_axes.py 305 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
import collections.abc
import functools
import itertools
import logging
import math
from numbers import Number

import numpy as np
from numpy import ma

import matplotlib.category as _  # <-registers a category unit converter
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.contour as mcontour
import matplotlib.dates as _  # <-registers a date unit converter
import matplotlib.docstring as docstring
import matplotlib.image as mimage
import matplotlib.legend as mlegend
import matplotlib.lines as mlines
import matplotlib.markers as mmarkers
import matplotlib.mlab as mlab
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.quiver as mquiver
import matplotlib.stackplot as mstack
import matplotlib.streamplot as mstream
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import matplotlib.tri as mtri
from matplotlib import _preprocess_data, rcParams
from matplotlib.axes._base import _AxesBase, _process_plot_format
from matplotlib.axes._secondary_axes import SecondaryAxis
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer

try:
    from numpy.lib.histograms import (
        histogram_bin_edges as _histogram_bin_edges)
except ImportError:
    # this function is new in np 1.15
    def _histogram_bin_edges(arr, bins, range=None, weights=None):
        # this in True for 1D arrays, and False for None and str
        if np.ndim(bins) == 1:
            return bins

        if isinstance(bins, str):
            # rather than backporting the internals, just do the full
            # computation.  If this is too slow for users, they can
            # update numpy, or pick a manual number of bins
            return np.histogram(arr, bins, range, weights)[1]
        else:
            if bins is None:
                # hard-code numpy's default
                bins = 10
            if range is None:
                range = np.min(arr), np.max(arr)

            return np.linspace(*range, bins + 1)


_log = logging.getLogger(__name__)


def _make_inset_locator(bounds, trans, parent):
    """
    Helper function to locate inset axes, used in
    `.Axes.inset_axes`.

    A locator gets used in `Axes.set_aspect` to override the default
    locations...  It is a function that takes an axes object and
    a renderer and tells `set_aspect` where it is to be placed.

    Here *rect* is a rectangle [l, b, w, h] that specifies the
    location for the axes in the transform given by *trans* on the
    *parent*.
    """
    _bounds = mtransforms.Bbox.from_bounds(*bounds)
    _trans = trans
    _parent = parent

    def inset_locator(ax, renderer):
        bbox = _bounds
        bb = mtransforms.TransformedBbox(bbox, _trans)
        tr = _parent.figure.transFigure.inverted()
        bb = mtransforms.TransformedBbox(bb, tr)
        return bb

    return inset_locator


# The axes module contains all the wrappers to plotting functions.
# All the other methods should go in the _AxesBase class.


class Axes(_AxesBase):
    """
    The `Axes` contains most of the figure elements: `~.axis.Axis`,
    `~.axis.Tick`, `~.lines.Line2D`, `~.text.Text`, `~.patches.Polygon`, etc.,
    and sets the coordinate system.

    The `Axes` instance supports callbacks through a callbacks attribute which
    is a `~.cbook.CallbackRegistry` instance.  The events you can connect to
    are 'xlim_changed' and 'ylim_changed' and the callback will be called with
    func(*ax*) where *ax* is the `Axes` instance.

    Attributes
    ----------
    dataLim : `.Bbox`
        The bounding box enclosing all data displayed in the Axes.
    viewLim : `.Bbox`
        The view limits in data coordinates.

    """
    ### Labelling, legend and texts

    @cbook.deprecated("3.1")
    @property
    def aname(self):
        return 'Axes'

    def get_title(self, loc="center"):
        """
        Get an axes title.

        Get one of the three available axes titles. The available titles
        are positioned above the axes in the center, flush with the left
        edge, and flush with the right edge.

        Parameters
        ----------
        loc : {'center', 'left', 'right'}, str, optional
            Which title to get, defaults to 'center'.

        Returns
        -------
        title : str
            The title text string.

        """
        titles = {'left': self._left_title,
                  'center': self.title,
                  'right': self._right_title}
        title = cbook._check_getitem(titles, loc=loc.lower())
        return title.get_text()

    def set_title(self, label, fontdict=None, loc=None, pad=None,
                    **kwargs):
        """
        Set a title for the axes.

        Set one of the three available axes titles. The available titles
        are positioned above the axes in the center, flush with the left
        edge, and flush with the right edge.

        Parameters
        ----------
        label : str
            Text to use for the title

        fontdict : dict
            A dictionary controlling the appearance of the title text,
            the default *fontdict* is::

               {'fontsize': rcParams['axes.titlesize'],
                'fontweight' : rcParams['axes.titleweight'],
                'color' : rcParams['axes.titlecolor'],
                'verticalalignment': 'baseline',
                'horizontalalignment': loc}

        loc : {'center', 'left', 'right'}, str, optional
            Which title to set.
            If *None*, defaults to :rc:`axes.titlelocation`.

        pad : float
            The offset of the title from the top of the axes, in points.
            If *None*, defaults to :rc:`axes.titlepad`.

        Returns
        -------
        text : :class:`~matplotlib.text.Text`
            The matplotlib text instance representing the title

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.text.Text` properties
            Other keyword arguments are text properties, see
            :class:`~matplotlib.text.Text` for a list of valid text
            properties.
        """
        if loc is None:
            loc = rcParams['axes.titlelocation']

        titles = {'left': self._left_title,
                  'center': self.title,
                  'right': self._right_title}
        title = cbook._check_getitem(titles, loc=loc.lower())
        default = {
            'fontsize': rcParams['axes.titlesize'],
            'fontweight': rcParams['axes.titleweight'],
            'verticalalignment': 'baseline',
            'horizontalalignment': loc.lower()}
        titlecolor = rcParams['axes.titlecolor']
        if not cbook._str_lower_equal(titlecolor, 'auto'):
            default["color"] = titlecolor
        if pad is None:
            pad = rcParams['axes.titlepad']
        self._set_title_offset_trans(float(pad))
        title.set_text(label)
        title.update(default)
        if fontdict is not None:
            title.update(fontdict)
        title.update(kwargs)
        return title

    def get_xlabel(self):
        """
        Get the xlabel text string.
        """
        label = self.xaxis.get_label()
        return label.get_text()

    def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs):
        """
        Set the label for the x-axis.

        Parameters
        ----------
        xlabel : str
            The label text.

        labelpad : scalar, optional, default: None
            Spacing in points from the axes bounding box including ticks
            and tick labels.

        Other Parameters
        ----------------
        **kwargs : `.Text` properties
            `.Text` properties control the appearance of the label.

        See also
        --------
        text : for information on how override and the optional args work
        """
        if labelpad is not None:
            self.xaxis.labelpad = labelpad
        return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)

    def get_ylabel(self):
        """
        Get the ylabel text string.
        """
        label = self.yaxis.get_label()
        return label.get_text()

    def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs):
        """
        Set the label for the y-axis.

        Parameters
        ----------
        ylabel : str
            The label text.

        labelpad : scalar, optional, default: None
            Spacing in points from the axes bounding box including ticks
            and tick labels.

        Other Parameters
        ----------------
        **kwargs : `.Text` properties
            `.Text` properties control the appearance of the label.

        See also
        --------
        text : for information on how override and the optional args work

        """
        if labelpad is not None:
            self.yaxis.labelpad = labelpad
        return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)

    def get_legend_handles_labels(self, legend_handler_map=None):
        """
        Return handles and labels for legend

        ``ax.legend()`` is equivalent to ::

          h, l = ax.get_legend_handles_labels()
          ax.legend(h, l)

        """

        # pass through to legend.
        handles, labels = mlegend._get_legend_handles_labels([self],
                legend_handler_map)
        return handles, labels

    @docstring.dedent_interpd
    def legend(self, *args, **kwargs):
        """
        Place a legend on the axes.

        Call signatures::

            legend()
            legend(labels)
            legend(handles, labels)

        The call signatures correspond to three different ways how to use
        this method.

        **1. Automatic detection of elements to be shown in the legend**

        The elements to be added to the legend are automatically determined,
        when you do not pass in any extra arguments.

        In this case, the labels are taken from the artist. You can specify
        them either at artist creation or by calling the
        :meth:`~.Artist.set_label` method on the artist::

            line, = ax.plot([1, 2, 3], label='Inline label')
            ax.legend()

        or::

            line, = ax.plot([1, 2, 3])
            line.set_label('Label via method')
            ax.legend()

        Specific lines can be excluded from the automatic legend element
        selection by defining a label starting with an underscore.
        This is default for all artists, so calling `Axes.legend` without
        any arguments and without setting the labels manually will result in
        no legend being drawn.


        **2. Labeling existing plot elements**

        To make a legend for lines which already exist on the axes
        (via plot for instance), simply call this function with an iterable
        of strings, one for each legend item. For example::

            ax.plot([1, 2, 3])
            ax.legend(['A simple line'])

        Note: This way of using is discouraged, because the relation between
        plot elements and labels is only implicit by their order and can
        easily be mixed up.


        **3. Explicitly defining the elements in the legend**

        For full control of which artists have a legend entry, it is possible
        to pass an iterable of legend artists followed by an iterable of
        legend labels respectively::

            legend((line1, line2, line3), ('label1', 'label2', 'label3'))

        Parameters
        ----------
        handles : sequence of `.Artist`, optional
            A list of Artists (lines, patches) to be added to the legend.
            Use this together with *labels*, if you need full control on what
            is shown in the legend and the automatic mechanism described above
            is not sufficient.

            The length of handles and labels should be the same in this
            case. If they are not, they are truncated to the smaller length.

        labels : list of str, optional
            A list of labels to show next to the artists.
            Use this together with *handles*, if you need full control on what
            is shown in the legend and the automatic mechanism described above
            is not sufficient.

        Other Parameters
        ----------------
        %(_legend_kw_doc)s

        Returns
        -------
        legend : `~matplotlib.legend.Legend`

        Notes
        -----
        Not all kinds of artist are supported by the legend command. See
        :doc:`/tutorials/intermediate/legend_guide` for details.

        Examples
        --------
        .. plot:: gallery/text_labels_and_annotations/legend.py
        """
        handles, labels, extra_args, kwargs = mlegend._parse_legend_args(
                [self],
                *args,
                **kwargs)
        if len(extra_args):
            raise TypeError('legend only accepts two non-keyword arguments')
        self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
        self.legend_._remove_method = self._remove_legend
        return self.legend_

    def _remove_legend(self, legend):
        self.legend_ = None

    def inset_axes(self, bounds, *, transform=None, zorder=5,
            **kwargs):
        """
        Add a child inset axes to this existing axes.

        Warnings
        --------
        This method is experimental as of 3.0, and the API may change.

        Parameters
        ----------
        bounds : [x0, y0, width, height]
            Lower-left corner of inset axes, and its width and height.

        transform : `.Transform`
            Defaults to `ax.transAxes`, i.e. the units of *rect* are in
            axes-relative coordinates.

        zorder : number
            Defaults to 5 (same as `.Axes.legend`).  Adjust higher or lower
            to change whether it is above or below data plotted on the
            parent axes.

        **kwargs
            Other keyword arguments are passed on to the `.Axes` child axes.

        Returns
        -------
        ax
            The created `~.axes.Axes` instance.

