() calls, recalculation
    is limited to things that might have changed, so there
    should be no performance penalty from putting the calculations
    in the draw() method.
    """

    _PIVOT_VALS = ('tail', 'middle', 'tip')

    @docstring.Substitution(_quiver_doc)
    def __init__(self, ax, *args,
                 scale=None, headwidth=3, headlength=5, headaxislength=4.5,
                 minshaft=1, minlength=1, units='width', scale_units=None,
                 angles='uv', width=None, color='k', pivot='tail', **kw):
        """
        The constructor takes one required argument, an Axes
        instance, followed by the args and kwargs described
        by the following pyplot interface documentation:
        %s
        """
        self.ax = ax
        X, Y, U, V, C = _parse_args(*args, caller_name='quiver()')
        self.X = X
        self.Y = Y
        self.XY = np.column_stack((X, Y))
        self.N = len(X)
        self.scale = scale
        self.headwidth = headwidth
        self.headlength = float(headlength)
        self.headaxislength = headaxislength
        self.minshaft = minshaft
        self.minlength = minlength
        self.units = units
        self.scale_units = scale_units
        self.angles = angles
        self.width = width

        if pivot.lower() == 'mid':
            pivot = 'middle'
        self.pivot = pivot.lower()
        cbook._check_in_list(self._PIVOT_VALS, pivot=self.pivot)

        self.transform = kw.pop('transform', ax.transData)
        kw.setdefault('facecolors', color)
        kw.setdefault('linewidths', (0,))
        mcollections.PolyCollection.__init__(self, [], offsets=self.XY,
                                             transOffset=self.transform,
                                             closed=False,
                                             **kw)
        self.polykw = kw
        self.set_UVC(U, V, C)
        self._initialized = False

        # try to prevent closure over the real self
        weak_self = weakref.ref(self)

        def on_dpi_change(fig):
            self_weakref = weak_self()
            if self_weakref is not None:
                # vertices depend on width, span which in turn depend on dpi
                self_weakref._new_UV = True
                # simple brute force update works because _init is called at
                # the start of draw.
                self_weakref._initialized = False

        self._cid = self.ax.figure.callbacks.connect('dpi_changed',
                                                     on_dpi_change)

    @cbook.deprecated("3.1", alternative="get_facecolor()")
    @property
    def color(self):
        return self.get_facecolor()

    @cbook.deprecated("3.1")
    @property
    def keyvec(self):
        return None

    @cbook.deprecated("3.1")
    @property
    def keytext(self):
        return None

    def remove(self):
        """
        Overload the remove method
        """
        # disconnect the call back
        self.ax.figure.callbacks.disconnect(self._cid)
        self._cid = None
        # pass the remove call up the stack
        mcollections.PolyCollection.remove(self)

    def _init(self):
        """
        Initialization delayed until first draw;
        allow time for axes setup.
        """
        # It seems that there are not enough event notifications
        # available to have this work on an as-needed basis at present.
        if True:  # not self._initialized:
            trans = self._set_transform()
            ax = self.ax
            self.span = trans.inverted().transform_bbox(ax.bbox).width
            if self.width is None:
                sn = np.clip(math.sqrt(self.N), 8, 25)
                self.width = 0.06 * self.span / sn

            # _make_verts sets self.scale if not already specified
            if not self._initialized and self.scale is None:
                self._make_verts(self.U, self.V, self.angles)

            self._initialized = True

    def get_datalim(self, transData):
        trans = self.get_transform()
        transOffset = self.get_offset_transform()
        full_transform = (trans - transData) + (transOffset - transData)
        XY = full_transform.transform(self.XY)
        bbox = transforms.Bbox.null()
        bbox.update_from_data_xy(XY, ignore=True)
        return bbox

