test_triangulation.py 44.3 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
import numpy as np
from numpy.testing import (
    assert_array_equal, assert_array_almost_equal, assert_array_less)
import numpy.ma.testutils as matest
import pytest

import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
from matplotlib.path import Path
from matplotlib.testing.decorators import image_comparison


def test_delaunay():
    # No duplicate points, regular grid.
    nx = 5
    ny = 4
    x, y = np.meshgrid(np.linspace(0.0, 1.0, nx), np.linspace(0.0, 1.0, ny))
    x = x.ravel()
    y = y.ravel()
    npoints = nx*ny
    ntriangles = 2 * (nx-1) * (ny-1)
    nedges = 3*nx*ny - 2*nx - 2*ny + 1

    # Create delaunay triangulation.
    triang = mtri.Triangulation(x, y)

    # The tests in the remainder of this function should be passed by any
    # triangulation that does not contain duplicate points.

    # Points - floating point.
    assert_array_almost_equal(triang.x, x)
    assert_array_almost_equal(triang.y, y)

    # Triangles - integers.
    assert len(triang.triangles) == ntriangles
    assert np.min(triang.triangles) == 0
    assert np.max(triang.triangles) == npoints-1

    # Edges - integers.
    assert len(triang.edges) == nedges
    assert np.min(triang.edges) == 0
    assert np.max(triang.edges) == npoints-1

    # Neighbors - integers.
    # Check that neighbors calculated by C++ triangulation class are the same
    # as those returned from delaunay routine.
    neighbors = triang.neighbors
    triang._neighbors = None
    assert_array_equal(triang.neighbors, neighbors)

    # Is each point used in at least one triangle?
    assert_array_equal(np.unique(triang.triangles), np.arange(npoints))


def test_delaunay_duplicate_points():
    npoints = 10
    duplicate = 7
    duplicate_of = 3

    np.random.seed(23)
    x = np.random.random(npoints)
    y = np.random.random(npoints)
    x[duplicate] = x[duplicate_of]
    y[duplicate] = y[duplicate_of]

    # Create delaunay triangulation.
    triang = mtri.Triangulation(x, y)

    # Duplicate points should be ignored, so the index of the duplicate points
    # should not appear in any triangle.
    assert_array_equal(np.unique(triang.triangles),
                       np.delete(np.arange(npoints), duplicate))


def test_delaunay_points_in_line():
    # Cannot triangulate points that are all in a straight line, but check
    # that delaunay code fails gracefully.
    x = np.linspace(0.0, 10.0, 11)
    y = np.linspace(0.0, 10.0, 11)
    with pytest.raises(RuntimeError):
        mtri.Triangulation(x, y)

    # Add an extra point not on the line and the triangulation is OK.
    x = np.append(x, 2.0)
    y = np.append(y, 8.0)
    mtri.Triangulation(x, y)


@pytest.mark.parametrize('x, y', [
    # Triangulation should raise a ValueError if passed less than 3 points.
    ([], []),
    ([1], [5]),
    ([1, 2], [5, 6]),
    # Triangulation should also raise a ValueError if passed duplicate points
    # such that there are less than 3 unique points.
    ([1, 2, 1], [5, 6, 5]),
    ([1, 2, 2], [5, 6, 6]),
    ([1, 1, 1, 2, 1, 2], [5, 5, 5, 6, 5, 6]),
])
def test_delaunay_insufficient_points(x, y):
    with pytest.raises(ValueError):
        mtri.Triangulation(x, y)


def test_delaunay_robust():
    # Fails when mtri.Triangulation uses matplotlib.delaunay, works when using
    # qhull.
    tri_points = np.array([
        [0.8660254037844384, -0.5000000000000004],
        [0.7577722283113836, -0.5000000000000004],
        [0.6495190528383288, -0.5000000000000003],
        [0.5412658773652739, -0.5000000000000003],
        [0.811898816047911, -0.40625000000000044],
        [0.7036456405748561, -0.4062500000000004],
        [0.5953924651018013, -0.40625000000000033]])
    test_points = np.asarray([
        [0.58, -0.46],
        [0.65, -0.46],
        [0.65, -0.42],
        [0.7, -0.48],
        [0.7, -0.44],
        [0.75, -0.44],
        [0.8, -0.48]])

    # Utility function that indicates if a triangle defined by 3 points
    # (xtri, ytri) contains the test point xy.  Avoid calling with a point that
    # lies on or very near to an edge of the triangle.
    def tri_contains_point(xtri, ytri, xy):
        tri_points = np.vstack((xtri, ytri)).T
        return Path(tri_points).contains_point(xy)

    # Utility function that returns how many triangles of the specified
    # triangulation contain the test point xy.  Avoid calling with a point that
    # lies on or very near to an edge of any triangle in the triangulation.
    def tris_contain_point(triang, xy):
        return sum(tri_contains_point(triang.x[tri], triang.y[tri], xy)
                   for tri in triang.triangles)

    # Using matplotlib.delaunay, an invalid triangulation is created with
    # overlapping triangles; qhull is OK.
    triang = mtri.Triangulation(tri_points[:, 0], tri_points[:, 1])
    for test_point in test_points:
        assert tris_contain_point(triang, test_point) == 1

    # If ignore the first point of tri_points, matplotlib.delaunay throws a
    # KeyError when calculating the convex hull; qhull is OK.
    triang = mtri.Triangulation(tri_points[1:, 0], tri_points[1:, 1])


@image_comparison(['tripcolor1.png'])
def test_tripcolor():
    x = np.asarray([0, 0.5, 1, 0,   0.5, 1,   0, 0.5, 1, 0.75])
    y = np.asarray([0, 0,   0, 0.5, 0.5, 0.5, 1, 1,   1, 0.75])
    triangles = np.asarray([
        [0, 1, 3], [1, 4, 3],
        [1, 2, 4], [2, 5, 4],
        [3, 4, 6], [4, 7, 6],
        [4, 5, 9], [7, 4, 9], [8, 7, 9], [5, 8, 9]])