        Examples
        --------
        This example makes two inset axes, the first is in axes-relative
        coordinates, and the second in data-coordinates::

            fig, ax = plt.subplots()
            ax.plot(range(10))
            axin1 = ax.inset_axes([0.8, 0.1, 0.15, 0.15])
            axin2 = ax.inset_axes(
                    [5, 7, 2.3, 2.3], transform=ax.transData)

        """
        if transform is None:
            transform = self.transAxes
        label = kwargs.pop('label', 'inset_axes')

        # This puts the rectangle into figure-relative coordinates.
        inset_locator = _make_inset_locator(bounds, transform, self)
        bb = inset_locator(None, None)

        inset_ax = Axes(self.figure, bb.bounds, zorder=zorder,
                label=label, **kwargs)

        # this locator lets the axes move if in data coordinates.
        # it gets called in `ax.apply_aspect() (of all places)
        inset_ax.set_axes_locator(inset_locator)

        self.add_child_axes(inset_ax)

        return inset_ax

    def indicate_inset(self, bounds, inset_ax=None, *, transform=None,
            facecolor='none', edgecolor='0.5', alpha=0.5,
            zorder=4.99, **kwargs):
        """
        Add an inset indicator to the axes.  This is a rectangle on the plot
        at the position indicated by *bounds* that optionally has lines that
        connect the rectangle to an inset axes (`.Axes.inset_axes`).

        Warnings
        --------
        This method is experimental as of 3.0, and the API may change.


        Parameters
        ----------
        bounds : [x0, y0, width, height]
            Lower-left corner of rectangle to be marked, and its width
            and height.

        inset_ax : `.Axes`
            An optional inset axes to draw connecting lines to.  Two lines are
            drawn connecting the indicator box to the inset axes on corners
            chosen so as to not overlap with the indicator box.

        transform : `.Transform`
            Transform for the rectangle co-ordinates. Defaults to
            `ax.transAxes`, i.e. the units of *rect* are in axes-relative
            coordinates.

        facecolor : Matplotlib color
            Facecolor of the rectangle (default 'none').

        edgecolor : Matplotlib color
            Color of the rectangle and color of the connecting lines.  Default
            is '0.5'.

        alpha : float
            Transparency of the rectangle and connector lines.  Default is 0.5.

        zorder : float
            Drawing order of the rectangle and connector lines. Default is 4.99
            (just below the default level of inset axes).

        **kwargs
            Other keyword arguments are passed on to the rectangle patch.

        Returns
        -------
        rectangle_patch : `.patches.Rectangle`
             The indicator frame.

        connector_lines : 4-tuple of `.patches.ConnectionPatch`
            The four connector lines connecting to (lower_left, upper_left,
            lower_right upper_right) corners of *inset_ax*. Two lines are
            set with visibility to *False*,  but the user can set the
            visibility to True if the automatic choice is not deemed correct.

        """
        # to make the axes connectors work, we need to apply the aspect to
        # the parent axes.
        self.apply_aspect()

        if transform is None:
            transform = self.transData
        label = kwargs.pop('label', 'indicate_inset')

        x, y, width, height = bounds
        rectangle_patch = mpatches.Rectangle(
            (x, y), width, height,
            facecolor=facecolor, edgecolor=edgecolor, alpha=alpha,
            zorder=zorder,  label=label, transform=transform, **kwargs)
        self.add_patch(rectangle_patch)

        connects = []

        if inset_ax is not None:
            # connect the inset_axes to the rectangle
            for xy_inset_ax in [(0, 0), (0, 1), (1, 0), (1, 1)]:
                # inset_ax positions are in axes coordinates
                # The 0, 1 values define the four edges if the inset_ax
                # lower_left, upper_left, lower_right upper_right.
                ex, ey = xy_inset_ax
                if self.xaxis.get_inverted():
                    ex = 1 - ex
                if self.yaxis.get_inverted():
                    ey = 1 - ey
                xy_data = x + ex * width, y + ey * height
                p = mpatches.ConnectionPatch(
                    xyA=xy_inset_ax, coordsA=inset_ax.transAxes,
                    xyB=xy_data, coordsB=self.transData,
                    arrowstyle="-", zorder=zorder,
                    edgecolor=edgecolor, alpha=alpha)
                connects.append(p)
                self.add_patch(p)

            # decide which two of the lines to keep visible....
            pos = inset_ax.get_position()
            bboxins = pos.transformed(self.figure.transFigure)
            rectbbox = mtransforms.Bbox.from_bounds(
                *bounds
            ).transformed(transform)
            x0 = rectbbox.x0 < bboxins.x0
            x1 = rectbbox.x1 < bboxins.x1
            y0 = rectbbox.y0 < bboxins.y0
            y1 = rectbbox.y1 < bboxins.y1
            connects[0].set_visible(x0 ^ y0)
            connects[1].set_visible(x0 == y1)
            connects[2].set_visible(x1 == y0)
            connects[3].set_visible(x1 ^ y1)

        return rectangle_patch, tuple(connects) if connects else None

    def indicate_inset_zoom(self, inset_ax, **kwargs):
        """
        Add an inset indicator rectangle to the axes based on the axis
        limits for an *inset_ax* and draw connectors between *inset_ax*
        and the rectangle.

        Warnings
        --------
        This method is experimental as of 3.0, and the API may change.

        Parameters
        ----------
        inset_ax : `.Axes`
            Inset axes to draw connecting lines to.  Two lines are
            drawn connecting the indicator box to the inset axes on corners
            chosen so as to not overlap with the indicator box.

        **kwargs
            Other keyword arguments are passed on to `.Axes.indicate_inset`

        Returns
        -------
        rectangle_patch : `.Patches.Rectangle`
             Rectangle artist.

        connector_lines : 4-tuple of `.Patches.ConnectionPatch`
            Each of four connector lines coming from the rectangle drawn on
            this axis, in the order lower left, upper left, lower right,
            upper right.
            Two are set with visibility to *False*,  but the user can
            set the visibility to *True* if the automatic choice is not deemed
            correct.
        """

        xlim = inset_ax.get_xlim()
        ylim = inset_ax.get_ylim()
        rect = (xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0])
        return self.indicate_inset(rect, inset_ax, **kwargs)

    @docstring.dedent_interpd
    def secondary_xaxis(self, location, *, functions=None, **kwargs):
        """
        Add a second x-axis to this axes.

        For example if we want to have a second scale for the data plotted on
        the xaxis.

        %(_secax_docstring)s

        Examples
        --------
        The main axis shows frequency, and the secondary axis shows period.

        .. plot::

            fig, ax = plt.subplots()
            ax.loglog(range(1, 360, 5), range(1, 360, 5))
            ax.set_xlabel('frequency [Hz]')

            def invert(x):
                return 1 / x

            secax = ax.secondary_xaxis('top', functions=(invert, invert))
            secax.set_xlabel('Period [s]')
            plt.show()
        """
        if (location in ['top', 'bottom'] or isinstance(location, Number)):
            secondary_ax = SecondaryAxis(self, 'x', location, functions,
                                         **kwargs)
            self.add_child_axes(secondary_ax)
            return secondary_ax
        else:
            raise ValueError('secondary_xaxis location must be either '
                             'a float or "top"/"bottom"')

    def secondary_yaxis(self, location, *, functions=None, **kwargs):
        """
        Add a second y-axis to this axes.

        For example if we want to have a second scale for the data plotted on
        the yaxis.

        %(_secax_docstring)s

        Examples
        --------
        Add a secondary axes that converts from radians to degrees

        .. plot::

            fig, ax = plt.subplots()
            ax.plot(range(1, 360, 5), range(1, 360, 5))
            ax.set_ylabel('degrees')
            secax = ax.secondary_yaxis('right', functions=(np.deg2rad,
                                                           np.rad2deg))
            secax.set_ylabel('radians')
        """
        if location in ['left', 'right'] or isinstance(location, Number):
            secondary_ax = SecondaryAxis(self, 'y', location,
                                         functions, **kwargs)
            self.add_child_axes(secondary_ax)
            return secondary_ax
        else:
            raise ValueError('secondary_yaxis location must be either '
                             'a float or "left"/"right"')

    @cbook._delete_parameter("3.1", "withdash")
    def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):
        """
        Add text to the axes.

        Add the text *s* to the axes at location *x*, *y* in data coordinates.

        Parameters
        ----------
        x, y : scalars
            The position to place the text. By default, this is in data
            coordinates. The coordinate system can be changed using the
            *transform* parameter.

        s : str
            The text.

        fontdict : dictionary, optional, default: None
            A dictionary to override the default text properties. If fontdict
            is None, the defaults are determined by your rc parameters.

        withdash : boolean, optional, default: False
            Creates a `~matplotlib.text.TextWithDash` instance instead of a
            `~matplotlib.text.Text` instance.

        Returns
        -------
        text : `.Text`
            The created `.Text` instance.

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.text.Text` properties.
            Other miscellaneous text parameters.

        Examples
        --------
        Individual keyword arguments can be used to override any given
        parameter::

            >>> text(x, y, s, fontsize=12)

        The default transform specifies that text is in data coords,
        alternatively, you can specify text in axis coords ((0, 0) is
        lower-left and (1, 1) is upper-right).  The example below places
        text in the center of the axes::

            >>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
            ...      verticalalignment='center', transform=ax.transAxes)

        You can put a rectangular box around the text instance (e.g., to
        set a background color) by using the keyword *bbox*.  *bbox* is
        a dictionary of `~matplotlib.patches.Rectangle`
        properties.  For example::

            >>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
        """
        if fontdict is None:
            fontdict = {}

        effective_kwargs = {
            'verticalalignment': 'baseline',
            'horizontalalignment': 'left',
            'transform': self.transData,
            'clip_on': False,
            **fontdict,
            **kwargs,
        }

        # At some point if we feel confident that TextWithDash
        # is robust as a drop-in replacement for Text and that
        # the performance impact of the heavier-weight class
        # isn't too significant, it may make sense to eliminate
        # the withdash kwarg and simply delegate whether there's
        # a dash to TextWithDash and dashlength.

        if (withdash
                and withdash is not cbook.deprecation._deprecated_parameter):
            t = mtext.TextWithDash(x, y, text=s)
        else:
            t = mtext.Text(x, y, text=s)
        t.update(effective_kwargs)

        t.set_clip_path(self.patch)
        self._add_text(t)
        return t

    @docstring.dedent_interpd
    def annotate(self, s, xy, *args, **kwargs):
        a = mtext.Annotation(s, xy, *args, **kwargs)
        a.set_transform(mtransforms.IdentityTransform())
        if 'clip_on' in kwargs:
            a.set_clip_path(self.patch)
        self._add_text(a)
        return a
    annotate.__doc__ = mtext.Annotation.__init__.__doc__
    #### Lines and spans

    @docstring.dedent_interpd
    def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
        """
        Add a horizontal line across the axis.

        Parameters
        ----------
        y : scalar, optional, default: 0
            y position in data coordinates of the horizontal line.

        xmin : scalar, optional, default: 0
            Should be between 0 and 1, 0 being the far left of the plot, 1 the
            far right of the plot.

        xmax : scalar, optional, default: 1
            Should be between 0 and 1, 0 being the far left of the plot, 1 the
            far right of the plot.

        Returns
        -------
        line : `~matplotlib.lines.Line2D`

        Other Parameters
        ----------------
        **kwargs
            Valid keyword arguments are `.Line2D` properties, with the
            exception of 'transform':

            %(_Line2D_docstr)s

        See also
        --------
        hlines : Add horizontal lines in data coordinates.
        axhspan : Add a horizontal span (rectangle) across the axis.

        Examples
        --------
        * draw a thick red hline at 'y' = 0 that spans the xrange::

            >>> axhline(linewidth=4, color='r')

        * draw a default hline at 'y' = 1 that spans the xrange::

            >>> axhline(y=1)

        * draw a default hline at 'y' = .5 that spans the middle half of
          the xrange::

            >>> axhline(y=.5, xmin=0.25, xmax=0.75)
        """
        if "transform" in kwargs:
            raise ValueError(
                "'transform' is not allowed as a kwarg;"
                + "axhline generates its own transform.")
        ymin, ymax = self.get_ybound()

        # We need to strip away the units for comparison with
        # non-unitized bounds
        self._process_unit_info(ydata=y, kwargs=kwargs)
        yy = self.convert_yunits(y)
        scaley = (yy < ymin) or (yy > ymax)

        trans = self.get_yaxis_transform(which='grid')
        l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
        self.add_line(l)
        self._request_autoscale_view(scalex=False, scaley=scaley)
        return l

    @docstring.dedent_interpd
    def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
        """
        Add a vertical line across the axes.