    @martist.allow_rasterization
    def draw(self, renderer):
        self._init()
        verts = self._make_verts(self.U, self.V, self.angles)
        self.set_verts(verts, closed=False)
        self._new_UV = False
        mcollections.PolyCollection.draw(self, renderer)
        self.stale = False

    def set_UVC(self, U, V, C=None):
        # We need to ensure we have a copy, not a reference
        # to an array that might change before draw().
        U = ma.masked_invalid(U, copy=True).ravel()
        V = ma.masked_invalid(V, copy=True).ravel()
        if C is not None:
            C = ma.masked_invalid(C, copy=True).ravel()
        for name, var in zip(('U', 'V', 'C'), (U, V, C)):
            if not (var is None or var.size == self.N or var.size == 1):
                raise ValueError(f'Argument {name} has a size {var.size}'
                                 f' which does not match {self.N},'
                                 ' the number of arrow positions')

        mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
        if C is not None:
            mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
            if mask is ma.nomask:
                C = C.filled()
            else:
                C = ma.array(C, mask=mask, copy=False)
        self.U = U.filled(1)
        self.V = V.filled(1)
        self.Umask = mask
        if C is not None:
            self.set_array(C)
        self._new_UV = True
        self.stale = True

    def _dots_per_unit(self, units):
        """
        Return a scale factor for converting from units to pixels
        """
        ax = self.ax
        if units in ('x', 'y', 'xy'):
            if units == 'x':
                dx0 = ax.viewLim.width
                dx1 = ax.bbox.width
            elif units == 'y':
                dx0 = ax.viewLim.height
                dx1 = ax.bbox.height
            else:  # 'xy' is assumed
                dxx0 = ax.viewLim.width
                dxx1 = ax.bbox.width
                dyy0 = ax.viewLim.height
                dyy1 = ax.bbox.height
                dx1 = np.hypot(dxx1, dyy1)
                dx0 = np.hypot(dxx0, dyy0)
            dx = dx1 / dx0
        else:
            if units == 'width':
                dx = ax.bbox.width
            elif units == 'height':
                dx = ax.bbox.height
            elif units == 'dots':
                dx = 1.0
            elif units == 'inches':
                dx = ax.figure.dpi
            else:
                raise ValueError('unrecognized units')
        return dx

    def _set_transform(self):
        """
        Sets the PolygonCollection transform to go
        from arrow width units to pixels.
        """
        dx = self._dots_per_unit(self.units)
        self._trans_scale = dx  # pixels per arrow width unit
        trans = transforms.Affine2D().scale(dx)
        self.set_transform(trans)
        return trans

    def _angles_lengths(self, U, V, eps=1):
        xy = self.ax.transData.transform(self.XY)
        uv = np.column_stack((U, V))
        xyp = self.ax.transData.transform(self.XY + eps * uv)
        dxy = xyp - xy
        angles = np.arctan2(dxy[:, 1], dxy[:, 0])
        lengths = np.hypot(*dxy.T) / eps
        return angles, lengths