    # Triangulation with same number of points and triangles.
    triang = mtri.Triangulation(x, y, triangles)

    Cpoints = x + 0.5*y

    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    Cfaces = 0.5*xmid + ymid

    plt.subplot(121)
    plt.tripcolor(triang, Cpoints, edgecolors='k')
    plt.title('point colors')

    plt.subplot(122)
    plt.tripcolor(triang, facecolors=Cfaces, edgecolors='k')
    plt.title('facecolors')


def test_no_modify():
    # Test that Triangulation does not modify triangles array passed to it.
    triangles = np.array([[3, 2, 0], [3, 1, 0]], dtype=np.int32)
    points = np.array([(0, 0), (0, 1.1), (1, 0), (1, 1)])

    old_triangles = triangles.copy()
    mtri.Triangulation(points[:, 0], points[:, 1], triangles).edges
    assert_array_equal(old_triangles, triangles)


def test_trifinder():
    # Test points within triangles of masked triangulation.
    x, y = np.meshgrid(np.arange(4), np.arange(4))
    x = x.ravel()
    y = y.ravel()
    triangles = [[0, 1, 4], [1, 5, 4], [1, 2, 5], [2, 6, 5], [2, 3, 6],
                 [3, 7, 6], [4, 5, 8], [5, 9, 8], [5, 6, 9], [6, 10, 9],
                 [6, 7, 10], [7, 11, 10], [8, 9, 12], [9, 13, 12], [9, 10, 13],
                 [10, 14, 13], [10, 11, 14], [11, 15, 14]]
    mask = np.zeros(len(triangles))
    mask[8:10] = 1
    triang = mtri.Triangulation(x, y, triangles, mask)
    trifinder = triang.get_trifinder()

    xs = [0.25, 1.25, 2.25, 3.25]
    ys = [0.25, 1.25, 2.25, 3.25]
    xs, ys = np.meshgrid(xs, ys)
    xs = xs.ravel()
    ys = ys.ravel()
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 2, 4, -1, 6, -1, 10, -1,
                              12, 14, 16, -1, -1, -1, -1, -1])
    tris = trifinder(xs-0.5, ys-0.5)
    assert_array_equal(tris, [-1, -1, -1, -1, -1, 1, 3, 5,
                              -1, 7, -1, 11, -1, 13, 15, 17])

    # Test points exactly on boundary edges of masked triangulation.
    xs = [0.5, 1.5, 2.5, 0.5, 1.5, 2.5, 1.5, 1.5, 0.0, 1.0, 2.0, 3.0]
    ys = [0.0, 0.0, 0.0, 3.0, 3.0, 3.0, 1.0, 2.0, 1.5, 1.5, 1.5, 1.5]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 2, 4, 13, 15, 17, 3, 14, 6, 7, 10, 11])

    # Test points exactly on boundary corners of masked triangulation.
    xs = [0.0, 3.0]
    ys = [0.0, 3.0]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 17])

    #
    # Test triangles with horizontal colinear points.  These are not valid
    # triangulations, but we try to deal with the simplest violations.
    #

    # If +ve, triangulation is OK, if -ve triangulation invalid,
    # if zero have colinear points but should pass tests anyway.
    delta = 0.0

    x = [1.5, 0,  1,  2, 3, 1.5,   1.5]
    y = [-1,  0,  0,  0, 0, delta, 1]
    triangles = [[0, 2, 1], [0, 3, 2], [0, 4, 3], [1, 2, 5], [2, 3, 5],
                 [3, 4, 5], [1, 5, 6], [4, 6, 5]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.1, 0.4, 0.9, 1.4, 1.9, 2.4, 2.9]
    ys = [-0.1, 0.1]
    xs, ys = np.meshgrid(xs, ys)
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [[-1, 0, 0, 1, 1, 2, -1],
                              [-1, 6, 6, 6, 7, 7, -1]])

    #
    # Test triangles with vertical colinear points.  These are not valid
    # triangulations, but we try to deal with the simplest violations.
    #

    # If +ve, triangulation is OK, if -ve triangulation invalid,
    # if zero have colinear points but should pass tests anyway.
    delta = 0.0

    x = [-1, -delta, 0,  0,  0, 0, 1]
    y = [1.5, 1.5,   0,  1,  2, 3, 1.5]
    triangles = [[0, 1, 2], [0, 1, 5], [1, 2, 3], [1, 3, 4], [1, 4, 5],
                 [2, 6, 3], [3, 6, 4], [4, 6, 5]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.1, 0.1]
    ys = [-0.1, 0.4, 0.9, 1.4, 1.9, 2.4, 2.9]
    xs, ys = np.meshgrid(xs, ys)
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [[-1, -1], [0, 5], [0, 5], [0, 6], [1, 6], [1, 7],
                              [-1, -1]])

    # Test that changing triangulation by setting a mask causes the trifinder
    # to be reinitialised.
    x = [0, 1, 0, 1]
    y = [0, 0, 1, 1]
    triangles = [[0, 1, 2], [1, 3, 2]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.2, 0.2, 0.8, 1.2]
    ys = [0.5, 0.5, 0.5, 0.5]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [-1, 0, 1, -1])

    triang.set_mask([1, 0])
    assert trifinder == triang.get_trifinder()
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [-1, -1, 1, -1])


def test_triinterp():
    # Test points within triangles of masked triangulation.
    x, y = np.meshgrid(np.arange(4), np.arange(4))
    x = x.ravel()
    y = y.ravel()
    z = 1.23*x - 4.79*y
    triangles = [[0, 1, 4], [1, 5, 4], [1, 2, 5], [2, 6, 5], [2, 3, 6],
                 [3, 7, 6], [4, 5, 8], [5, 9, 8], [5, 6, 9], [6, 10, 9],
                 [6, 7, 10], [7, 11, 10], [8, 9, 12], [9, 13, 12], [9, 10, 13],
                 [10, 14, 13], [10, 11, 14], [11, 15, 14]]
    mask = np.zeros(len(triangles))
    mask[8:10] = 1
    triang = mtri.Triangulation(x, y, triangles, mask)
    linear_interp = mtri.LinearTriInterpolator(triang, z)
    cubic_min_E = mtri.CubicTriInterpolator(triang, z)
    cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')

    xs = np.linspace(0.25, 2.75, 6)
    ys = [0.25, 0.75, 2.25, 2.75]
    xs, ys = np.meshgrid(xs, ys)  # Testing arrays with array.ndim = 2
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = interp(xs, ys)
        assert_array_almost_equal(zs, (1.23*xs - 4.79*ys))