        Parameters
        ----------
        x : scalar, optional, default: 0
            x position in data coordinates of the vertical line.

        ymin : scalar, optional, default: 0
            Should be between 0 and 1, 0 being the bottom of the plot, 1 the
            top of the plot.

        ymax : scalar, optional, default: 1
            Should be between 0 and 1, 0 being the bottom of the plot, 1 the
            top of the plot.

        Returns
        -------
        line : `~matplotlib.lines.Line2D`

        Other Parameters
        ----------------
        **kwargs
            Valid keyword arguments are `.Line2D` properties, with the
            exception of 'transform':

            %(_Line2D_docstr)s

        Examples
        --------
        * draw a thick red vline at *x* = 0 that spans the yrange::

            >>> axvline(linewidth=4, color='r')

        * draw a default vline at *x* = 1 that spans the yrange::

            >>> axvline(x=1)

        * draw a default vline at *x* = .5 that spans the middle half of
          the yrange::

            >>> axvline(x=.5, ymin=0.25, ymax=0.75)

        See also
        --------
        vlines : Add vertical lines in data coordinates.
        axvspan : Add a vertical span (rectangle) across the axis.
        """

        if "transform" in kwargs:
            raise ValueError(
                "'transform' is not allowed as a kwarg;"
                + "axvline generates its own transform.")
        xmin, xmax = self.get_xbound()

        # We need to strip away the units for comparison with
        # non-unitized bounds
        self._process_unit_info(xdata=x, kwargs=kwargs)
        xx = self.convert_xunits(x)
        scalex = (xx < xmin) or (xx > xmax)

        trans = self.get_xaxis_transform(which='grid')
        l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
        self.add_line(l)
        self._request_autoscale_view(scalex=scalex, scaley=False)
        return l

    @docstring.dedent_interpd
    def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
        """
        Add a horizontal span (rectangle) across the axis.

        Draw a horizontal span (rectangle) from *ymin* to *ymax*.
        With the default values of *xmin* = 0 and *xmax* = 1, this
        always spans the xrange, regardless of the xlim settings, even
        if you change them, e.g., with the :meth:`set_xlim` command.
        That is, the horizontal extent is in axes coords: 0=left,
        0.5=middle, 1.0=right but the *y* location is in data
        coordinates.

        Parameters
        ----------
        ymin : float
               Lower limit of the horizontal span in data units.
        ymax : float
               Upper limit of the horizontal span in data units.
        xmin : float, optional, default: 0
               Lower limit of the vertical span in axes (relative
               0-1) units.
        xmax : float, optional, default: 1
               Upper limit of the vertical span in axes (relative
               0-1) units.

        Returns
        -------
        Polygon : `~matplotlib.patches.Polygon`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.patches.Polygon` properties.

        %(Polygon)s

        See Also
        --------
        axvspan : Add a vertical span across the axes.
        """
        trans = self.get_yaxis_transform(which='grid')

        # process the unit information
        self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)

        # first we need to strip away the units
        xmin, xmax = self.convert_xunits([xmin, xmax])
        ymin, ymax = self.convert_yunits([ymin, ymax])

        verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
        p = mpatches.Polygon(verts, **kwargs)
        p.set_transform(trans)
        self.add_patch(p)
        self._request_autoscale_view(scalex=False)
        return p

    def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
        """
        Add a vertical span (rectangle) across the axes.

        Draw a vertical span (rectangle) from *xmin* to *xmax*.  With
        the default values of *ymin* = 0 and *ymax* = 1. This always
        spans the yrange, regardless of the ylim settings, even if you
        change them, e.g., with the :meth:`set_ylim` command.  That is,
        the vertical extent is in axes coords: 0=bottom, 0.5=middle,
        1.0=top but the x location is in data coordinates.

        Parameters
        ----------
        xmin : scalar
            Number indicating the first X-axis coordinate of the vertical
            span rectangle in data units.
        xmax : scalar
            Number indicating the second X-axis coordinate of the vertical
            span rectangle in data units.
        ymin : scalar, optional
            Number indicating the first Y-axis coordinate of the vertical
            span rectangle in relative Y-axis units (0-1). Default to 0.
        ymax : scalar, optional
            Number indicating the second Y-axis coordinate of the vertical
            span rectangle in relative Y-axis units (0-1). Default to 1.

        Returns
        -------
        rectangle : `~matplotlib.patches.Polygon`
            Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).

        Other Parameters
        ----------------
        **kwargs
            Optional parameters are properties of the class `.Polygon`.

        See Also
        --------
        axhspan : Add a horizontal span across the axes.

        Examples
        --------
        Draw a vertical, green, translucent rectangle from x = 1.25 to
        x = 1.55 that spans the yrange of the axes.

        >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

        """
        trans = self.get_xaxis_transform(which='grid')

        # process the unit information
        self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)

        # first we need to strip away the units
        xmin, xmax = self.convert_xunits([xmin, xmax])
        ymin, ymax = self.convert_yunits([ymin, ymax])

        verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
        p = mpatches.Polygon(verts, **kwargs)
        p.set_transform(trans)
        self.add_patch(p)
        self._request_autoscale_view(scaley=False)
        return p

    @_preprocess_data(replace_names=["y", "xmin", "xmax", "colors"],
                      label_namer="y")
    def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
               label='', **kwargs):
        """
        Plot horizontal lines at each *y* from *xmin* to *xmax*.

        Parameters
        ----------
        y : scalar or sequence of scalar
            y-indexes where to plot the lines.

        xmin, xmax : scalar or 1D array-like
            Respective beginning and end of each line. If scalars are
            provided, all lines will have same length.

        colors : array-like of colors, optional, default: 'k'

        linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional

        label : str, optional, default: ''

        Returns
        -------
        lines : `~matplotlib.collections.LineCollection`

        Other Parameters
        ----------------
        **kwargs :  `~matplotlib.collections.LineCollection` properties.

        See also
        --------
        vlines : vertical lines
        axhline: horizontal line across the axes
        """

        # We do the conversion first since not all unitized data is uniform
        # process the unit information
        self._process_unit_info([xmin, xmax], y, kwargs=kwargs)
        y = self.convert_yunits(y)
        xmin = self.convert_xunits(xmin)
        xmax = self.convert_xunits(xmax)

        if not np.iterable(y):
            y = [y]
        if not np.iterable(xmin):
            xmin = [xmin]
        if not np.iterable(xmax):
            xmax = [xmax]

        y, xmin, xmax = cbook.delete_masked_points(y, xmin, xmax)

        y = np.ravel(y)
        xmin = np.resize(xmin, y.shape)
        xmax = np.resize(xmax, y.shape)

        verts = [((thisxmin, thisy), (thisxmax, thisy))
                 for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
        lines = mcoll.LineCollection(verts, colors=colors,
                                     linestyles=linestyles, label=label)
        self.add_collection(lines, autolim=False)
        lines.update(kwargs)

        if len(y) > 0:
            minx = min(xmin.min(), xmax.min())
            maxx = max(xmin.max(), xmax.max())
            miny = y.min()
            maxy = y.max()

            corners = (minx, miny), (maxx, maxy)

            self.update_datalim(corners)
            self._request_autoscale_view()

        return lines

    @_preprocess_data(replace_names=["x", "ymin", "ymax", "colors"],
                      label_namer="x")
    def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
               label='', **kwargs):
        """
        Plot vertical lines.

        Plot vertical lines at each *x* from *ymin* to *ymax*.

        Parameters
        ----------
        x : scalar or 1D array-like
            x-indexes where to plot the lines.

        ymin, ymax : scalar or 1D array-like
            Respective beginning and end of each line. If scalars are
            provided, all lines will have same length.

        colors : array-like of colors, optional, default: 'k'

        linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional

        label : str, optional, default: ''

        Returns
        -------
        lines : `~matplotlib.collections.LineCollection`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.collections.LineCollection` properties.

        See also
        --------
        hlines : horizontal lines
        axvline: vertical line across the axes
        """

        self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs)

        # We do the conversion first since not all unitized data is uniform
        x = self.convert_xunits(x)
        ymin = self.convert_yunits(ymin)
        ymax = self.convert_yunits(ymax)

        if not np.iterable(x):
            x = [x]
        if not np.iterable(ymin):
            ymin = [ymin]
        if not np.iterable(ymax):
            ymax = [ymax]

        x, ymin, ymax = cbook.delete_masked_points(x, ymin, ymax)

        x = np.ravel(x)
        ymin = np.resize(ymin, x.shape)
        ymax = np.resize(ymax, x.shape)

        verts = [((thisx, thisymin), (thisx, thisymax))
                 for thisx, thisymin, thisymax in zip(x, ymin, ymax)]
        lines = mcoll.LineCollection(verts, colors=colors,
                                     linestyles=linestyles, label=label)
        self.add_collection(lines, autolim=False)
        lines.update(kwargs)

        if len(x) > 0:
            minx = x.min()
            maxx = x.max()
            miny = min(ymin.min(), ymax.min())
            maxy = max(ymin.max(), ymax.max())

            corners = (minx, miny), (maxx, maxy)
            self.update_datalim(corners)
            self._request_autoscale_view()

        return lines

    @_preprocess_data(replace_names=["positions", "lineoffsets",
                                     "linelengths", "linewidths",
                                     "colors", "linestyles"])
    @docstring.dedent_interpd
    def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
                  linelengths=1, linewidths=None, colors=None,
                  linestyles='solid', **kwargs):
        """
        Plot identical parallel lines at the given positions.

        *positions* should be a 1D or 2D array-like object, with each row
        corresponding to a row or column of lines.

        This type of plot is commonly used in neuroscience for representing
        neural events, where it is usually called a spike raster, dot raster,
        or raster plot.

        However, it is useful in any situation where you wish to show the
        timing or position of multiple sets of discrete events, such as the
        arrival times of people to a business on each day of the month or the
        date of hurricanes each year of the last century.

        Parameters
        ----------
        positions : 1D or 2D array-like object
            Each value is an event. If *positions* is a 2D array-like, each
            row corresponds to a row or a column of lines (depending on the
            *orientation* parameter).

        orientation : {'horizontal', 'vertical'}, optional
            Controls the direction of the event collections:

                - 'horizontal' : the lines are arranged horizontally in rows,
                  and are vertical.
                - 'vertical' : the lines are arranged vertically in columns,
                  and are horizontal.

        lineoffsets : scalar or sequence of scalars, optional, default: 1
            The offset of the center of the lines from the origin, in the
            direction orthogonal to *orientation*.

        linelengths : scalar or sequence of scalars, optional, default: 1
            The total height of the lines (i.e. the lines stretches from
            ``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).

        linewidths : scalar, scalar sequence or None, optional, default: None
            The line width(s) of the event lines, in points. If it is None,
            defaults to its rcParams setting.

        colors : color, sequence of colors or None, optional, default: None
            The color(s) of the event lines. If it is None, defaults to its
            rcParams setting.

        linestyles : str or tuple or a sequence of such values, optional
            Default is 'solid'. Valid strings are ['solid', 'dashed',
            'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
            should be of the form::

                (offset, onoffseq),

            where *onoffseq* is an even length tuple of on and off ink
            in points.

        **kwargs : optional
            Other keyword arguments are line collection properties.  See
            :class:`~matplotlib.collections.LineCollection` for a list of
            the valid properties.

        Returns
        -------
        list : A list of :class:`~.collections.EventCollection` objects.
            Contains the :class:`~.collections.EventCollection` that
            were added.

