test_eigen.py 3.81 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
#!/usr/bin/python
# -*- coding: utf-8 -*-

from mpmath import mp
from mpmath import libmp

xrange = libmp.backend.xrange

def run_hessenberg(A, verbose = 0):
    if verbose > 1:
        print("original matrix (hessenberg):\n", A)

    n = A.rows

    Q, H = mp.hessenberg(A)

    if verbose > 1:
        print("Q:\n",Q)
        print("H:\n",H)

    B = Q * H * Q.transpose_conj()

    eps = mp.exp(0.8 * mp.log(mp.eps))

    err0 = 0
    for x in xrange(n):
        for y in xrange(n):
            err0 += abs(A[y,x] - B[y,x])
    err0 /= n * n

    err1 = 0
    for x in xrange(n):
        for y in xrange(x + 2, n):
            err1 += abs(H[y,x])

    if verbose > 0:
        print("difference (H):", err0, err1)

    if verbose > 1:
        print("B:\n", B)

    assert err0 < eps
    assert err1 == 0


def run_schur(A, verbose = 0):
    if verbose > 1:
        print("original matrix (schur):\n", A)

    n = A.rows

    Q, R = mp.schur(A)

    if verbose > 1:
        print("Q:\n", Q)
        print("R:\n", R)

    B = Q * R * Q.transpose_conj()
    C = Q * Q.transpose_conj()

    eps = mp.exp(0.8 * mp.log(mp.eps))

    err0 = 0
    for x in xrange(n):
        for y in xrange(n):
            err0 += abs(A[y,x] - B[y,x])
    err0 /= n * n

    err1 = 0
    for x in xrange(n):
        for y in xrange(n):
            if x == y:
                C[y,x] -= 1
            err1 += abs(C[y,x])
    err1 /= n * n

    err2 = 0
    for x in xrange(n):
        for y in xrange(x + 1, n):
            err2 += abs(R[y,x])

    if verbose > 0:
        print("difference (S):", err0, err1, err2)

    if verbose > 1:
        print("B:\n", B)

    assert err0 < eps
    assert err1 < eps
    assert err2 == 0

def run_eig(A, verbose = 0):
    if verbose > 1:
        print("original matrix (eig):\n", A)

    n = A.rows

    E, EL, ER = mp.eig(A, left = True, right = True)

    if verbose > 1:
        print("E:\n", E)
        print("EL:\n", EL)
        print("ER:\n", ER)

    eps = mp.exp(0.8 * mp.log(mp.eps))

    err0 = 0
    for i in xrange(n):
        B = A * ER[:,i] - E[i] * ER[:,i]
        err0 = max(err0, mp.mnorm(B))

        B = EL[i,:] * A - EL[i,:] * E[i]
        err0 = max(err0, mp.mnorm(B))

    err0 /= n * n

    if verbose > 0:
        print("difference (E):", err0)

    assert err0 < eps

#####################

def test_eig_dyn():
    v = 0
    for i in xrange(5):
        n = 1 + int(mp.rand() * 5)
        if mp.rand() > 0.5:
            # real
            A = 2 * mp.randmatrix(n, n) - 1
            if mp.rand() > 0.5:
                A *= 10
                for x in xrange(n):
                    for y in xrange(n):
                        A[x,y] = int(A[x,y])
        else:
            A = (2 * mp.randmatrix(n, n) - 1) + 1j * (2 * mp.randmatrix(n, n) - 1)
            if mp.rand() > 0.5:
                A *= 10
                for x in xrange(n):
                    for y in xrange(n):
                        A[x,y] = int(mp.re(A[x,y])) + 1j * int(mp.im(A[x,y]))

        run_hessenberg(A, verbose = v)
        run_schur(A, verbose = v)
        run_eig(A, verbose = v)

def test_eig():
    v = 0
    AS = []

    A = mp.matrix([[2, 1, 0],  # jordan block of size 3
                   [0, 2, 1],
                   [0, 0, 2]])
    AS.append(A)
    AS.append(A.transpose())

    A = mp.matrix([[2, 0, 0],  # jordan block of size 2
                   [0, 2, 1],
                   [0, 0, 2]])
    AS.append(A)
    AS.append(A.transpose())

    A = mp.matrix([[2, 0, 1],  # jordan block of size 2
                   [0, 2, 0],
                   [0, 0, 2]])
    AS.append(A)
    AS.append(A.transpose())

    A=  mp.matrix([[0, 0, 1],  # cyclic
                   [1, 0, 0],
                   [0, 1, 0]])
    AS.append(A)
    AS.append(A.transpose())

    for A in AS:
        run_hessenberg(A, verbose = v)
        run_schur(A, verbose = v)
        run_eig(A, verbose = v)