    # Test points outside triangulation.
    xs = [-0.25, 1.25, 1.75, 3.25]
    ys = xs
    xs, ys = np.meshgrid(xs, ys)
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = linear_interp(xs, ys)
        assert_array_equal(zs.mask, [[True]*4]*4)

    # Test mixed configuration (outside / inside).
    xs = np.linspace(0.25, 1.75, 6)
    ys = [0.25, 0.75, 1.25, 1.75]
    xs, ys = np.meshgrid(xs, ys)
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = interp(xs, ys)
        matest.assert_array_almost_equal(zs, (1.23*xs - 4.79*ys))
        mask = (xs >= 1) * (xs <= 2) * (ys >= 1) * (ys <= 2)
        assert_array_equal(zs.mask, mask)

    # 2nd order patch test: on a grid with an 'arbitrary shaped' triangle,
    # patch test shall be exact for quadratic functions and cubic
    # interpolator if *kind* = user
    (a, b, c) = (1.23, -4.79, 0.6)

    def quad(x, y):
        return a*(x-0.5)**2 + b*(y-0.5)**2 + c*x*y

    def gradient_quad(x, y):
        return (2*a*(x-0.5) + c*y, 2*b*(y-0.5) + c*x)

    x = np.array([0.2, 0.33367, 0.669, 0., 1., 1., 0.])
    y = np.array([0.3, 0.80755, 0.4335, 0., 0., 1., 1.])
    triangles = np.array([[0, 1, 2], [3, 0, 4], [4, 0, 2], [4, 2, 5],
                          [1, 5, 2], [6, 5, 1], [6, 1, 0], [6, 0, 3]])
    triang = mtri.Triangulation(x, y, triangles)
    z = quad(x, y)
    dz = gradient_quad(x, y)
    # test points for 2nd order patch test
    xs = np.linspace(0., 1., 5)
    ys = np.linspace(0., 1., 5)
    xs, ys = np.meshgrid(xs, ys)
    cubic_user = mtri.CubicTriInterpolator(triang, z, kind='user', dz=dz)
    interp_zs = cubic_user(xs, ys)
    assert_array_almost_equal(interp_zs, quad(xs, ys))
    (interp_dzsdx, interp_dzsdy) = cubic_user.gradient(x, y)
    (dzsdx, dzsdy) = gradient_quad(x, y)
    assert_array_almost_equal(interp_dzsdx, dzsdx)
    assert_array_almost_equal(interp_dzsdy, dzsdy)

    # Cubic improvement: cubic interpolation shall perform better than linear
    # on a sufficiently dense mesh for a quadratic function.
    n = 11
    x, y = np.meshgrid(np.linspace(0., 1., n+1), np.linspace(0., 1., n+1))
    x = x.ravel()
    y = y.ravel()
    z = quad(x, y)
    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1))
    xs, ys = np.meshgrid(np.linspace(0.1, 0.9, 5), np.linspace(0.1, 0.9, 5))
    xs = xs.ravel()
    ys = ys.ravel()
    linear_interp = mtri.LinearTriInterpolator(triang, z)
    cubic_min_E = mtri.CubicTriInterpolator(triang, z)
    cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
    zs = quad(xs, ys)
    diff_lin = np.abs(linear_interp(xs, ys) - zs)
    for interp in (cubic_min_E, cubic_geom):
        diff_cubic = np.abs(interp(xs, ys) - zs)
        assert np.max(diff_lin) >= 10 * np.max(diff_cubic)
        assert (np.dot(diff_lin, diff_lin) >=
                100 * np.dot(diff_cubic, diff_cubic))


def test_triinterpcubic_C1_continuity():
    # Below the 4 tests which demonstrate C1 continuity of the
    # TriCubicInterpolator (testing the cubic shape functions on arbitrary
    # triangle):
    #
    # 1) Testing continuity of function & derivatives at corner for all 9
    #    shape functions. Testing also function values at same location.
    # 2) Testing C1 continuity along each edge (as gradient is polynomial of
    #    2nd order, it is sufficient to test at the middle).
    # 3) Testing C1 continuity at triangle barycenter (where the 3 subtriangles
    #    meet)
    # 4) Testing C1 continuity at median 1/3 points (midside between 2
    #    subtriangles)

    # Utility test function check_continuity
    def check_continuity(interpolator, loc, values=None):
        """
        Checks the continuity of interpolator (and its derivatives) near
        location loc. Can check the value at loc itself if *values* is
        provided.

        *interpolator* TriInterpolator
        *loc* location to test (x0, y0)
        *values* (optional) array [z0, dzx0, dzy0] to check the value at *loc*
        """
        n_star = 24       # Number of continuity points in a boundary of loc
        epsilon = 1.e-10  # Distance for loc boundary
        k = 100.          # Continuity coefficient
        (loc_x, loc_y) = loc
        star_x = loc_x + epsilon*np.cos(np.linspace(0., 2*np.pi, n_star))
        star_y = loc_y + epsilon*np.sin(np.linspace(0., 2*np.pi, n_star))
        z = interpolator([loc_x], [loc_y])[0]
        (dzx, dzy) = interpolator.gradient([loc_x], [loc_y])
        if values is not None:
            assert_array_almost_equal(z, values[0])
            assert_array_almost_equal(dzx[0], values[1])
            assert_array_almost_equal(dzy[0], values[2])
        diff_z = interpolator(star_x, star_y) - z
        (tab_dzx, tab_dzy) = interpolator.gradient(star_x, star_y)
        diff_dzx = tab_dzx - dzx
        diff_dzy = tab_dzy - dzy
        assert_array_less(diff_z, epsilon*k)
        assert_array_less(diff_dzx, epsilon*k)
        assert_array_less(diff_dzy, epsilon*k)