    def _make_verts(self, U, V, angles):
        uv = (U + V * 1j)
        str_angles = angles if isinstance(angles, str) else ''
        if str_angles == 'xy' and self.scale_units == 'xy':
            # Here eps is 1 so that if we get U, V by diffing
            # the X, Y arrays, the vectors will connect the
            # points, regardless of the axis scaling (including log).
            angles, lengths = self._angles_lengths(U, V, eps=1)
        elif str_angles == 'xy' or self.scale_units == 'xy':
            # Calculate eps based on the extents of the plot
            # so that we don't end up with roundoff error from
            # adding a small number to a large.
            eps = np.abs(self.ax.dataLim.extents).max() * 0.001
            angles, lengths = self._angles_lengths(U, V, eps=eps)
        if str_angles and self.scale_units == 'xy':
            a = lengths
        else:
            a = np.abs(uv)
        if self.scale is None:
            sn = max(10, math.sqrt(self.N))
            if self.Umask is not ma.nomask:
                amean = a[~self.Umask].mean()
            else:
                amean = a.mean()
            # crude auto-scaling
            # scale is typical arrow length as a multiple of the arrow width
            scale = 1.8 * amean * sn / self.span
        if self.scale_units is None:
            if self.scale is None:
                self.scale = scale
            widthu_per_lenu = 1.0
        else:
            if self.scale_units == 'xy':
                dx = 1
            else:
                dx = self._dots_per_unit(self.scale_units)
            widthu_per_lenu = dx / self._trans_scale
            if self.scale is None:
                self.scale = scale * widthu_per_lenu
        length = a * (widthu_per_lenu / (self.scale * self.width))
        X, Y = self._h_arrows(length)
        if str_angles == 'xy':
            theta = angles
        elif str_angles == 'uv':
            theta = np.angle(uv)
        else:
            theta = ma.masked_invalid(np.deg2rad(angles)).filled(0)
        theta = theta.reshape((-1, 1))  # for broadcasting
        xy = (X + Y * 1j) * np.exp(1j * theta) * self.width
        XY = np.stack((xy.real, xy.imag), axis=2)
        if self.Umask is not ma.nomask:
            XY = ma.array(XY)
            XY[self.Umask] = ma.masked
            # This might be handled more efficiently with nans, given
            # that nans will end up in the paths anyway.

        return XY

    def _h_arrows(self, length):
        """Length is in arrow width units."""
        # It might be possible to streamline the code
        # and speed it up a bit by using complex (x, y)
        # instead of separate arrays; but any gain would be slight.
        minsh = self.minshaft * self.headlength
        N = len(length)
        length = length.reshape(N, 1)
        # This number is chosen based on when pixel values overflow in Agg
        # causing rendering errors
        # length = np.minimum(length, 2 ** 16)
        np.clip(length, 0, 2 ** 16, out=length)
        # x, y: normal horizontal arrow
        x = np.array([0, -self.headaxislength,
                      -self.headlength, 0],
                     np.float64)
        x = x + np.array([0, 1, 1, 1]) * length
        y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64)
        y = np.repeat(y[np.newaxis, :], N, axis=0)
        # x0, y0: arrow without shaft, for short vectors
        x0 = np.array([0, minsh - self.headaxislength,
                       minsh - self.headlength, minsh], np.float64)
        y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64)
        ii = [0, 1, 2, 3, 2, 1, 0, 0]
        X = x[:, ii]
        Y = y[:, ii]
        Y[:, 3:-1] *= -1
        X0 = x0[ii]
        Y0 = y0[ii]
        Y0[3:-1] *= -1
        shrink = length / minsh if minsh != 0. else 0.
        X0 = shrink * X0[np.newaxis, :]
        Y0 = shrink * Y0[np.newaxis, :]
        short = np.repeat(length < minsh, 8, axis=1)
        # Now select X0, Y0 if short, otherwise X, Y
        np.copyto(X, X0, where=short)
        np.copyto(Y, Y0, where=short)
        if self.pivot == 'middle':
            X -= 0.5 * X[:, 3, np.newaxis]
        elif self.pivot == 'tip':
            # numpy bug? using -= does not work here unless we multiply by a
            # float first, as with 'mid'.
            X = X - X[:, 3, np.newaxis]
        elif self.pivot != 'tail':
            cbook._check_in_list(["middle", "tip", "tail"], pivot=self.pivot)

        tooshort = length < self.minlength
        if tooshort.any():
            # Use a heptagonal dot:
            th = np.arange(0, 8, 1, np.float64) * (np.pi / 3.0)
            x1 = np.cos(th) * self.minlength * 0.5
            y1 = np.sin(th) * self.minlength * 0.5
            X1 = np.repeat(x1[np.newaxis, :], N, axis=0)
            Y1 = np.repeat(y1[np.newaxis, :], N, axis=0)
            tooshort = np.repeat(tooshort, 8, 1)
            np.copyto(X, X1, where=tooshort)
            np.copyto(Y, Y1, where=tooshort)
        # Mask handling is deferred to the caller, _make_verts.
        return X, Y

    quiver_doc = _quiver_doc


_barbs_doc = r"""
Plot a 2D field of barbs.