        Notes
        -----
        For *linelengths*, *linewidths*, *colors*, and *linestyles*, if only
        a single value is given, that value is applied to all lines.  If an
        array-like is given, it must have the same length as *positions*, and
        each value will be applied to the corresponding row of the array.

        Examples
        --------
        .. plot:: gallery/lines_bars_and_markers/eventplot_demo.py
        """
        self._process_unit_info(xdata=positions,
                                ydata=[lineoffsets, linelengths],
                                kwargs=kwargs)

        # We do the conversion first since not all unitized data is uniform
        positions = self.convert_xunits(positions)
        lineoffsets = self.convert_yunits(lineoffsets)
        linelengths = self.convert_yunits(linelengths)

        if not np.iterable(positions):
            positions = [positions]
        elif any(np.iterable(position) for position in positions):
            positions = [np.asanyarray(position) for position in positions]
        else:
            positions = [np.asanyarray(positions)]

        if len(positions) == 0:
            return []

        # prevent 'singular' keys from **kwargs dict from overriding the effect
        # of 'plural' keyword arguments (e.g. 'color' overriding 'colors')
        colors = cbook.local_over_kwdict(colors, kwargs, 'color')
        linewidths = cbook.local_over_kwdict(linewidths, kwargs, 'linewidth')
        linestyles = cbook.local_over_kwdict(linestyles, kwargs, 'linestyle')

        if not np.iterable(lineoffsets):
            lineoffsets = [lineoffsets]
        if not np.iterable(linelengths):
            linelengths = [linelengths]
        if not np.iterable(linewidths):
            linewidths = [linewidths]
        if not np.iterable(colors):
            colors = [colors]
        if hasattr(linestyles, 'lower') or not np.iterable(linestyles):
            linestyles = [linestyles]

        lineoffsets = np.asarray(lineoffsets)
        linelengths = np.asarray(linelengths)
        linewidths = np.asarray(linewidths)

        if len(lineoffsets) == 0:
            lineoffsets = [None]
        if len(linelengths) == 0:
            linelengths = [None]
        if len(linewidths) == 0:
            lineoffsets = [None]
        if len(linewidths) == 0:
            lineoffsets = [None]
        if len(colors) == 0:
            colors = [None]
        try:
            # Early conversion of the colors into RGBA values to take care
            # of cases like colors='0.5' or colors='C1'.  (Issue #8193)
            colors = mcolors.to_rgba_array(colors)
        except ValueError:
            # Will fail if any element of *colors* is None. But as long
            # as len(colors) == 1 or len(positions), the rest of the
            # code should process *colors* properly.
            pass

        if len(lineoffsets) == 1 and len(positions) != 1:
            lineoffsets = np.tile(lineoffsets, len(positions))
            lineoffsets[0] = 0
            lineoffsets = np.cumsum(lineoffsets)
        if len(linelengths) == 1:
            linelengths = np.tile(linelengths, len(positions))
        if len(linewidths) == 1:
            linewidths = np.tile(linewidths, len(positions))
        if len(colors) == 1:
            colors = list(colors)
            colors = colors * len(positions)
        if len(linestyles) == 1:
            linestyles = [linestyles] * len(positions)

        if len(lineoffsets) != len(positions):
            raise ValueError('lineoffsets and positions are unequal sized '
                             'sequences')
        if len(linelengths) != len(positions):
            raise ValueError('linelengths and positions are unequal sized '
                             'sequences')
        if len(linewidths) != len(positions):
            raise ValueError('linewidths and positions are unequal sized '
                             'sequences')
        if len(colors) != len(positions):
            raise ValueError('colors and positions are unequal sized '
                             'sequences')
        if len(linestyles) != len(positions):
            raise ValueError('linestyles and positions are unequal sized '
                             'sequences')

        colls = []
        for position, lineoffset, linelength, linewidth, color, linestyle in \
            zip(positions, lineoffsets, linelengths, linewidths,
                           colors, linestyles):
            coll = mcoll.EventCollection(position,
                                         orientation=orientation,
                                         lineoffset=lineoffset,
                                         linelength=linelength,
                                         linewidth=linewidth,
                                         color=color,
                                         linestyle=linestyle)
            self.add_collection(coll, autolim=False)
            coll.update(kwargs)
            colls.append(coll)

        if len(positions) > 0:
            # try to get min/max
            min_max = [(np.min(_p), np.max(_p)) for _p in positions
                       if len(_p) > 0]
            # if we have any non-empty positions, try to autoscale
            if len(min_max) > 0:
                mins, maxes = zip(*min_max)
                minpos = np.min(mins)
                maxpos = np.max(maxes)

                minline = (lineoffsets - linelengths).min()
                maxline = (lineoffsets + linelengths).max()

                if (orientation is not None and
                        orientation.lower() == "vertical"):
                    corners = (minline, minpos), (maxline, maxpos)
                else:  # "horizontal", None or "none" (see EventCollection)
                    corners = (minpos, minline), (maxpos, maxline)
                self.update_datalim(corners)
                self._request_autoscale_view()

        return colls

    #### Basic plotting

    # Uses a custom implementation of data-kwarg handling in
    # _process_plot_var_args.
    @docstring.dedent_interpd
    def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs):
        """
        Plot y versus x as lines and/or markers.

        Call signatures::

            plot([x], y, [fmt], *, data=None, **kwargs)
            plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        The coordinates of the points or line nodes are given by *x*, *y*.

        The optional parameter *fmt* is a convenient way for defining basic
        formatting like color, marker and linestyle. It's a shortcut string
        notation described in the *Notes* section below.

        >>> plot(x, y)        # plot x and y using default line style and color
        >>> plot(x, y, 'bo')  # plot x and y using blue circle markers
        >>> plot(y)           # plot y using x as index array 0..N-1
        >>> plot(y, 'r+')     # ditto, but with red plusses

        You can use `.Line2D` properties as keyword arguments for more
        control on the appearance. Line properties and *fmt* can be mixed.
        The following two calls yield identical results:

        >>> plot(x, y, 'go--', linewidth=2, markersize=12)
        >>> plot(x, y, color='green', marker='o', linestyle='dashed',
        ...      linewidth=2, markersize=12)

        When conflicting with *fmt*, keyword arguments take precedence.


        **Plotting labelled data**

        There's a convenient way for plotting objects with labelled data (i.e.
        data that can be accessed by index ``obj['y']``). Instead of giving
        the data in *x* and *y*, you can provide the object in the *data*
        parameter and just give the labels for *x* and *y*::

        >>> plot('xlabel', 'ylabel', data=obj)

        All indexable objects are supported. This could e.g. be a `dict`, a
        `pandas.DataFame` or a structured numpy array.


        **Plotting multiple sets of data**

        There are various ways to plot multiple sets of data.

        - The most straight forward way is just to call `plot` multiple times.
          Example:

          >>> plot(x1, y1, 'bo')
          >>> plot(x2, y2, 'go')

        - Alternatively, if your data is already a 2d array, you can pass it
          directly to *x*, *y*. A separate data set will be drawn for every
          column.

          Example: an array ``a`` where the first column represents the *x*
          values and the other columns are the *y* columns::

          >>> plot(a[0], a[1:])

        - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
          groups::

          >>> plot(x1, y1, 'g^', x2, y2, 'g-')

          In this case, any additional keyword argument applies to all
          datasets. Also this syntax cannot be combined with the *data*
          parameter.

        By default, each line is assigned a different style specified by a
        'style cycle'. The *fmt* and line property parameters are only
        necessary if you want explicit deviations from these defaults.
        Alternatively, you can also change the style cycle using
        :rc:`axes.prop_cycle`.


        Parameters
        ----------
        x, y : array-like or scalar
            The horizontal / vertical coordinates of the data points.
            *x* values are optional and default to `range(len(y))`.

            Commonly, these parameters are 1D arrays.

            They can also be scalars, or two-dimensional (in that case, the
            columns represent separate data sets).

            These arguments cannot be passed as keywords.

        fmt : str, optional
            A format string, e.g. 'ro' for red circles. See the *Notes*
            section for a full description of the format strings.

            Format strings are just an abbreviation for quickly setting
            basic line properties. All of these and more can also be
            controlled by keyword arguments.

            This argument cannot be passed as keyword.

        data : indexable object, optional
            An object with labelled data. If given, provide the label names to
            plot in *x* and *y*.

            .. note::
                Technically there's a slight ambiguity in calls where the
                second label is a valid *fmt*. `plot('n', 'o', data=obj)`
                could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
                the former interpretation is chosen, but a warning is issued.
                You may suppress the warning by adding an empty format string
                `plot('n', 'o', '', data=obj)`.

        Other Parameters
        ----------------
        scalex, scaley : bool, optional, default: True
            These parameters determined if the view limits are adapted to
            the data limits. The values are passed on to `autoscale_view`.

        **kwargs : `.Line2D` properties, optional
            *kwargs* are used to specify properties like a line label (for
            auto legends), linewidth, antialiasing, marker face color.
            Example::

            >>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
            >>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')

            If you make multiple lines with one plot command, the kwargs
            apply to all those lines.

            Here is a list of available `.Line2D` properties:

            %(_Line2D_docstr)s

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        See Also
        --------
        scatter : XY scatter plot with markers of varying size and/or color (
            sometimes also called bubble chart).

        Notes
        -----
        **Format Strings**

        A format string consists of a part for color, marker and line::

            fmt = '[marker][line][color]'

        Each of them is optional. If not provided, the value from the style
        cycle is used. Exception: If ``line`` is given, but no ``marker``,
        the data will be a line without markers.

        Other combinations such as ``[color][marker][line]`` are also
        supported, but note that their parsing may be ambiguous.

        **Markers**

        =============    ===============================
        character        description
        =============    ===============================
        ``'.'``          point marker
        ``','``          pixel marker
        ``'o'``          circle marker
        ``'v'``          triangle_down marker
        ``'^'``          triangle_up marker
        ``'<'``          triangle_left marker
        ``'>'``          triangle_right marker
        ``'1'``          tri_down marker
        ``'2'``          tri_up marker
        ``'3'``          tri_left marker
        ``'4'``          tri_right marker
        ``'s'``          square marker
        ``'p'``          pentagon marker
        ``'*'``          star marker
        ``'h'``          hexagon1 marker
        ``'H'``          hexagon2 marker
        ``'+'``          plus marker
        ``'x'``          x marker
        ``'D'``          diamond marker
        ``'d'``          thin_diamond marker
        ``'|'``          vline marker
        ``'_'``          hline marker
        =============    ===============================

        **Line Styles**

        =============    ===============================
        character        description
        =============    ===============================
        ``'-'``          solid line style
        ``'--'``         dashed line style
        ``'-.'``         dash-dot line style
        ``':'``          dotted line style
        =============    ===============================

        Example format strings::

            'b'    # blue markers with default shape
            'or'   # red circles
            '-g'   # green solid line
            '--'   # dashed line with default color
            '^k:'  # black triangle_up markers connected by a dotted line

        **Colors**

        The supported color abbreviations are the single letter codes

        =============    ===============================
        character        color
        =============    ===============================
        ``'b'``          blue
        ``'g'``          green
        ``'r'``          red
        ``'c'``          cyan
        ``'m'``          magenta
        ``'y'``          yellow
        ``'k'``          black
        ``'w'``          white
        =============    ===============================

        and the ``'CN'`` colors that index into the default property cycle.

        If the color is the only part of the format string, you can
        additionally use any  `matplotlib.colors` spec, e.g. full names
        (``'green'``) or hex strings (``'#008000'``).
        """
        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
        lines = [*self._get_lines(*args, data=data, **kwargs)]
        for line in lines:
            self.add_line(line)
        self._request_autoscale_view(scalex=scalex, scaley=scaley)
        return lines

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    @docstring.dedent_interpd
    def plot_date(self, x, y, fmt='o', tz=None, xdate=True, ydate=False,
                  **kwargs):
        """
        Plot data that contains dates.