    # Drawing arbitrary triangle (a, b, c) inside a unit square.
    (ax, ay) = (0.2, 0.3)
    (bx, by) = (0.33367, 0.80755)
    (cx, cy) = (0.669, 0.4335)
    x = np.array([ax, bx, cx, 0., 1., 1., 0.])
    y = np.array([ay, by, cy, 0., 0., 1., 1.])
    triangles = np.array([[0, 1, 2], [3, 0, 4], [4, 0, 2], [4, 2, 5],
                          [1, 5, 2], [6, 5, 1], [6, 1, 0], [6, 0, 3]])
    triang = mtri.Triangulation(x, y, triangles)

    for idof in range(9):
        z = np.zeros(7, dtype=np.float64)
        dzx = np.zeros(7, dtype=np.float64)
        dzy = np.zeros(7, dtype=np.float64)
        values = np.zeros([3, 3], dtype=np.float64)
        case = idof//3
        values[case, idof % 3] = 1.0
        if case == 0:
            z[idof] = 1.0
        elif case == 1:
            dzx[idof % 3] = 1.0
        elif case == 2:
            dzy[idof % 3] = 1.0
        interp = mtri.CubicTriInterpolator(triang, z, kind='user',
                                           dz=(dzx, dzy))
        # Test 1) Checking values and continuity at nodes
        check_continuity(interp, (ax, ay), values[:, 0])
        check_continuity(interp, (bx, by), values[:, 1])
        check_continuity(interp, (cx, cy), values[:, 2])
        # Test 2) Checking continuity at midside nodes
        check_continuity(interp, ((ax+bx)*0.5, (ay+by)*0.5))
        check_continuity(interp, ((ax+cx)*0.5, (ay+cy)*0.5))
        check_continuity(interp, ((cx+bx)*0.5, (cy+by)*0.5))
        # Test 3) Checking continuity at barycenter
        check_continuity(interp, ((ax+bx+cx)/3., (ay+by+cy)/3.))
        # Test 4) Checking continuity at median 1/3-point
        check_continuity(interp, ((4.*ax+bx+cx)/6., (4.*ay+by+cy)/6.))
        check_continuity(interp, ((ax+4.*bx+cx)/6., (ay+4.*by+cy)/6.))
        check_continuity(interp, ((ax+bx+4.*cx)/6., (ay+by+4.*cy)/6.))


def test_triinterpcubic_cg_solver():
    # Now 3 basic tests of the Sparse CG solver, used for
    # TriCubicInterpolator with *kind* = 'min_E'
    # 1) A commonly used test involves a 2d Poisson matrix.
    def poisson_sparse_matrix(n, m):
        """
        Return the sparse, (n*m, n*m) matrix in coo format resulting from the
        discretisation of the 2-dimensional Poisson equation according to a
        finite difference numerical scheme on a uniform (n, m) grid.
        """
        l = m*n
        rows = np.concatenate([
            np.arange(l, dtype=np.int32),
            np.arange(l-1, dtype=np.int32), np.arange(1, l, dtype=np.int32),
            np.arange(l-n, dtype=np.int32), np.arange(n, l, dtype=np.int32)])
        cols = np.concatenate([
            np.arange(l, dtype=np.int32),
            np.arange(1, l, dtype=np.int32), np.arange(l-1, dtype=np.int32),
            np.arange(n, l, dtype=np.int32), np.arange(l-n, dtype=np.int32)])
        vals = np.concatenate([
            4*np.ones(l, dtype=np.float64),
            -np.ones(l-1, dtype=np.float64), -np.ones(l-1, dtype=np.float64),
            -np.ones(l-n, dtype=np.float64), -np.ones(l-n, dtype=np.float64)])
        # In fact +1 and -1 diags have some zeros
        vals[l:2*l-1][m-1::m] = 0.
        vals[2*l-1:3*l-2][m-1::m] = 0.
        return vals, rows, cols, (n*m, n*m)

    # Instantiating a sparse Poisson matrix of size 48 x 48:
    (n, m) = (12, 4)
    mat = mtri.triinterpolate._Sparse_Matrix_coo(*poisson_sparse_matrix(n, m))
    mat.compress_csc()
    mat_dense = mat.to_dense()
    # Testing a sparse solve for all 48 basis vector
    for itest in range(n*m):
        b = np.zeros(n*m, dtype=np.float64)
        b[itest] = 1.
        x, _ = mtri.triinterpolate._cg(A=mat, b=b, x0=np.zeros(n*m),
                                       tol=1.e-10)
        assert_array_almost_equal(np.dot(mat_dense, x), b)

    # 2) Same matrix with inserting 2 rows - cols with null diag terms
    # (but still linked with the rest of the matrix by extra-diag terms)
    (i_zero, j_zero) = (12, 49)
    vals, rows, cols, _ = poisson_sparse_matrix(n, m)
    rows = rows + 1*(rows >= i_zero) + 1*(rows >= j_zero)
    cols = cols + 1*(cols >= i_zero) + 1*(cols >= j_zero)
    # adding extra-diag terms
    rows = np.concatenate([rows, [i_zero, i_zero-1, j_zero, j_zero-1]])
    cols = np.concatenate([cols, [i_zero-1, i_zero, j_zero-1, j_zero]])
    vals = np.concatenate([vals, [1., 1., 1., 1.]])
    mat = mtri.triinterpolate._Sparse_Matrix_coo(vals, rows, cols,
                                                 (n*m + 2, n*m + 2))
    mat.compress_csc()
    mat_dense = mat.to_dense()
    # Testing a sparse solve for all 50 basis vec
    for itest in range(n*m + 2):
        b = np.zeros(n*m + 2, dtype=np.float64)
        b[itest] = 1.
        x, _ = mtri.triinterpolate._cg(A=mat, b=b, x0=np.ones(n*m + 2),
                                       tol=1.e-10)
        assert_array_almost_equal(np.dot(mat_dense, x), b)