Call signature::

  barbs([X, Y], U, V, [C], **kw)

Where *X*, *Y* define the barb locations, *U*, *V* define the barb
directions, and *C* optionally sets the color.

All arguments may be 1D or 2D. *U*, *V*, *C* may be masked arrays, but masked
*X*, *Y* are not supported at present.

Barbs are traditionally used in meteorology as a way to plot the speed
and direction of wind observations, but can technically be used to
plot any two dimensional vector quantity.  As opposed to arrows, which
give vector magnitude by the length of the arrow, the barbs give more
quantitative information about the vector magnitude by putting slanted
lines or a triangle for various increments in magnitude, as show
schematically below::

  :                   /\    \
  :                  /  \    \
  :                 /    \    \    \
  :                /      \    \    \
  :               ------------------------------


The largest increment is given by a triangle (or "flag"). After those
come full lines (barbs). The smallest increment is a half line.  There
is only, of course, ever at most 1 half line.  If the magnitude is
small and only needs a single half-line and no full lines or
triangles, the half-line is offset from the end of the barb so that it
can be easily distinguished from barbs with a single full line.  The
magnitude for the barb shown above would nominally be 65, using the
standard increments of 50, 10, and 5.

See also https://en.wikipedia.org/wiki/Wind_barb.



Parameters
----------
X, Y : 1D or 2D array-like, optional
    The x and y coordinates of the barb locations. See *pivot* for how the
    barbs are drawn to the x, y positions.

    If not given, they will be generated as a uniform integer meshgrid based
    on the dimensions of *U* and *V*.

    If *X* and *Y* are 1D but *U*, *V* are 2D, *X*, *Y* are expanded to 2D
    using ``X, Y = np.meshgrid(X, Y)``. In this case ``len(X)`` and ``len(Y)``
    must match the column and row dimensions of *U* and *V*.

U, V : 1D or 2D array-like
    The x and y components of the barb shaft.

C : 1D or 2D array-like, optional
    Numeric data that defines the barb colors by colormapping via *norm* and
    *cmap*.

    This does not support explicit colors. If you want to set colors directly,
    use *barbcolor* instead.

length : float, default: 7
    Length of the barb in points; the other parts of the barb
    are scaled against this.

pivot : {'tip', 'middle'} or float, default: 'tip'
    The part of the arrow that is anchored to the *X*, *Y* grid. The barb
    rotates about this point. This can also be a number, which shifts the
    start of the barb that many points away from grid point.

barbcolor : color or color sequence
    Specifies the color of all parts of the barb except for the flags.  This
    parameter is analogous to the *edgecolor* parameter for polygons,
    which can be used instead. However this parameter will override
    facecolor.

flagcolor : color or color sequence
    Specifies the color of any flags on the barb.  This parameter is
    analogous to the *facecolor* parameter for polygons, which can be
    used instead. However, this parameter will override facecolor.  If
    this is not set (and *C* has not either) then *flagcolor* will be
    set to match *barbcolor* so that the barb has a uniform color. If
    *C* has been set, *flagcolor* has no effect.

sizes : dict, optional
    A dictionary of coefficients specifying the ratio of a given
    feature to the length of the barb. Only those values one wishes to
    override need to be included.  These features include:

    - 'spacing' - space between features (flags, full/half barbs)
    - 'height' - height (distance from shaft to top) of a flag or full barb
    - 'width' - width of a flag, twice the width of a full barb
    - 'emptybarb' - radius of the circle used for low magnitudes

fill_empty : bool, default: False
    Whether the empty barbs (circles) that are drawn should be filled with
    the flag color.  If they are not filled, the center is transparent.

rounding : bool, default: True
    Whether the vector magnitude should be rounded when allocating barb
    components.  If True, the magnitude is rounded to the nearest multiple
    of the half-barb increment.  If False, the magnitude is simply truncated
    to the next lowest multiple.

barb_increments : dict, optional
    A dictionary of increments specifying values to associate with
    different parts of the barb. Only those values one wishes to
    override need to be included.