        Similar to `.plot`, this plots *y* vs. *x* as lines or markers.
        However, the axis labels are formatted as dates depending on *xdate*
        and *ydate*.

        Parameters
        ----------
        x, y : array-like
            The coordinates of the data points. If *xdate* or *ydate* is
            *True*, the respective values *x* or *y* are interpreted as
            :ref:`Matplotlib dates <date-format>`.

        fmt : str, optional
            The plot format string. For details, see the corresponding
            parameter in `.plot`.

        tz : timezone string or `tzinfo` or None
            The time zone to use in labeling dates. If *None*, defaults to
            :rc:`timezone`.

        xdate : bool, optional, default: True
            If *True*, the *x*-axis will be interpreted as Matplotlib dates.

        ydate : bool, optional, default: False
            If *True*, the *y*-axis will be interpreted as Matplotlib dates.


        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.


        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        See Also
        --------
        matplotlib.dates : Helper functions on dates.
        matplotlib.dates.date2num : Convert dates to num.
        matplotlib.dates.num2date : Convert num to dates.
        matplotlib.dates.drange : Create an equally spaced sequence of dates.

        Notes
        -----
        If you are using custom date tickers and formatters, it may be
        necessary to set the formatters/locators after the call to
        `.plot_date`. `.plot_date` will set the default tick locator to
        `.AutoDateLocator` (if the tick locator is not already set to a
        `.DateLocator` instance) and the default tick formatter to
        `.AutoDateFormatter` (if the tick formatter is not already set to a
        `.DateFormatter` instance).
        """
        if xdate:
            self.xaxis_date(tz)
        if ydate:
            self.yaxis_date(tz)

        ret = self.plot(x, y, fmt, **kwargs)

        self._request_autoscale_view()

        return ret

    # @_preprocess_data() # let 'plot' do the unpacking..
    @docstring.dedent_interpd
    def loglog(self, *args, **kwargs):
        """
        Make a plot with log scaling on both the x and y axis.

        Call signatures::

            loglog([x], y, [fmt], data=None, **kwargs)
            loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        This is just a thin wrapper around `.plot` which additionally changes
        both the x-axis and the y-axis to log scaling. All of the concepts and
        parameters of plot can be used here as well.

        The additional parameters *basex/y*, *subsx/y* and *nonposx/y* control
        the x/y-axis properties. They are just forwarded to `.Axes.set_xscale`
        and `.Axes.set_yscale`.

        Parameters
        ----------
        basex, basey : scalar, optional, default 10
            Base of the x/y logarithm.

        subsx, subsy : sequence, optional
            The location of the minor x/y ticks. If *None*, reasonable
            locations are automatically chosen depending on the number of
            decades in the plot.
            See `.Axes.set_xscale` / `.Axes.set_yscale` for details.

        nonposx, nonposy : {'mask', 'clip'}, optional, default 'mask'
            Non-positive values in x or y can be masked as invalid, or clipped
            to a very small positive number.

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            All parameters supported by `.plot`.
        """
        dx = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
              if k in kwargs}
        dy = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
              if k in kwargs}

        self.set_xscale('log', **dx)
        self.set_yscale('log', **dy)

        l = self.plot(*args, **kwargs)
        return l

    # @_preprocess_data() # let 'plot' do the unpacking..
    @docstring.dedent_interpd
    def semilogx(self, *args, **kwargs):
        """
        Make a plot with log scaling on the x axis.

        Call signatures::

            semilogx([x], y, [fmt], data=None, **kwargs)
            semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        This is just a thin wrapper around `.plot` which additionally changes
        the x-axis to log scaling. All of the concepts and parameters of plot
        can be used here as well.

        The additional parameters *basex*, *subsx* and *nonposx* control the
        x-axis properties. They are just forwarded to `.Axes.set_xscale`.

        Parameters
        ----------
        basex : scalar, optional, default 10
            Base of the x logarithm.

        subsx : array-like, optional
            The location of the minor xticks. If *None*, reasonable locations
            are automatically chosen depending on the number of decades in the
            plot. See `.Axes.set_xscale` for details.

        nonposx : {'mask', 'clip'}, optional, default 'mask'
            Non-positive values in x can be masked as invalid, or clipped to a
            very small positive number.

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            All parameters supported by `.plot`.
        """
        d = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
             if k in kwargs}

        self.set_xscale('log', **d)
        l = self.plot(*args, **kwargs)
        return l

    # @_preprocess_data() # let 'plot' do the unpacking..
    @docstring.dedent_interpd
    def semilogy(self, *args, **kwargs):
        """
        Make a plot with log scaling on the y axis.

        Call signatures::

            semilogy([x], y, [fmt], data=None, **kwargs)
            semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        This is just a thin wrapper around `.plot` which additionally changes
        the y-axis to log scaling. All of the concepts and parameters of plot
        can be used here as well.

        The additional parameters *basey*, *subsy* and *nonposy* control the
        y-axis properties. They are just forwarded to `.Axes.set_yscale`.

        Parameters
        ----------
        basey : scalar, optional, default 10
            Base of the y logarithm.

        subsy : array-like, optional
            The location of the minor yticks. If *None*, reasonable locations
            are automatically chosen depending on the number of decades in the
            plot. See `.Axes.set_yscale` for details.

        nonposy : {'mask', 'clip'}, optional, default 'mask'
            Non-positive values in y can be masked as invalid, or clipped to a
            very small positive number.

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            All parameters supported by `.plot`.
        """
        d = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
             if k in kwargs}
        self.set_yscale('log', **d)
        l = self.plot(*args, **kwargs)

        return l

    @_preprocess_data(replace_names=["x"], label_namer="x")
    def acorr(self, x, **kwargs):
        """
        Plot the autocorrelation of *x*.

        Parameters
        ----------
        x : array-like

        detrend : callable, optional, default: `mlab.detrend_none`
            *x* is detrended by the *detrend* callable. This must be a
            function ``x = detrend(x)`` accepting and returning an
            `numpy.array`. Default is no normalization.

        normed : bool, optional, default: True
            If ``True``, input vectors are normalised to unit length.

        usevlines : bool, optional, default: True
            Determines the plot style.

            If ``True``, vertical lines are plotted from 0 to the acorr value
            using `Axes.vlines`. Additionally, a horizontal line is plotted
            at y=0 using `Axes.axhline`.

            If ``False``, markers are plotted at the acorr values using
            `Axes.plot`.

        maxlags : int, optional, default: 10
            Number of lags to show. If ``None``, will return all
            ``2 * len(x) - 1`` lags.

        Returns
        -------
        lags : array (length ``2*maxlags+1``)
            The lag vector.
        c : array  (length ``2*maxlags+1``)
            The auto correlation vector.
        line : `.LineCollection` or `.Line2D`
            `.Artist` added to the axes of the correlation:

            - `.LineCollection` if *usevlines* is True.
            - `.Line2D` if *usevlines* is False.
        b : `.Line2D` or None
            Horizontal line at 0 if *usevlines* is True
            None *usevlines* is False.

        Other Parameters
        ----------------
        linestyle : `.Line2D` property, optional
            The linestyle for plotting the data points.
            Only used if *usevlines* is ``False``.

        marker : str, optional, default: 'o'
            The marker for plotting the data points.
            Only used if *usevlines* is ``False``.

        Notes
        -----
        The cross correlation is performed with :func:`numpy.correlate` with
        ``mode = "full"``.
        """
        return self.xcorr(x, x, **kwargs)

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
              usevlines=True, maxlags=10, **kwargs):
        r"""
        Plot the cross correlation between *x* and *y*.

        The correlation with lag k is defined as
        :math:`\sum_n x[n+k] \cdot y^*[n]`, where :math:`y^*` is the complex
        conjugate of :math:`y`.

        Parameters
        ----------
        x : array-like of length n

        y : array-like of length n

        detrend : callable, optional, default: `mlab.detrend_none`
            *x* and *y* are detrended by the *detrend* callable. This must be a
            function ``x = detrend(x)`` accepting and returning an
            `numpy.array`. Default is no normalization.

        normed : bool, optional, default: True
            If ``True``, input vectors are normalised to unit length.

        usevlines : bool, optional, default: True
            Determines the plot style.

            If ``True``, vertical lines are plotted from 0 to the xcorr value
            using `Axes.vlines`. Additionally, a horizontal line is plotted
            at y=0 using `Axes.axhline`.

            If ``False``, markers are plotted at the xcorr values using
            `Axes.plot`.

        maxlags : int, optional, default: 10
            Number of lags to show. If None, will return all ``2 * len(x) - 1``
            lags.

        Returns
        -------
        lags : array (length ``2*maxlags+1``)
            The lag vector.
        c : array  (length ``2*maxlags+1``)
            The auto correlation vector.
        line : `.LineCollection` or `.Line2D`
            `.Artist` added to the axes of the correlation:

            - `.LineCollection` if *usevlines* is True.
            - `.Line2D` if *usevlines* is False.
        b : `.Line2D` or None
            Horizontal line at 0 if *usevlines* is True
            None *usevlines* is False.

        Other Parameters
        ----------------
        linestyle : `.Line2D` property, optional
            The linestyle for plotting the data points.
            Only used if *usevlines* is ``False``.

        marker : str, optional, default: 'o'
            The marker for plotting the data points.
            Only used if *usevlines* is ``False``.

        Notes
        -----
        The cross correlation is performed with :func:`numpy.correlate` with
        ``mode = "full"``.
        """
        Nx = len(x)
        if Nx != len(y):
            raise ValueError('x and y must be equal length')

        x = detrend(np.asarray(x))
        y = detrend(np.asarray(y))

        correls = np.correlate(x, y, mode="full")

        if normed:
            correls /= np.sqrt(np.dot(x, x) * np.dot(y, y))

        if maxlags is None:
            maxlags = Nx - 1

        if maxlags >= Nx or maxlags < 1:
            raise ValueError('maxlags must be None or strictly '
                             'positive < %d' % Nx)

        lags = np.arange(-maxlags, maxlags + 1)
        correls = correls[Nx - 1 - maxlags:Nx + maxlags]

        if usevlines:
            a = self.vlines(lags, [0], correls, **kwargs)
            # Make label empty so only vertical lines get a legend entry
            kwargs.pop('label', '')
            b = self.axhline(**kwargs)
        else:
            kwargs.setdefault('marker', 'o')
            kwargs.setdefault('linestyle', 'None')
            a, = self.plot(lags, correls, **kwargs)
            b = None
        return lags, correls, a, b

    #### Specialized plotting

    # @_preprocess_data() # let 'plot' do the unpacking..
    def step(self, x, y, *args, where='pre', data=None, **kwargs):
        """
        Make a step plot.

        Call signatures::

            step(x, y, [fmt], *, data=None, where='pre', **kwargs)
            step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)

        This is just a thin wrapper around `.plot` which changes some
        formatting options. Most of the concepts and parameters of plot can be
        used here as well.

        Parameters
        ----------
        x : array-like
            1-D sequence of x positions. It is assumed, but not checked, that
            it is uniformly increasing.

        y : array-like
            1-D sequence of y levels.

        fmt : str, optional
            A format string, e.g. 'g' for a green line. See `.plot` for a more
            detailed description.