    # 3) Now a simple test that summation of duplicate (i.e. with same rows,
    # same cols) entries occurs when compressed.
    vals = np.ones(17, dtype=np.float64)
    rows = np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1],
                    dtype=np.int32)
    cols = np.array([0, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
                    dtype=np.int32)
    dim = (3, 3)
    mat = mtri.triinterpolate._Sparse_Matrix_coo(vals, rows, cols, dim)
    mat.compress_csc()
    mat_dense = mat.to_dense()
    assert_array_almost_equal(mat_dense, np.array([
        [1., 2., 0.], [2., 1., 5.], [0., 5., 1.]], dtype=np.float64))


def test_triinterpcubic_geom_weights():
    # Tests to check computation of weights for _DOF_estimator_geom:
    # The weight sum per triangle can be 1. (in case all angles < 90 degrees)
    # or (2*w_i) where w_i = 1-alpha_i/np.pi is the weight of apex i; alpha_i
    # is the apex angle > 90 degrees.
    (ax, ay) = (0., 1.687)
    x = np.array([ax, 0.5*ax, 0., 1.])
    y = np.array([ay, -ay, 0., 0.])
    z = np.zeros(4, dtype=np.float64)
    triangles = [[0, 2, 3], [1, 3, 2]]
    sum_w = np.zeros([4, 2])  # 4 possibilities; 2 triangles
    for theta in np.linspace(0., 2*np.pi, 14):  # rotating the figure...
        x_rot = np.cos(theta)*x + np.sin(theta)*y
        y_rot = -np.sin(theta)*x + np.cos(theta)*y
        triang = mtri.Triangulation(x_rot, y_rot, triangles)
        cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
        dof_estimator = mtri.triinterpolate._DOF_estimator_geom(cubic_geom)
        weights = dof_estimator.compute_geom_weights()
        # Testing for the 4 possibilities...
        sum_w[0, :] = np.sum(weights, 1) - 1
        for itri in range(3):
            sum_w[itri+1, :] = np.sum(weights, 1) - 2*weights[:, itri]
        assert_array_almost_equal(np.min(np.abs(sum_w), axis=0),
                                  np.array([0., 0.], dtype=np.float64))


def test_triinterp_colinear():
    # Tests interpolating inside a triangulation with horizontal colinear
    # points (refer also to the tests :func:`test_trifinder` ).
    #
    # These are not valid triangulations, but we try to deal with the
    # simplest violations (i. e. those handled by default TriFinder).
    #
    # Note that the LinearTriInterpolator and the CubicTriInterpolator with
    # kind='min_E' or 'geom' still pass a linear patch test.
    # We also test interpolation inside a flat triangle, by forcing
    # *tri_index* in a call to :meth:`_interpolate_multikeys`.

    # If +ve, triangulation is OK, if -ve triangulation invalid,
    # if zero have colinear points but should pass tests anyway.
    delta = 0.

    x0 = np.array([1.5, 0,  1,  2, 3, 1.5,   1.5])
    y0 = np.array([-1,  0,  0,  0, 0, delta, 1])

    # We test different affine transformations of the initial figure; to
    # avoid issues related to round-off errors we only use integer
    # coefficients (otherwise the Triangulation might become invalid even with
    # delta == 0).
    transformations = [[1, 0], [0, 1], [1, 1], [1, 2], [-2, -1], [-2, 1]]
    for transformation in transformations:
        x_rot = transformation[0]*x0 + transformation[1]*y0
        y_rot = -transformation[1]*x0 + transformation[0]*y0
        (x, y) = (x_rot, y_rot)
        z = 1.23*x - 4.79*y
        triangles = [[0, 2, 1], [0, 3, 2], [0, 4, 3], [1, 2, 5], [2, 3, 5],
                     [3, 4, 5], [1, 5, 6], [4, 6, 5]]
        triang = mtri.Triangulation(x, y, triangles)
        xs = np.linspace(np.min(triang.x), np.max(triang.x), 20)
        ys = np.linspace(np.min(triang.y), np.max(triang.y), 20)
        xs, ys = np.meshgrid(xs, ys)
        xs = xs.ravel()
        ys = ys.ravel()
        mask_out = (triang.get_trifinder()(xs, ys) == -1)
        zs_target = np.ma.array(1.23*xs - 4.79*ys, mask=mask_out)

        linear_interp = mtri.LinearTriInterpolator(triang, z)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z)
        cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')

        for interp in (linear_interp, cubic_min_E, cubic_geom):
            zs = interp(xs, ys)
            assert_array_almost_equal(zs_target, zs)

        # Testing interpolation inside the flat triangle number 4: [2, 3, 5]
        # by imposing *tri_index* in a call to :meth:`_interpolate_multikeys`
        itri = 4
        pt1 = triang.triangles[itri, 0]
        pt2 = triang.triangles[itri, 1]
        xs = np.linspace(triang.x[pt1], triang.x[pt2], 10)
        ys = np.linspace(triang.y[pt1], triang.y[pt2], 10)
        zs_target = 1.23*xs - 4.79*ys
        for interp in (linear_interp, cubic_min_E, cubic_geom):
            zs, = interp._interpolate_multikeys(
                xs, ys, tri_index=itri*np.ones(10, dtype=np.int32))
            assert_array_almost_equal(zs_target, zs)


def test_triinterp_transformations():
    # 1) Testing that the interpolation scheme is invariant by rotation of the
    # whole figure.
    # Note: This test is non-trivial for a CubicTriInterpolator with
    # kind='min_E'. It does fail for a non-isotropic stiffness matrix E of
    # :class:`_ReducedHCT_Element` (tested with E=np.diag([1., 1., 1.])), and
    # provides a good test for :meth:`get_Kff_and_Ff`of the same class.
    #
    # 2) Also testing that the interpolation scheme is invariant by expansion
    # of the whole figure along one axis.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.hypot(0.5 - x, 0.5 - y)
        theta1 = np.arctan2(0.5 - x, 0.5 - y)
        r2 = np.hypot(-x - 0.2, -y - 0.2)
        theta2 = np.arctan2(-x - 0.2, -y - 0.2)
        z = -(2*(np.exp((r1/10)**2)-1)*30. * np.cos(7.*theta1) +
              (np.exp((r2/10)**2)-1)*30. * np.cos(11.*theta2) +
              0.7*(x**2 + y**2))
        return (np.max(z)-z)/(np.max(z)-np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2*np.pi + n_angles,
                         n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x0 = (radii*np.cos(angles)).flatten()
    y0 = (radii*np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)