    - 'half' - half barbs (Default is 5)
    - 'full' - full barbs (Default is 10)
    - 'flag' - flags (default is 50)

flip_barb : bool or array-like of bool, default: False
    Whether the lines and flags should point opposite to normal.
    Normal behavior is for the barbs and lines to point right (comes from wind
    barbs having these features point towards low pressure in the Northern
    Hemisphere).

    A single value is applied to all barbs. Individual barbs can be flipped by
    passing a bool array of the same size as *U* and *V*.

Returns
-------
barbs : `~matplotlib.quiver.Barbs`

Other Parameters
----------------
**kwargs
    The barbs can further be customized using `.PolyCollection` keyword
    arguments:

    %(PolyCollection)s
""" % docstring.interpd.params

docstring.interpd.update(barbs_doc=_barbs_doc)


class Barbs(mcollections.PolyCollection):
    '''
    Specialized PolyCollection for barbs.

    The only API method is :meth:`set_UVC`, which can be used to
    change the size, orientation, and color of the arrows.  Locations
    are changed using the :meth:`set_offsets` collection method.
    Possibly this method will be useful in animations.

    There is one internal function :meth:`_find_tails` which finds
    exactly what should be put on the barb given the vector magnitude.
    From there :meth:`_make_barbs` is used to find the vertices of the
    polygon to represent the barb based on this information.
    '''
    # This may be an abuse of polygons here to render what is essentially maybe
    # 1 triangle and a series of lines.  It works fine as far as I can tell
    # however.
    @docstring.interpd
    def __init__(self, ax, *args,
                 pivot='tip', length=7, barbcolor=None, flagcolor=None,
                 sizes=None, fill_empty=False, barb_increments=None,
                 rounding=True, flip_barb=False, **kw):
        """
        The constructor takes one required argument, an Axes
        instance, followed by the args and kwargs described
        by the following pyplot interface documentation:
        %(barbs_doc)s
        """
        self.sizes = sizes or dict()
        self.fill_empty = fill_empty
        self.barb_increments = barb_increments or dict()
        self.rounding = rounding
        self.flip = np.atleast_1d(flip_barb)
        transform = kw.pop('transform', ax.transData)
        self._pivot = pivot
        self._length = length
        barbcolor = barbcolor
        flagcolor = flagcolor

        # Flagcolor and barbcolor provide convenience parameters for
        # setting the facecolor and edgecolor, respectively, of the barb
        # polygon.  We also work here to make the flag the same color as the
        # rest of the barb by default

        if None in (barbcolor, flagcolor):
            kw['edgecolors'] = 'face'
            if flagcolor:
                kw['facecolors'] = flagcolor
            elif barbcolor:
                kw['facecolors'] = barbcolor
            else:
                # Set to facecolor passed in or default to black
                kw.setdefault('facecolors', 'k')
        else:
            kw['edgecolors'] = barbcolor
            kw['facecolors'] = flagcolor

        # Explicitly set a line width if we're not given one, otherwise
        # polygons are not outlined and we get no barbs
        if 'linewidth' not in kw and 'lw' not in kw:
            kw['linewidth'] = 1

        # Parse out the data arrays from the various configurations supported
        x, y, u, v, c = _parse_args(*args, caller_name='barbs()')
        self.x = x
        self.y = y
        xy = np.column_stack((x, y))

        # Make a collection
        barb_size = self._length ** 2 / 4  # Empirically determined
        mcollections.PolyCollection.__init__(self, [], (barb_size,),
                                             offsets=xy,
                                             transOffset=transform, **kw)
        self.set_transform(transforms.IdentityTransform())

        self.set_UVC(u, v, c)

    def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50):
        '''
        Find how many of each of the tail pieces is necessary.  Flag
        specifies the increment for a flag, barb for a full barb, and half for
        half a barb. Mag should be the magnitude of a vector (i.e., >= 0).