            Note: While full format strings are accepted, it is recommended to
            only specify the color. Line styles are currently ignored (use
            the keyword argument *linestyle* instead). Markers are accepted
            and plotted on the given positions, however, this is a rarely
            needed feature for step plots.

        data : indexable object, optional
            An object with labelled data. If given, provide the label names to
            plot in *x* and *y*.

        where : {'pre', 'post', 'mid'}, optional, default 'pre'
            Define where the steps should be placed:

            - 'pre': The y value is continued constantly to the left from
              every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
              value ``y[i]``.
            - 'post': The y value is continued constantly to the right from
              every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
              value ``y[i]``.
            - 'mid': Steps occur half-way between the *x* positions.

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            Additional parameters are the same as those for `.plot`.

        Notes
        -----
        .. [notes section required to get data note injection right]
        """
        cbook._check_in_list(('pre', 'post', 'mid'), where=where)
        kwargs['drawstyle'] = 'steps-' + where
        return self.plot(x, y, *args, data=data, **kwargs)

    @staticmethod
    def _convert_dx(dx, x0, xconv, convert):
        """
        Small helper to do logic of width conversion flexibly.

        *dx* and *x0* have units, but *xconv* has already been converted
        to unitless (and is an ndarray).  This allows the *dx* to have units
        that are different from *x0*, but are still accepted by the
        ``__add__`` operator of *x0*.
        """

        # x should be an array...
        assert type(xconv) is np.ndarray

        if xconv.size == 0:
            # xconv has already been converted, but maybe empty...
            return convert(dx)

        try:
            # attempt to add the width to x0; this works for
            # datetime+timedelta, for instance

            # only use the first element of x and x0.  This saves
            # having to be sure addition works across the whole
            # vector.  This is particularly an issue if
            # x0 and dx are lists so x0 + dx just concatenates the lists.
            # We can't just cast x0 and dx to numpy arrays because that
            # removes the units from unit packages like `pint` that
            # wrap numpy arrays.
            try:
                x0 = cbook.safe_first_element(x0)
            except (TypeError, IndexError, KeyError):
                x0 = x0

            try:
                x = cbook.safe_first_element(xconv)
            except (TypeError, IndexError, KeyError):
                x = xconv

            delist = False
            if not np.iterable(dx):
                dx = [dx]
                delist = True
            dx = [convert(x0 + ddx) - x for ddx in dx]
            if delist:
                dx = dx[0]
        except (ValueError, TypeError, AttributeError):
            # if the above fails (for any reason) just fallback to what
            # we do by default and convert dx by itself.
            dx = convert(dx)
        return dx

    @_preprocess_data()
    @docstring.dedent_interpd
    def bar(self, x, height, width=0.8, bottom=None, *, align="center",
            **kwargs):
        r"""
        Make a bar plot.

        The bars are positioned at *x* with the given *align*\ment. Their
        dimensions are given by *width* and *height*. The vertical baseline
        is *bottom* (default 0).

        Each of *x*, *height*, *width*, and *bottom* may either be a scalar
        applying to all bars, or it may be a sequence of length N providing a
        separate value for each bar.

        Parameters
        ----------
        x : sequence of scalars
            The x coordinates of the bars. See also *align* for the
            alignment of the bars to the coordinates.

        height : scalar or sequence of scalars
            The height(s) of the bars.

        width : scalar or array-like, optional
            The width(s) of the bars (default: 0.8).

        bottom : scalar or array-like, optional
            The y coordinate(s) of the bars bases (default: 0).

        align : {'center', 'edge'}, optional, default: 'center'
            Alignment of the bars to the *x* coordinates:

            - 'center': Center the base on the *x* positions.
            - 'edge': Align the left edges of the bars with the *x* positions.

            To align the bars on the right edge pass a negative *width* and
            ``align='edge'``.

        Returns
        -------
        container : `.BarContainer`
            Container with all the bars and optionally errorbars.

        Other Parameters
        ----------------
        color : scalar or array-like, optional
            The colors of the bar faces.

        edgecolor : scalar or array-like, optional
            The colors of the bar edges.

        linewidth : scalar or array-like, optional
            Width of the bar edge(s). If 0, don't draw edges.

        tick_label : str or array-like, optional
            The tick labels of the bars.
            Default: None (Use default numeric labels.)

        xerr, yerr : scalar or array-like of shape(N,) or shape(2, N), optional
            If not *None*, add horizontal / vertical errorbars to the bar tips.
            The values are +/- sizes relative to the data:

            - scalar: symmetric +/- values for all bars
            - shape(N,): symmetric +/- values for each bar
            - shape(2, N): Separate - and + values for each bar. First row
              contains the lower errors, the second row contains the upper
              errors.
            - *None*: No errorbar. (Default)

            See :doc:`/gallery/statistics/errorbar_features`
            for an example on the usage of ``xerr`` and ``yerr``.

        ecolor : scalar or array-like, optional, default: 'black'
            The line color of the errorbars.

        capsize : scalar, optional
           The length of the error bar caps in points.
           Default: None, which will take the value from
           :rc:`errorbar.capsize`.

        error_kw : dict, optional
            Dictionary of kwargs to be passed to the `~.Axes.errorbar`
            method. Values of *ecolor* or *capsize* defined here take
            precedence over the independent kwargs.

        log : bool, optional, default: False
            If *True*, set the y-axis to be log scale.

        orientation : {'vertical',  'horizontal'}, optional
            *This is for internal use only.* Please use `barh` for
            horizontal bar plots. Default: 'vertical'.

        See also
        --------
        barh: Plot a horizontal bar plot.

        Notes
        -----
        The optional arguments *color*, *edgecolor*, *linewidth*,
        *xerr*, and *yerr* can be either scalars or sequences of
        length equal to the number of bars.  This enables you to use
        bar as the basis for stacked bar charts, or candlestick plots.
        Detail: *xerr* and *yerr* are passed directly to
        :meth:`errorbar`, so they can also have shape 2xN for
        independent specification of lower and upper errors.

        Other optional kwargs:

        %(Rectangle)s
        """
        kwargs = cbook.normalize_kwargs(kwargs, mpatches.Patch)
        color = kwargs.pop('color', None)
        if color is None:
            color = self._get_patches_for_fill.get_next_color()
        edgecolor = kwargs.pop('edgecolor', None)
        linewidth = kwargs.pop('linewidth', None)

        # Because xerr and yerr will be passed to errorbar, most dimension
        # checking and processing will be left to the errorbar method.
        xerr = kwargs.pop('xerr', None)
        yerr = kwargs.pop('yerr', None)
        error_kw = kwargs.pop('error_kw', {})
        ezorder = error_kw.pop('zorder', None)
        if ezorder is None:
            ezorder = kwargs.get('zorder', None)
            if ezorder is not None:
                # If using the bar zorder, increment slightly to make sure
                # errorbars are drawn on top of bars
                ezorder += 0.01
        error_kw.setdefault('zorder', ezorder)
        ecolor = kwargs.pop('ecolor', 'k')
        capsize = kwargs.pop('capsize', rcParams["errorbar.capsize"])
        error_kw.setdefault('ecolor', ecolor)
        error_kw.setdefault('capsize', capsize)

        orientation = kwargs.pop('orientation', 'vertical')
        cbook._check_in_list(['vertical', 'horizontal'],
                             orientation=orientation)
        log = kwargs.pop('log', False)
        label = kwargs.pop('label', '')
        tick_labels = kwargs.pop('tick_label', None)

        y = bottom  # Matches barh call signature.
        if orientation == 'vertical':
            if y is None:
                y = 0
        elif orientation == 'horizontal':
            if x is None:
                x = 0

        if orientation == 'vertical':
            self._process_unit_info(xdata=x, ydata=height, kwargs=kwargs)
            if log:
                self.set_yscale('log', nonposy='clip')
        elif orientation == 'horizontal':
            self._process_unit_info(xdata=width, ydata=y, kwargs=kwargs)
            if log:
                self.set_xscale('log', nonposx='clip')

        # lets do some conversions now since some types cannot be
        # subtracted uniformly
        if self.xaxis is not None:
            x0 = x
            x = np.asarray(self.convert_xunits(x))
            width = self._convert_dx(width, x0, x, self.convert_xunits)
            if xerr is not None:
                xerr = self._convert_dx(xerr, x0, x, self.convert_xunits)
        if self.yaxis is not None:
            y0 = y
            y = np.asarray(self.convert_yunits(y))
            height = self._convert_dx(height, y0, y, self.convert_yunits)
            if yerr is not None:
                yerr = self._convert_dx(yerr, y0, y, self.convert_yunits)

        x, height, width, y, linewidth = np.broadcast_arrays(
            # Make args iterable too.
            np.atleast_1d(x), height, width, y, linewidth)

        # Now that units have been converted, set the tick locations.
        if orientation == 'vertical':
            tick_label_axis = self.xaxis
            tick_label_position = x
        elif orientation == 'horizontal':
            tick_label_axis = self.yaxis
            tick_label_position = y

        linewidth = itertools.cycle(np.atleast_1d(linewidth))
        color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)),
                                # Fallback if color == "none".
                                itertools.repeat('none'))
        if edgecolor is None:
            edgecolor = itertools.repeat(None)
        else:
            edgecolor = itertools.chain(
                itertools.cycle(mcolors.to_rgba_array(edgecolor)),
                # Fallback if edgecolor == "none".
                itertools.repeat('none'))

        # We will now resolve the alignment and really have
        # left, bottom, width, height vectors
        cbook._check_in_list(['center', 'edge'], align=align)
        if align == 'center':
            if orientation == 'vertical':
                try:
                    left = x - width / 2
                except TypeError as e:
                    raise TypeError(f'the dtypes of parameters x ({x.dtype}) '
                                    f'and width ({width.dtype}) '
                                    f'are incompatible') from e
                bottom = y
            elif orientation == 'horizontal':
                try:
                    bottom = y - height / 2
                except TypeError as e:
                    raise TypeError(f'the dtypes of parameters y ({y.dtype}) '
                                    f'and height ({height.dtype}) '
                                    f'are incompatible') from e
                left = x
        elif align == 'edge':
            left = x
            bottom = y

        patches = []
        args = zip(left, bottom, width, height, color, edgecolor, linewidth)
        for l, b, w, h, c, e, lw in args:
            r = mpatches.Rectangle(
                xy=(l, b), width=w, height=h,
                facecolor=c,
                edgecolor=e,
                linewidth=lw,
                label='_nolegend_',
                )
            r.update(kwargs)
            r.get_path()._interpolation_steps = 100
            if orientation == 'vertical':
                r.sticky_edges.y.append(b)
            elif orientation == 'horizontal':
                r.sticky_edges.x.append(l)
            self.add_patch(r)
            patches.append(r)

        if xerr is not None or yerr is not None:
            if orientation == 'vertical':
                # using list comps rather than arrays to preserve unit info
                ex = [l + 0.5 * w for l, w in zip(left, width)]
                ey = [b + h for b, h in zip(bottom, height)]

            elif orientation == 'horizontal':
                # using list comps rather than arrays to preserve unit info
                ex = [l + w for l, w in zip(left, width)]
                ey = [b + 0.5 * h for b, h in zip(bottom, height)]

            error_kw.setdefault("label", '_nolegend_')

            errorbar = self.errorbar(ex, ey,
                                     yerr=yerr, xerr=xerr,
                                     fmt='none', **error_kw)
        else:
            errorbar = None

        self._request_autoscale_view()

        bar_container = BarContainer(patches, errorbar, label=label)
        self.add_container(bar_container)

        if tick_labels is not None:
            tick_labels = np.broadcast_to(tick_labels, len(patches))
            tick_label_axis.set_ticks(tick_label_position)
            tick_label_axis.set_ticklabels(tick_labels)

        return bar_container

    @docstring.dedent_interpd
    def barh(self, y, width, height=0.8, left=None, *, align="center",
             **kwargs):
        r"""
        Make a horizontal bar plot.

        The bars are positioned at *y* with the given *align*\ment. Their
        dimensions are given by *width* and *height*. The horizontal baseline
        is *left* (default 0).