    # Then create the test points
    xs0 = np.linspace(-1., 1., 23)
    ys0 = np.linspace(-1., 1., 23)
    xs0, ys0 = np.meshgrid(xs0, ys0)
    xs0 = xs0.ravel()
    ys0 = ys0.ravel()

    interp_z0 = {}
    for i_angle in range(2):
        # Rotating everything
        theta = 2*np.pi / n_angles * i_angle
        x = np.cos(theta)*x0 + np.sin(theta)*y0
        y = -np.sin(theta)*x0 + np.cos(theta)*y0
        xs = np.cos(theta)*xs0 + np.sin(theta)*ys0
        ys = -np.sin(theta)*xs0 + np.cos(theta)*ys0
        triang = mtri.Triangulation(x, y, triang0.triangles)
        linear_interp = mtri.LinearTriInterpolator(triang, z0)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z0)
        cubic_geom = mtri.CubicTriInterpolator(triang, z0, kind='geom')
        dic_interp = {'lin': linear_interp,
                      'min_E': cubic_min_E,
                      'geom': cubic_geom}
        # Testing that the interpolation is invariant by rotation...
        for interp_key in ['lin', 'min_E', 'geom']:
            interp = dic_interp[interp_key]
            if i_angle == 0:
                interp_z0[interp_key] = interp(xs0, ys0)  # storage
            else:
                interpz = interp(xs, ys)
                matest.assert_array_almost_equal(interpz,
                                                 interp_z0[interp_key])

    scale_factor = 987654.3210
    for scaled_axis in ('x', 'y'):
        # Scaling everything (expansion along scaled_axis)
        if scaled_axis == 'x':
            x = scale_factor * x0
            y = y0
            xs = scale_factor * xs0
            ys = ys0
        else:
            x = x0
            y = scale_factor * y0
            xs = xs0
            ys = scale_factor * ys0
        triang = mtri.Triangulation(x, y, triang0.triangles)
        linear_interp = mtri.LinearTriInterpolator(triang, z0)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z0)
        cubic_geom = mtri.CubicTriInterpolator(triang, z0, kind='geom')
        dic_interp = {'lin': linear_interp,
                      'min_E': cubic_min_E,
                      'geom': cubic_geom}
        # Test that the interpolation is invariant by expansion along 1 axis...
        for interp_key in ['lin', 'min_E', 'geom']:
            interpz = dic_interp[interp_key](xs, ys)
            matest.assert_array_almost_equal(interpz, interp_z0[interp_key])


@image_comparison(['tri_smooth_contouring.png'], remove_text=True, tol=0.07)
def test_tri_smooth_contouring():
    # Image comparison based on example tricontour_smooth_user.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.hypot(0.5 - x, 0.5 - y)
        theta1 = np.arctan2(0.5 - x, 0.5 - y)
        r2 = np.hypot(-x - 0.2, -y - 0.2)
        theta2 = np.arctan2(-x - 0.2, -y - 0.2)
        z = -(2*(np.exp((r1/10)**2)-1)*30. * np.cos(7.*theta1) +
              (np.exp((r2/10)**2)-1)*30. * np.cos(11.*theta2) +
              0.7*(x**2 + y**2))
        return (np.max(z)-z)/(np.max(z)-np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2*np.pi + n_angles,
                         n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x0 = (radii*np.cos(angles)).flatten()
    y0 = (radii*np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)
    triang0.set_mask(np.hypot(x0[triang0.triangles].mean(axis=1),
                              y0[triang0.triangles].mean(axis=1))
                     < min_radius)

    # Then the plot
    refiner = mtri.UniformTriRefiner(triang0)
    tri_refi, z_test_refi = refiner.refine_field(z0, subdiv=4)
    levels = np.arange(0., 1., 0.025)
    plt.triplot(triang0, lw=0.5, color='0.5')
    plt.tricontour(tri_refi, z_test_refi, levels=levels, colors="black")


@image_comparison(['tri_smooth_gradient.png'], remove_text=True, tol=0.092)
def test_tri_smooth_gradient():
    # Image comparison based on example trigradient_demo.

    def dipole_potential(x, y):
        """An electric dipole potential V."""
        r_sq = x**2 + y**2
        theta = np.arctan2(y, x)
        z = np.cos(theta)/r_sq
        return (np.max(z)-z) / (np.max(z)-np.min(z))

    # Creating a Triangulation
    n_angles = 30
    n_radii = 10
    min_radius = 0.2
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x = (radii*np.cos(angles)).flatten()
    y = (radii*np.sin(angles)).flatten()
    V = dipole_potential(x, y)
    triang = mtri.Triangulation(x, y)
    triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                             y[triang.triangles].mean(axis=1))
                    < min_radius)

    # Refine data - interpolates the electrical potential V
    refiner = mtri.UniformTriRefiner(triang)
    tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

    # Computes the electrical field (Ex, Ey) as gradient of -V
    tci = mtri.CubicTriInterpolator(triang, -V)
    Ex, Ey = tci.gradient(triang.x, triang.y)
    E_norm = np.hypot(Ex, Ey)

    # Plot the triangulation, the potential iso-contours and the vector field
    plt.figure()
    plt.gca().set_aspect('equal')
    plt.triplot(triang, color='0.8')

    levels = np.arange(0., 1., 0.01)
    cmap = cm.get_cmap(name='hot', lut=None)
    plt.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
                   linewidths=[2.0, 1.0, 1.0, 1.0])
    # Plots direction of the electrical vector field
    plt.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm,
               units='xy', scale=10., zorder=3, color='blue',
               width=0.007, headwidth=3., headlength=4.)
    # We are leaving ax.use_sticky_margins as True, so the
    # view limits are the contour data limits.


def test_tritools():
    # Tests TriAnalyzer.scale_factors on masked triangulation
    # Tests circle_ratios on equilateral and right-angled triangle.
    x = np.array([0., 1., 0.5, 0., 2.])
    y = np.array([0., 0., 0.5*np.sqrt(3.), -1., 1.])
    triangles = np.array([[0, 1, 2], [0, 1, 3], [1, 2, 4]], dtype=np.int32)
    mask = np.array([False, False, True], dtype=bool)
    triang = mtri.Triangulation(x, y, triangles, mask=mask)
    analyser = mtri.TriAnalyzer(triang)
    assert_array_almost_equal(analyser.scale_factors,
                              np.array([1., 1./(1.+0.5*np.sqrt(3.))]))
    assert_array_almost_equal(
        analyser.circle_ratios(rescale=False),
        np.ma.masked_array([0.5, 1./(1.+np.sqrt(2.)), np.nan], mask))

    # Tests circle ratio of a flat triangle
    x = np.array([0., 1., 2.])
    y = np.array([1., 1.+3., 1.+6.])
    triangles = np.array([[0, 1, 2]], dtype=np.int32)
    triang = mtri.Triangulation(x, y, triangles)
    analyser = mtri.TriAnalyzer(triang)
    assert_array_almost_equal(analyser.circle_ratios(), np.array([0.]))