        This returns a tuple of:

            (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*)

        *half_flag* is a boolean whether half of a barb is needed,
        since there should only ever be one half on a given
        barb. *empty_flag* flag is an array of flags to easily tell if
        a barb is empty (too low to plot any barbs/flags.
        '''

        # If rounding, round to the nearest multiple of half, the smallest
        # increment
        if rounding:
            mag = half * (mag / half + 0.5).astype(int)

        num_flags = np.floor(mag / flag).astype(int)
        mag = mag % flag

        num_barb = np.floor(mag / full).astype(int)
        mag = mag % full

        half_flag = mag >= half
        empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0))

        return num_flags, num_barb, half_flag, empty_flag

    def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length,
                    pivot, sizes, fill_empty, flip):
        '''
        This function actually creates the wind barbs.  *u* and *v*
        are components of the vector in the *x* and *y* directions,
        respectively.

        *nflags*, *nbarbs*, and *half_barb*, empty_flag* are,
        *respectively, the number of flags, number of barbs, flag for
        *half a barb, and flag for empty barb, ostensibly obtained
        *from :meth:`_find_tails`.

        *length* is the length of the barb staff in points.

        *pivot* specifies the point on the barb around which the
        entire barb should be rotated.  Right now, valid options are
        'tip' and 'middle'. Can also be a number, which shifts the start
        of the barb that many points from the origin.

        *sizes* is a dictionary of coefficients specifying the ratio
        of a given feature to the length of the barb. These features
        include:

            - *spacing*: space between features (flags, full/half
               barbs)

            - *height*: distance from shaft of top of a flag or full
               barb

            - *width* - width of a flag, twice the width of a full barb

            - *emptybarb* - radius of the circle used for low
               magnitudes

        *fill_empty* specifies whether the circle representing an
        empty barb should be filled or not (this changes the drawing
        of the polygon).

        *flip* is a flag indicating whether the features should be flipped to
        the other side of the barb (useful for winds in the southern
        hemisphere).

        This function returns list of arrays of vertices, defining a polygon
        for each of the wind barbs.  These polygons have been rotated to
        properly align with the vector direction.
        '''

        # These control the spacing and size of barb elements relative to the
        # length of the shaft
        spacing = length * sizes.get('spacing', 0.125)
        full_height = length * sizes.get('height', 0.4)
        full_width = length * sizes.get('width', 0.25)
        empty_rad = length * sizes.get('emptybarb', 0.15)

        # Controls y point where to pivot the barb.
        pivot_points = dict(tip=0.0, middle=-length / 2.)

        endx = 0.0
        try:
            endy = float(pivot)
        except ValueError:
            endy = pivot_points[pivot.lower()]

        # Get the appropriate angle for the vector components.  The offset is
        # due to the way the barb is initially drawn, going down the y-axis.
        # This makes sense in a meteorological mode of thinking since there 0
        # degrees corresponds to north (the y-axis traditionally)
        angles = -(ma.arctan2(v, u) + np.pi / 2)

        # Used for low magnitude.  We just get the vertices, so if we make it
        # out here, it can be reused.  The center set here should put the
        # center of the circle at the location(offset), rather than at the
        # same point as the barb pivot; this seems more sensible.
        circ = CirclePolygon((0, 0), radius=empty_rad).get_verts()
        if fill_empty:
            empty_barb = circ
        else:
            # If we don't want the empty one filled, we make a degenerate
            # polygon that wraps back over itself
            empty_barb = np.concatenate((circ, circ[::-1]))

        barb_list = []
        for index, angle in np.ndenumerate(angles):
            # If the vector magnitude is too weak to draw anything, plot an
            # empty circle instead
            if empty_flag[index]:
                # We can skip the transform since the circle has no preferred
                # orientation
                barb_list.append(empty_barb)
                continue