        Each of *y*, *width*, *height*, and *left* may either be a scalar
        applying to all bars, or it may be a sequence of length N providing a
        separate value for each bar.

        Parameters
        ----------
        y : scalar or array-like
            The y coordinates of the bars. See also *align* for the
            alignment of the bars to the coordinates.

        width : scalar or array-like
            The width(s) of the bars.

        height : sequence of scalars, optional, default: 0.8
            The heights of the bars.

        left : sequence of scalars
            The x coordinates of the left sides of the bars (default: 0).

        align : {'center', 'edge'}, optional, default: 'center'
            Alignment of the base to the *y* coordinates*:

            - 'center': Center the bars on the *y* positions.
            - 'edge': Align the bottom edges of the bars with the *y*
              positions.

            To align the bars on the top edge pass a negative *height* and
            ``align='edge'``.

        Returns
        -------
        container : `.BarContainer`
            Container with all the bars and optionally errorbars.

        Other Parameters
        ----------------
        color : scalar or array-like, optional
            The colors of the bar faces.

        edgecolor : scalar or array-like, optional
            The colors of the bar edges.

        linewidth : scalar or array-like, optional
            Width of the bar edge(s). If 0, don't draw edges.

        tick_label : str or array-like, optional
            The tick labels of the bars.
            Default: None (Use default numeric labels.)

        xerr, yerr : scalar or array-like of shape(N,) or shape(2, N), optional
            If not ``None``, add horizontal / vertical errorbars to the
            bar tips. The values are +/- sizes relative to the data:

            - scalar: symmetric +/- values for all bars
            - shape(N,): symmetric +/- values for each bar
            - shape(2, N): Separate - and + values for each bar. First row
              contains the lower errors, the second row contains the upper
              errors.
            - *None*: No errorbar. (default)

            See :doc:`/gallery/statistics/errorbar_features`
            for an example on the usage of ``xerr`` and ``yerr``.

        ecolor : scalar or array-like, optional, default: 'black'
            The line color of the errorbars.

        capsize : scalar, optional
           The length of the error bar caps in points.
           Default: None, which will take the value from
           :rc:`errorbar.capsize`.

        error_kw : dict, optional
            Dictionary of kwargs to be passed to the `~.Axes.errorbar`
            method. Values of *ecolor* or *capsize* defined here take
            precedence over the independent kwargs.

        log : bool, optional, default: False
            If ``True``, set the x-axis to be log scale.

        See also
        --------
        bar: Plot a vertical bar plot.

        Notes
        -----
        The optional arguments *color*, *edgecolor*, *linewidth*,
        *xerr*, and *yerr* can be either scalars or sequences of
        length equal to the number of bars.  This enables you to use
        bar as the basis for stacked bar charts, or candlestick plots.
        Detail: *xerr* and *yerr* are passed directly to
        :meth:`errorbar`, so they can also have shape 2xN for
        independent specification of lower and upper errors.

        Other optional kwargs:

        %(Rectangle)s
        """
        kwargs.setdefault('orientation', 'horizontal')
        patches = self.bar(x=left, height=height, width=width, bottom=y,
                           align=align, **kwargs)
        return patches

    @_preprocess_data()
    @docstring.dedent_interpd
    def broken_barh(self, xranges, yrange, **kwargs):
        """
        Plot a horizontal sequence of rectangles.

        A rectangle is drawn for each element of *xranges*. All rectangles
        have the same vertical position and size defined by *yrange*.

        This is a convenience function for instantiating a
        `.BrokenBarHCollection`, adding it to the axes and autoscaling the
        view.

        Parameters
        ----------
        xranges : sequence of tuples (*xmin*, *xwidth*)
            The x-positions and extends of the rectangles. For each tuple
            (*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
            *xwidth*.
        yrange : (*ymin*, *yheight*)
            The y-position and extend for all the rectangles.

        Other Parameters
        ----------------
        **kwargs : :class:`.BrokenBarHCollection` properties

            Each *kwarg* can be either a single argument applying to all
            rectangles, e.g.::

                facecolors='black'

            or a sequence of arguments over which is cycled, e.g.::

                facecolors=('black', 'blue')

            would create interleaving black and blue rectangles.

            Supported keywords:

            %(BrokenBarHCollection)s

        Returns
        -------
        collection : A :class:`~.collections.BrokenBarHCollection`
        """
        # process the unit information
        if len(xranges):
            xdata = cbook.safe_first_element(xranges)
        else:
            xdata = None
        if len(yrange):
            ydata = cbook.safe_first_element(yrange)
        else:
            ydata = None
        self._process_unit_info(xdata=xdata,
                                ydata=ydata,
                                kwargs=kwargs)
        xranges_conv = []
        for xr in xranges:
            if len(xr) != 2:
                raise ValueError('each range in xrange must be a sequence '
                                 'with two elements (i.e. an Nx2 array)')
            # convert the absolute values, not the x and dx...
            x_conv = np.asarray(self.convert_xunits(xr[0]))
            x1 = self._convert_dx(xr[1], xr[0], x_conv, self.convert_xunits)
            xranges_conv.append((x_conv, x1))

        yrange_conv = self.convert_yunits(yrange)

        col = mcoll.BrokenBarHCollection(xranges_conv, yrange_conv, **kwargs)
        self.add_collection(col, autolim=True)
        self._request_autoscale_view()

        return col

    @_preprocess_data()
    def stem(self, *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0,
             label=None, use_line_collection=False):
        """
        Create a stem plot.

        A stem plot plots vertical lines at each *x* location from the baseline
        to *y*, and places a marker there.

        Call signature::

          stem([x,] y, linefmt=None, markerfmt=None, basefmt=None)

        The x-positions are optional. The formats may be provided either as
        positional or as keyword-arguments.

        Parameters
        ----------
        x : array-like, optional
            The x-positions of the stems. Default: (0, 1, ..., len(y) - 1).

        y : array-like
            The y-values of the stem heads.

        linefmt : str, optional
            A string defining the properties of the vertical lines. Usually,
            this will be a color or a color and a linestyle:

            =========  =============
            Character  Line Style
            =========  =============
            ``'-'``    solid line
            ``'--'``   dashed line
            ``'-.'``   dash-dot line
            ``':'``    dotted line
            =========  =============

            Default: 'C0-', i.e. solid line with the first color of the color
            cycle.

            Note: While it is technically possible to specify valid formats
            other than color or color and linestyle (e.g. 'rx' or '-.'), this
            is beyond the intention of the method and will most likely not
            result in a reasonable reasonable plot.

        markerfmt : str, optional
            A string defining the properties of the markers at the stem heads.
            Default: 'C0o', i.e. filled circles with the first color of the
            color cycle.

        basefmt : str, optional
            A format string defining the properties of the baseline.

            Default: 'C3-' ('C2-' in classic mode).

        bottom : float, optional, default: 0
            The y-position of the baseline.

        label : str, optional, default: None
            The label to use for the stems in legends.

        use_line_collection : bool, optional, default: False
            If ``True``, store and plot the stem lines as a
            `~.collections.LineCollection` instead of individual lines. This
            significantly increases performance, and will become the default
            option in Matplotlib 3.3. If ``False``, defaults to the old
            behavior of using a list of `.Line2D` objects.


        Returns
        -------
        container : :class:`~matplotlib.container.StemContainer`
            The container may be treated like a tuple
            (*markerline*, *stemlines*, *baseline*)


        Notes
        -----
        .. seealso::
            The MATLAB function
            `stem <http://www.mathworks.com/help/techdoc/ref/stem.html>`_
            which inspired this method.

        """
        if not 1 <= len(args) <= 5:
            raise TypeError('stem expected between 1 and 5 positional '
                            'arguments, got {}'.format(args))

        if len(args) == 1:
            y, = args
            x = np.arange(len(y))
            args = ()
        else:
            x, y, *args = args

        self._process_unit_info(xdata=x, ydata=y)
        x = self.convert_xunits(x)
        y = self.convert_yunits(y)

        # defaults for formats
        if linefmt is None:
            try:
                # fallback to positional argument
                linefmt = args[0]
            except IndexError:
                linecolor = 'C0'
                linemarker = 'None'
                linestyle = '-'
            else:
                linestyle, linemarker, linecolor = \
                    _process_plot_format(linefmt)
        else:
            linestyle, linemarker, linecolor = _process_plot_format(linefmt)

        if markerfmt is None:
            try:
                # fallback to positional argument
                markerfmt = args[1]
            except IndexError:
                markercolor = 'C0'
                markermarker = 'o'
                markerstyle = 'None'
            else:
                markerstyle, markermarker, markercolor = \
                    _process_plot_format(markerfmt)
        else:
            markerstyle, markermarker, markercolor = \
                _process_plot_format(markerfmt)

        if basefmt is None:
            try:
                # fallback to positional argument
                basefmt = args[2]
            except IndexError:
                if rcParams['_internal.classic_mode']:
                    basecolor = 'C2'
                else:
                    basecolor = 'C3'
                basemarker = 'None'
                basestyle = '-'
            else:
                basestyle, basemarker, basecolor = \
                    _process_plot_format(basefmt)
        else:
            basestyle, basemarker, basecolor = _process_plot_format(basefmt)

        # New behaviour in 3.1 is to use a LineCollection for the stemlines
        if use_line_collection:
            stemlines = [((xi, bottom), (xi, yi)) for xi, yi in zip(x, y)]
            if linestyle is None:
                linestyle = rcParams['lines.linestyle']
            stemlines = mcoll.LineCollection(stemlines, linestyles=linestyle,
                                             colors=linecolor,
                                             label='_nolegend_')
            self.add_collection(stemlines)
        # Old behaviour is to plot each of the lines individually
        else:
            cbook._warn_external(
                'In Matplotlib 3.3 individual lines on a stem plot will be '
                'added as a LineCollection instead of individual lines. '
                'This significantly improves the performance of a stem plot. '
                'To remove this warning and switch to the new behaviour, '
                'set the "use_line_collection" keyword argument to True.')
            stemlines = []
            for xi, yi in zip(x, y):
                l, = self.plot([xi, xi], [bottom, yi],
                               color=linecolor, linestyle=linestyle,
                               marker=linemarker, label="_nolegend_")
                stemlines.append(l)

        markerline, = self.plot(x, y, color=markercolor, linestyle=markerstyle,
                                marker=markermarker, label="_nolegend_")

        baseline, = self.plot([np.min(x), np.max(x)], [bottom, bottom],
                              color=basecolor, linestyle=basestyle,
                              marker=basemarker, label="_nolegend_")

        stem_container = StemContainer((markerline, stemlines, baseline),
                                       label=label)
        self.add_container(stem_container)
        return stem_container

    @_preprocess_data(replace_names=["x", "explode", "labels", "colors"])
    def pie(self, x, explode=None, labels=None, colors=None,
            autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1,
            startangle=None, radius=None, counterclock=True,
            wedgeprops=None, textprops=None, center=(0, 0),
            frame=False, rotatelabels=False):
        """
        Plot a pie chart.

        Make a pie chart of array *x*.  The fractional area of each wedge is
        given by ``x/sum(x)``.  If ``sum(x) < 1``, then the values of *x* give
        the fractional area directly and the array will not be normalized. The
        resulting pie will have an empty wedge of size ``1 - sum(x)``.

        The wedges are plotted counterclockwise, by default starting from the
        x-axis.