    # Tests TriAnalyzer.get_flat_tri_mask
    # Creates a triangulation of [-1, 1] x [-1, 1] with contiguous groups of
    # 'flat' triangles at the 4 corners and at the center. Checks that only
    # those at the borders are eliminated by TriAnalyzer.get_flat_tri_mask
    n = 9

    def power(x, a):
        return np.abs(x)**a*np.sign(x)

    x = np.linspace(-1., 1., n+1)
    x, y = np.meshgrid(power(x, 2.), power(x, 0.25))
    x = x.ravel()
    y = y.ravel()

    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1))
    analyser = mtri.TriAnalyzer(triang)
    mask_flat = analyser.get_flat_tri_mask(0.2)
    verif_mask = np.zeros(162, dtype=bool)
    corners_index = [0, 1, 2, 3, 14, 15, 16, 17, 18, 19, 34, 35, 126, 127,
                     142, 143, 144, 145, 146, 147, 158, 159, 160, 161]
    verif_mask[corners_index] = True
    assert_array_equal(mask_flat, verif_mask)

    # Now including a hole (masked triangle) at the center. The center also
    # shall be eliminated by get_flat_tri_mask.
    mask = np.zeros(162, dtype=bool)
    mask[80] = True
    triang.set_mask(mask)
    mask_flat = analyser.get_flat_tri_mask(0.2)
    center_index = [44, 45, 62, 63, 78, 79, 80, 81, 82, 83, 98, 99, 116, 117]
    verif_mask[center_index] = True
    assert_array_equal(mask_flat, verif_mask)


def test_trirefine():
    # Testing subdiv=2 refinement
    n = 3
    subdiv = 2
    x = np.linspace(-1., 1., n+1)
    x, y = np.meshgrid(x, x)
    x = x.ravel()
    y = y.ravel()
    mask = np.zeros(2*n**2, dtype=bool)
    mask[n**2:] = True
    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1),
                                mask=mask)
    refiner = mtri.UniformTriRefiner(triang)
    refi_triang = refiner.refine_triangulation(subdiv=subdiv)
    x_refi = refi_triang.x
    y_refi = refi_triang.y

    n_refi = n * subdiv**2
    x_verif = np.linspace(-1., 1., n_refi+1)
    x_verif, y_verif = np.meshgrid(x_verif, x_verif)
    x_verif = x_verif.ravel()
    y_verif = y_verif.ravel()
    ind1d = np.in1d(np.around(x_verif*(2.5+y_verif), 8),
                    np.around(x_refi*(2.5+y_refi), 8))
    assert_array_equal(ind1d, True)

    # Testing the mask of the refined triangulation
    refi_mask = refi_triang.mask
    refi_tri_barycenter_x = np.sum(refi_triang.x[refi_triang.triangles],
                                   axis=1) / 3.
    refi_tri_barycenter_y = np.sum(refi_triang.y[refi_triang.triangles],
                                   axis=1) / 3.
    tri_finder = triang.get_trifinder()
    refi_tri_indices = tri_finder(refi_tri_barycenter_x,
                                  refi_tri_barycenter_y)
    refi_tri_mask = triang.mask[refi_tri_indices]
    assert_array_equal(refi_mask, refi_tri_mask)

    # Testing that the numbering of triangles does not change the
    # interpolation result.
    x = np.asarray([0.0, 1.0, 0.0, 1.0])
    y = np.asarray([0.0, 0.0, 1.0, 1.0])
    triang = [mtri.Triangulation(x, y, [[0, 1, 3], [3, 2, 0]]),
              mtri.Triangulation(x, y, [[0, 1, 3], [2, 0, 3]])]
    z = np.hypot(x - 0.3, y - 0.4)
    # Refining the 2 triangulations and reordering the points
    xyz_data = []
    for i in range(2):
        refiner = mtri.UniformTriRefiner(triang[i])
        refined_triang, refined_z = refiner.refine_field(z, subdiv=1)
        xyz = np.dstack((refined_triang.x, refined_triang.y, refined_z))[0]
        xyz = xyz[np.lexsort((xyz[:, 1], xyz[:, 0]))]
        xyz_data += [xyz]
    assert_array_almost_equal(xyz_data[0], xyz_data[1])


def meshgrid_triangles(n):
    """
    Return (2*(N-1)**2, 3) array of triangles to mesh (N, N)-point np.meshgrid.
    """
    tri = []
    for i in range(n-1):
        for j in range(n-1):
            a = i + j*(n)
            b = (i+1) + j*n
            c = i + (j+1)*n
            d = (i+1) + (j+1)*n
            tri += [[a, b, d], [a, d, c]]
    return np.array(tri, dtype=np.int32)


def test_triplot_return():
    # Check that triplot returns the artists it adds
    from matplotlib.figure import Figure
    ax = Figure().add_axes([0.1, 0.1, 0.7, 0.7])
    triang = mtri.Triangulation(
        [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0],
        triangles=[[0, 1, 3], [3, 2, 0]])
    assert ax.triplot(triang, "b-") is not None, \
        'triplot should return the artist it adds'


def test_trirefiner_fortran_contiguous_triangles():
    # github issue 4180.  Test requires two arrays of triangles that are
    # identical except that one is C-contiguous and one is fortran-contiguous.
    triangles1 = np.array([[2, 0, 3], [2, 1, 0]])
    assert not np.isfortran(triangles1)

    triangles2 = np.array(triangles1, copy=True, order='F')
    assert np.isfortran(triangles2)

    x = np.array([0.39, 0.59, 0.43, 0.32])
    y = np.array([33.99, 34.01, 34.19, 34.18])
    triang1 = mtri.Triangulation(x, y, triangles1)
    triang2 = mtri.Triangulation(x, y, triangles2)

    refiner1 = mtri.UniformTriRefiner(triang1)
    refiner2 = mtri.UniformTriRefiner(triang2)

    fine_triang1 = refiner1.refine_triangulation(subdiv=1)
    fine_triang2 = refiner2.refine_triangulation(subdiv=1)

    assert_array_equal(fine_triang1.triangles, fine_triang2.triangles)


def test_qhull_triangle_orientation():
    # github issue 4437.
    xi = np.linspace(-2, 2, 100)
    x, y = map(np.ravel, np.meshgrid(xi, xi))
    w = (x > y - 1) & (x < -1.95) & (y > -1.2)
    x, y = x[w], y[w]
    theta = np.radians(25)
    x1 = x*np.cos(theta) - y*np.sin(theta)
    y1 = x*np.sin(theta) + y*np.cos(theta)

