polynomials.py 7.67 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
from ..libmp.backend import xrange
from .calculus import defun

#----------------------------------------------------------------------------#
#                                Polynomials                                 #
#----------------------------------------------------------------------------#

# XXX: extra precision
@defun
def polyval(ctx, coeffs, x, derivative=False):
    r"""
    Given coefficients `[c_n, \ldots, c_2, c_1, c_0]` and a number `x`,
    :func:`~mpmath.polyval` evaluates the polynomial

    .. math ::

        P(x) = c_n x^n + \ldots + c_2 x^2 + c_1 x + c_0.

    If *derivative=True* is set, :func:`~mpmath.polyval` simultaneously
    evaluates `P(x)` with the derivative, `P'(x)`, and returns the
    tuple `(P(x), P'(x))`.

        >>> from mpmath import *
        >>> mp.pretty = True
        >>> polyval([3, 0, 2], 0.5)
        2.75
        >>> polyval([3, 0, 2], 0.5, derivative=True)
        (2.75, 3.0)

    The coefficients and the evaluation point may be any combination
    of real or complex numbers.
    """
    if not coeffs:
        return ctx.zero
    p = ctx.convert(coeffs[0])
    q = ctx.zero
    for c in coeffs[1:]:
        if derivative:
            q = p + x*q
        p = c + x*p
    if derivative:
        return p, q
    else:
        return p

@defun
def polyroots(ctx, coeffs, maxsteps=50, cleanup=True, extraprec=10,
        error=False, roots_init=None):
    """
    Computes all roots (real or complex) of a given polynomial.

    The roots are returned as a sorted list, where real roots appear first
    followed by complex conjugate roots as adjacent elements. The polynomial
    should be given as a list of coefficients, in the format used by
    :func:`~mpmath.polyval`. The leading coefficient must be nonzero.

    With *error=True*, :func:`~mpmath.polyroots` returns a tuple *(roots, err)*
    where *err* is an estimate of the maximum error among the computed roots.

    **Examples**

    Finding the three real roots of `x^3 - x^2 - 14x + 24`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nprint(polyroots([1,-1,-14,24]), 4)
        [-4.0, 2.0, 3.0]

    Finding the two complex conjugate roots of `4x^2 + 3x + 2`, with an
    error estimate::

        >>> roots, err = polyroots([4,3,2], error=True)
        >>> for r in roots:
        ...     print(r)
        ...
        (-0.375 + 0.59947894041409j)
        (-0.375 - 0.59947894041409j)
        >>>
        >>> err
        2.22044604925031e-16
        >>>
        >>> polyval([4,3,2], roots[0])
        (2.22044604925031e-16 + 0.0j)
        >>> polyval([4,3,2], roots[1])
        (2.22044604925031e-16 + 0.0j)

    The following example computes all the 5th roots of unity; that is,
    the roots of `x^5 - 1`::

        >>> mp.dps = 20
        >>> for r in polyroots([1, 0, 0, 0, 0, -1]):
        ...     print(r)
        ...
        1.0
        (-0.8090169943749474241 + 0.58778525229247312917j)
        (-0.8090169943749474241 - 0.58778525229247312917j)
        (0.3090169943749474241 + 0.95105651629515357212j)
        (0.3090169943749474241 - 0.95105651629515357212j)

    **Precision and conditioning**

    The roots are computed to the current working precision accuracy. If this
    accuracy cannot be achieved in `maxsteps` steps, then a `NoConvergence`
    exception is raised. The algorithm internally is using the current working
    precision extended by `extraprec`. If `NoConvergence` was raised, that is
    caused either by not having enough extra precision to achieve convergence
    (in which case increasing `extraprec` should fix the problem) or too low
    `maxsteps` (in which case increasing `maxsteps` should fix the problem), or
    a combination of both.

    The user should always do a convergence study with regards to `extraprec`
    to ensure accurate results. It is possible to get convergence to a wrong
    answer with too low `extraprec`.

    Provided there are no repeated roots, :func:`~mpmath.polyroots` can
    typically compute all roots of an arbitrary polynomial to high precision::

        >>> mp.dps = 60
        >>> for r in polyroots([1, 0, -10, 0, 1]):
        ...     print r
        ...
        -3.14626436994197234232913506571557044551247712918732870123249
        -0.317837245195782244725757617296174288373133378433432554879127
        0.317837245195782244725757617296174288373133378433432554879127
        3.14626436994197234232913506571557044551247712918732870123249
        >>>
        >>> sqrt(3) + sqrt(2)
        3.14626436994197234232913506571557044551247712918732870123249
        >>> sqrt(3) - sqrt(2)
        0.317837245195782244725757617296174288373133378433432554879127

    **Algorithm**

    :func:`~mpmath.polyroots` implements the Durand-Kerner method [1], which
    uses complex arithmetic to locate all roots simultaneously.
    The Durand-Kerner method can be viewed as approximately performing
    simultaneous Newton iteration for all the roots. In particular,
    the convergence to simple roots is quadratic, just like Newton's
    method.

    Although all roots are internally calculated using complex arithmetic, any
    root found to have an imaginary part smaller than the estimated numerical
    error is truncated to a real number (small real parts are also chopped).
    Real roots are placed first in the returned list, sorted by value. The
    remaining complex roots are sorted by their real parts so that conjugate
    roots end up next to each other.

    **References**

    1. http://en.wikipedia.org/wiki/Durand-Kerner_method

    """
    if len(coeffs) <= 1:
        if not coeffs or not coeffs[0]:
            raise ValueError("Input to polyroots must not be the zero polynomial")
        # Constant polynomial with no roots
        return []

    orig = ctx.prec
    tol = +ctx.eps
    with ctx.extraprec(extraprec):
        deg = len(coeffs) - 1
        # Must be monic
        lead = ctx.convert(coeffs[0])
        if lead == 1:
            coeffs = [ctx.convert(c) for c in coeffs]
        else:
            coeffs = [c/lead for c in coeffs]
        f = lambda x: ctx.polyval(coeffs, x)
        if roots_init is None:
            roots = [ctx.mpc((0.4+0.9j)**n) for n in xrange(deg)]
        else:
            roots = [None]*deg;
            deg_init = min(deg, len(roots_init))
            roots[:deg_init] = list(roots_init[:deg_init])
            roots[deg_init:] = [ctx.mpc((0.4+0.9j)**n) for n
                                in xrange(deg_init,deg)]
        err = [ctx.one for n in xrange(deg)]
        # Durand-Kerner iteration until convergence
        for step in xrange(maxsteps):
            if abs(max(err)) < tol:
                break
            for i in xrange(deg):
                p = roots[i]
                x = f(p)
                for j in range(deg):
                    if i != j:
                        try:
                            x /= (p-roots[j])
                        except ZeroDivisionError:
                            continue
                roots[i] = p - x
                err[i] = abs(x)
        if abs(max(err)) >= tol:
            raise ctx.NoConvergence("Didn't converge in maxsteps=%d steps." \
                    % maxsteps)
        # Remove small real or imaginary parts
        if cleanup:
            for i in xrange(deg):
                if abs(roots[i]) < tol:
                    roots[i] = ctx.zero
                elif abs(ctx._im(roots[i])) < tol:
                    roots[i] = roots[i].real
                elif abs(ctx._re(roots[i])) < tol:
                    roots[i] = roots[i].imag * 1j
        roots.sort(key=lambda x: (abs(ctx._im(x)), ctx._re(x)))
    if error:
        err = max(err)
        err = max(err, ctx.ldexp(1, -orig+1))
        return [+r for r in roots], +err
    else:
        return [+r for r in roots]