            poly_verts = [(endx, endy)]
            offset = length

            # Handle if this barb should be flipped
            barb_height = -full_height if flip[index] else full_height

            # Add vertices for each flag
            for i in range(nflags[index]):
                # The spacing that works for the barbs is a little to much for
                # the flags, but this only occurs when we have more than 1
                # flag.
                if offset != length:
                    offset += spacing / 2.
                poly_verts.extend(
                    [[endx, endy + offset],
                     [endx + barb_height, endy - full_width / 2 + offset],
                     [endx, endy - full_width + offset]])

                offset -= full_width + spacing

            # Add vertices for each barb.  These really are lines, but works
            # great adding 3 vertices that basically pull the polygon out and
            # back down the line
            for i in range(nbarbs[index]):
                poly_verts.extend(
                    [(endx, endy + offset),
                     (endx + barb_height, endy + offset + full_width / 2),
                     (endx, endy + offset)])

                offset -= spacing

            # Add the vertices for half a barb, if needed
            if half_barb[index]:
                # If the half barb is the first on the staff, traditionally it
                # is offset from the end to make it easy to distinguish from a
                # barb with a full one
                if offset == length:
                    poly_verts.append((endx, endy + offset))
                    offset -= 1.5 * spacing
                poly_verts.extend(
                    [(endx, endy + offset),
                     (endx + barb_height / 2, endy + offset + full_width / 4),
                     (endx, endy + offset)])

            # Rotate the barb according the angle. Making the barb first and
            # then rotating it made the math for drawing the barb really easy.
            # Also, the transform framework makes doing the rotation simple.
            poly_verts = transforms.Affine2D().rotate(-angle).transform(
                poly_verts)
            barb_list.append(poly_verts)

        return barb_list

    def set_UVC(self, U, V, C=None):
        self.u = ma.masked_invalid(U, copy=False).ravel()
        self.v = ma.masked_invalid(V, copy=False).ravel()

        # Flip needs to have the same number of entries as everything else.
        # Use broadcast_to to avoid a bloated array of identical values.
        # (can't rely on actual broadcasting)
        if len(self.flip) == 1:
            flip = np.broadcast_to(self.flip, self.u.shape)
        else:
            flip = self.flip

        if C is not None:
            c = ma.masked_invalid(C, copy=False).ravel()
            x, y, u, v, c, flip = cbook.delete_masked_points(
                self.x.ravel(), self.y.ravel(), self.u, self.v, c,
                flip.ravel())
            _check_consistent_shapes(x, y, u, v, c, flip)
        else:
            x, y, u, v, flip = cbook.delete_masked_points(
                self.x.ravel(), self.y.ravel(), self.u, self.v, flip.ravel())
            _check_consistent_shapes(x, y, u, v, flip)

        magnitude = np.hypot(u, v)
        flags, barbs, halves, empty = self._find_tails(magnitude,
                                                       self.rounding,
                                                       **self.barb_increments)

        # Get the vertices for each of the barbs

        plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty,
                                      self._length, self._pivot, self.sizes,
                                      self.fill_empty, flip)
        self.set_verts(plot_barbs)

        # Set the color array
        if C is not None:
            self.set_array(c)

        # Update the offsets in case the masked data changed
        xy = np.column_stack((x, y))
        self._offsets = xy
        self.stale = True

    def set_offsets(self, xy):
        """
        Set the offsets for the barb polygons.  This saves the offsets passed
        in and masks them as appropriate for the existing U/V data.

        Parameters
        ----------
        xy : sequence of pairs of floats
        """
        self.x = xy[:, 0]
        self.y = xy[:, 1]
        x, y, u, v = cbook.delete_masked_points(
            self.x.ravel(), self.y.ravel(), self.u, self.v)
        _check_consistent_shapes(x, y, u, v)
        xy = np.column_stack((x, y))
        mcollections.PolyCollection.set_offsets(self, xy)
        self.stale = True

    barbs_doc = _barbs_doc