    # Calculate Delaunay triangulation using Qhull.
    triang = mtri.Triangulation(x1, y1)

    # Neighbors returned by Qhull.
    qhull_neighbors = triang.neighbors

    # Obtain neighbors using own C++ calculation.
    triang._neighbors = None
    own_neighbors = triang.neighbors

    assert_array_equal(qhull_neighbors, own_neighbors)


def test_trianalyzer_mismatched_indices():
    # github issue 4999.
    x = np.array([0., 1., 0.5, 0., 2.])
    y = np.array([0., 0., 0.5*np.sqrt(3.), -1., 1.])
    triangles = np.array([[0, 1, 2], [0, 1, 3], [1, 2, 4]], dtype=np.int32)
    mask = np.array([False, False, True], dtype=bool)
    triang = mtri.Triangulation(x, y, triangles, mask=mask)
    analyser = mtri.TriAnalyzer(triang)
    # numpy >= 1.10 raises a VisibleDeprecationWarning in the following line
    # prior to the fix.
    analyser._get_compressed_triangulation()


def test_tricontourf_decreasing_levels():
    # github issue 5477.
    x = [0.0, 1.0, 1.0]
    y = [0.0, 0.0, 1.0]
    z = [0.2, 0.4, 0.6]
    plt.figure()
    with pytest.raises(ValueError):
        plt.tricontourf(x, y, z, [1.0, 0.0])


def test_internal_cpp_api():
    # Following github issue 8197.
    import matplotlib._tri as _tri

    # C++ Triangulation.
    with pytest.raises(TypeError) as excinfo:
        triang = _tri.Triangulation()
    excinfo.match(r'function takes exactly 7 arguments \(0 given\)')

    with pytest.raises(ValueError) as excinfo:
        triang = _tri.Triangulation([], [1], [[]], None, None, None, False)
    excinfo.match(r'x and y must be 1D arrays of the same length')

    x = [0, 1, 1]
    y = [0, 0, 1]
    with pytest.raises(ValueError) as excinfo:
        triang = _tri.Triangulation(x, y, [[0, 1]], None, None, None, False)
    excinfo.match(r'triangles must be a 2D array of shape \(\?,3\)')

    tris = [[0, 1, 2]]
    with pytest.raises(ValueError) as excinfo:
        triang = _tri.Triangulation(x, y, tris, [0, 1], None, None, False)
    excinfo.match(r'mask must be a 1D array with the same length as the ' +
                  r'triangles array')

    with pytest.raises(ValueError) as excinfo:
        triang = _tri.Triangulation(x, y, tris, None, [[1]], None, False)
    excinfo.match(r'edges must be a 2D array with shape \(\?,2\)')

    with pytest.raises(ValueError) as excinfo:
        triang = _tri.Triangulation(x, y, tris, None, None, [[-1]], False)
    excinfo.match(r'neighbors must be a 2D array with the same shape as the ' +
                  r'triangles array')

    triang = _tri.Triangulation(x, y, tris, None, None, None, False)

    with pytest.raises(ValueError) as excinfo:
        triang.calculate_plane_coefficients([])
    excinfo.match(r'z array must have same length as triangulation x and y ' +
                  r'arrays')

    with pytest.raises(ValueError) as excinfo:
        triang.set_mask([0, 1])
    excinfo.match(r'mask must be a 1D array with the same length as the ' +
                  r'triangles array')

    # C++ TriContourGenerator.
    with pytest.raises(TypeError) as excinfo:
        tcg = _tri.TriContourGenerator()
    excinfo.match(r'function takes exactly 2 arguments \(0 given\)')

    with pytest.raises(ValueError) as excinfo:
        tcg = _tri.TriContourGenerator(triang, [1])
    excinfo.match(r'z must be a 1D array with the same length as the x and ' +
                  r'y arrays')

    z = [0, 1, 2]
    tcg = _tri.TriContourGenerator(triang, z)

    with pytest.raises(ValueError) as excinfo:
        tcg.create_filled_contour(1, 0)
    excinfo.match(r'filled contour levels must be increasing')

    # C++ TrapezoidMapTriFinder.
    with pytest.raises(TypeError) as excinfo:
        trifinder = _tri.TrapezoidMapTriFinder()
    excinfo.match(r'function takes exactly 1 argument \(0 given\)')

    trifinder = _tri.TrapezoidMapTriFinder(triang)

    with pytest.raises(ValueError) as excinfo:
        trifinder.find_many([0], [0, 1])
    excinfo.match(r'x and y must be array-like with same shape')


def test_qhull_large_offset():
    # github issue 8682.
    x = np.asarray([0, 1, 0, 1, 0.5])
    y = np.asarray([0, 0, 1, 1, 0.5])

    offset = 1e10
    triang = mtri.Triangulation(x, y)
    triang_offset = mtri.Triangulation(x + offset, y + offset)
    assert len(triang.triangles) == len(triang_offset.triangles)


def test_tricontour_non_finite_z():
    # github issue 10167.
    x = [0, 1, 0, 1]
    y = [0, 0, 1, 1]
    triang = mtri.Triangulation(x, y)
    plt.figure()

    with pytest.raises(ValueError, match='z array must not contain non-finite '
                                         'values within the triangulation'):
        plt.tricontourf(triang, [0, 1, 2, np.inf])

    with pytest.raises(ValueError, match='z array must not contain non-finite '
                                         'values within the triangulation'):
        plt.tricontourf(triang, [0, 1, 2, -np.inf])

    with pytest.raises(ValueError, match='z array must not contain non-finite '
                                         'values within the triangulation'):
        plt.tricontourf(triang, [0, 1, 2, np.nan])

    with pytest.raises(ValueError, match='z must not contain masked points '
                                         'within the triangulation'):
        plt.tricontourf(triang, np.ma.array([0, 1, 2, 3], mask=[1, 0, 0, 0]))