        Parameters
        ----------
        x : array-like
            The wedge sizes.

        explode : array-like, optional, default: None
            If not *None*, is a ``len(x)`` array which specifies the fraction
            of the radius with which to offset each wedge.

        labels : list, optional, default: None
            A sequence of strings providing the labels for each wedge

        colors : array-like, optional, default: None
            A sequence of matplotlib color args through which the pie chart
            will cycle.  If *None*, will use the colors in the currently
            active cycle.

        autopct : None (default), str, or function, optional
            If not *None*, is a string or function used to label the wedges
            with their numeric value.  The label will be placed inside the
            wedge.  If it is a format string, the label will be ``fmt%pct``.
            If it is a function, it will be called.

        pctdistance : float, optional, default: 0.6
            The ratio between the center of each pie slice and the start of
            the text generated by *autopct*.  Ignored if *autopct* is *None*.

        shadow : bool, optional, default: False
            Draw a shadow beneath the pie.

        labeldistance : float or None, optional, default: 1.1
            The radial distance at which the pie labels are drawn.
            If set to ``None``, label are not drawn, but are stored for use in
            ``legend()``

        startangle : float, optional, default: None
            If not *None*, rotates the start of the pie chart by *angle*
            degrees counterclockwise from the x-axis.

        radius : float, optional, default: None
            The radius of the pie, if *radius* is *None* it will be set to 1.

        counterclock : bool, optional, default: True
            Specify fractions direction, clockwise or counterclockwise.

        wedgeprops : dict, optional, default: None
            Dict of arguments passed to the wedge objects making the pie.
            For example, you can pass in ``wedgeprops = {'linewidth': 3}``
            to set the width of the wedge border lines equal to 3.
            For more details, look at the doc/arguments of the wedge object.
            By default ``clip_on=False``.

        textprops : dict, optional, default: None
            Dict of arguments to pass to the text objects.

        center :  list of float, optional, default: (0, 0)
            Center position of the chart. Takes value (0, 0) or is a sequence
            of 2 scalars.

        frame : bool, optional, default: False
            Plot axes frame with the chart if true.

        rotatelabels : bool, optional, default: False
            Rotate each label to the angle of the corresponding slice if true.

        Returns
        -------
        patches : list
            A sequence of :class:`matplotlib.patches.Wedge` instances

        texts : list
            A list of the label :class:`matplotlib.text.Text` instances.

        autotexts : list
            A list of :class:`~matplotlib.text.Text` instances for the numeric
            labels. This will only be returned if the parameter *autopct* is
            not *None*.

        Notes
        -----
        The pie chart will probably look best if the figure and axes are
        square, or the Axes aspect is equal.
        This method sets the aspect ratio of the axis to "equal".
        The axes aspect ratio can be controlled with `Axes.set_aspect`.
        """
        self.set_aspect('equal')
        # The use of float32 is "historical", but can't be changed without
        # regenerating the test baselines.
        x = np.asarray(x, np.float32)
        if x.ndim != 1 and x.squeeze().ndim <= 1:
            cbook.warn_deprecated(
                "3.1", message="Non-1D inputs to pie() are currently "
                "squeeze()d, but this behavior is deprecated since %(since)s "
                "and will be removed %(removal)s; pass a 1D array instead.")
            x = np.atleast_1d(x.squeeze())

        sx = x.sum()
        if sx > 1:
            x = x / sx

        if labels is None:
            labels = [''] * len(x)
        if explode is None:
            explode = [0] * len(x)
        if len(x) != len(labels):
            raise ValueError("'label' must be of length 'x'")
        if len(x) != len(explode):
            raise ValueError("'explode' must be of length 'x'")
        if colors is None:
            get_next_color = self._get_patches_for_fill.get_next_color
        else:
            color_cycle = itertools.cycle(colors)

            def get_next_color():
                return next(color_cycle)

        if radius is None:
            radius = 1

        # Starting theta1 is the start fraction of the circle
        if startangle is None:
            theta1 = 0
        else:
            theta1 = startangle / 360.0

        # set default values in wedge_prop
        if wedgeprops is None:
            wedgeprops = {}
        wedgeprops.setdefault('clip_on', False)

        if textprops is None:
            textprops = {}
        textprops.setdefault('clip_on', False)

        texts = []
        slices = []
        autotexts = []

        for frac, label, expl in zip(x, labels, explode):
            x, y = center
            theta2 = (theta1 + frac) if counterclock else (theta1 - frac)
            thetam = 2 * np.pi * 0.5 * (theta1 + theta2)
            x += expl * math.cos(thetam)
            y += expl * math.sin(thetam)

            w = mpatches.Wedge((x, y), radius, 360. * min(theta1, theta2),
                               360. * max(theta1, theta2),
                               facecolor=get_next_color(),
                               **wedgeprops)
            slices.append(w)
            self.add_patch(w)
            w.set_label(label)

            if shadow:
                # make sure to add a shadow after the call to
                # add_patch so the figure and transform props will be
                # set
                shad = mpatches.Shadow(w, -0.02, -0.02)
                shad.set_zorder(0.9 * w.get_zorder())
                shad.set_label('_nolegend_')
                self.add_patch(shad)

            if labeldistance is not None:
                xt = x + labeldistance * radius * math.cos(thetam)
                yt = y + labeldistance * radius * math.sin(thetam)
                label_alignment_h = 'left' if xt > 0 else 'right'
                label_alignment_v = 'center'
                label_rotation = 'horizontal'
                if rotatelabels:
                    label_alignment_v = 'bottom' if yt > 0 else 'top'
                    label_rotation = (np.rad2deg(thetam)
                                      + (0 if xt > 0 else 180))
                props = dict(horizontalalignment=label_alignment_h,
                             verticalalignment=label_alignment_v,
                             rotation=label_rotation,
                             size=rcParams['xtick.labelsize'])
                props.update(textprops)

                t = self.text(xt, yt, label, **props)

                texts.append(t)

            if autopct is not None:
                xt = x + pctdistance * radius * math.cos(thetam)
                yt = y + pctdistance * radius * math.sin(thetam)
                if isinstance(autopct, str):
                    s = autopct % (100. * frac)
                elif callable(autopct):
                    s = autopct(100. * frac)
                else:
                    raise TypeError(
                        'autopct must be callable or a format string')

                props = dict(horizontalalignment='center',
                             verticalalignment='center')
                props.update(textprops)
                t = self.text(xt, yt, s, **props)

                autotexts.append(t)

            theta1 = theta2

        if not frame:
            self.set_frame_on(False)

            self.set_xlim((-1.25 + center[0],
                           1.25 + center[0]))
            self.set_ylim((-1.25 + center[1],
                           1.25 + center[1]))
            self.set_xticks([])
            self.set_yticks([])

        if autopct is None:
            return slices, texts
        else:
            return slices, texts, autotexts

    @_preprocess_data(replace_names=["x", "y", "xerr", "yerr"],
                      label_namer="y")
    @docstring.dedent_interpd
    def errorbar(self, x, y, yerr=None, xerr=None,
                 fmt='', ecolor=None, elinewidth=None, capsize=None,
                 barsabove=False, lolims=False, uplims=False,
                 xlolims=False, xuplims=False, errorevery=1, capthick=None,
                 **kwargs):
        """
        Plot y versus x as lines and/or markers with attached errorbars.

        *x*, *y* define the data locations, *xerr*, *yerr* define the errorbar
        sizes. By default, this draws the data markers/lines as well the
        errorbars. Use fmt='none' to draw errorbars without any data markers.

        Parameters
        ----------
        x, y : scalar or array-like
            The data positions.

        xerr, yerr : scalar or array-like, shape(N,) or shape(2, N), optional
            The errorbar sizes:

            - scalar: Symmetric +/- values for all data points.
            - shape(N,): Symmetric +/-values for each data point.
            - shape(2, N): Separate - and + values for each bar. First row
              contains the lower errors, the second row contains the upper
              errors.
            - *None*: No errorbar.

            Note that all error arrays should have *positive* values.

            See :doc:`/gallery/statistics/errorbar_features`
            for an example on the usage of ``xerr`` and ``yerr``.

        fmt : str, optional, default: ''
            The format for the data points / data lines. See `.plot` for
            details.

            Use 'none' (case insensitive) to plot errorbars without any data
            markers.

        ecolor : color, optional, default: None
            The color of the errorbar lines.  If None, use the color of the
            line connecting the markers.

        elinewidth : scalar, optional, default: None
            The linewidth of the errorbar lines. If None, the linewidth of
            the current style is used.

        capsize : scalar, optional, default: None
            The length of the error bar caps in points. If None, it will take
            the value from :rc:`errorbar.capsize`.

        capthick : scalar, optional, default: None
            An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
            This setting is a more sensible name for the property that
            controls the thickness of the error bar cap in points. For
            backwards compatibility, if *mew* or *markeredgewidth* are given,
            then they will over-ride *capthick*. This may change in future
            releases.

        barsabove : bool, optional, default: False
            If True, will plot the errorbars above the plot
            symbols. Default is below.

        lolims, uplims, xlolims, xuplims : bool, optional, default: False
            These arguments can be used to indicate that a value gives only
            upper/lower limits. In that case a caret symbol is used to
            indicate this. *lims*-arguments may be of the same type as *xerr*
            and *yerr*.  To use limits with inverted axes, :meth:`set_xlim`
            or :meth:`set_ylim` must be called before :meth:`errorbar`.

        errorevery : int or (int, int), optional, default: 1
            draws error bars on a subset of the data. *errorevery* =N draws
            error bars on the points (x[::N], y[::N]).
            *errorevery* =(start, N) draws error bars on the points
            (x[start::N], y[start::N]). e.g. errorevery=(6, 3)
            adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
            Used to avoid overlapping error bars when two series share x-axis
            values.

        Returns
        -------
        container : :class:`~.container.ErrorbarContainer`
            The container contains:

            - plotline: `.Line2D` instance of x, y plot markers and/or line.
            - caplines: A tuple of `.Line2D` instances of the error bar caps.
            - barlinecols: A tuple of
              :class:`~matplotlib.collections.LineCollection` with the
              horizontal and vertical error ranges.

        Other Parameters
        ----------------
        **kwargs
            All other keyword arguments are passed on to the plot
            command for the markers. For example, this code makes big red
            squares with thick green edges::

                x, y, yerr = rand(3, 10)
                errorbar(x, y, yerr, marker='s', mfc='red',
                         mec='green', ms=20, mew=4)

            where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
            property names, *markerfacecolor*, *markeredgecolor*, *markersize*
            and *markeredgewidth*.

            Valid kwargs for the marker properties are `.Lines2D` properties:

            %(_Line2D_docstr)s
        """
        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
        # anything that comes in as 'None', drop so the default thing
        # happens down stream
        kwargs = {k: v for k, v in kwargs.items() if v is not None}
        kwargs.setdefault('zorder', 2)

        try:
            offset, errorevery = errorevery
        except TypeError:
            offset = 0

        if errorevery < 1 or int(errorevery) != errorevery:
            raise ValueError(
                'errorevery must be positive integer or tuple of integers')
        if int(offset) != offset:
            raise ValueError("errorevery's starting index must be an integer")

        self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)

        plot_line = (fmt.lower() != 'none')
        label = kwargs.pop("label", None)

        if fmt == '':
            fmt_style_kwargs = {}
        else:
            fmt_style_kwargs = {k: v for k, v in
                                zip(('linestyle', 'marker', 'color'),
                                    _process_plot_format(fmt))
                                if v is not None}
        if fmt == 'none':
            # Remove alpha=0 color that _process_plot_format returns
            fmt_style_kwargs.pop('color')

        if ('color' in kwargs or 'color' in fmt_style_kwargs or
                ecolor is not None):
            base_style = {}
            if 'color' in kwargs:
                base_style['color'] = kwargs.pop('color')
        else:
            base_style = next(self._get_lines.prop_cycler)

        base_style['label'] = '_nolegend_'
        base_style.update(fmt_style_kwargs)
        if 'color' not in base_style:
            base_style['color'] = 'C0'
        if ecolor is None:
            ecolor = base_style['color']
        # make sure all the args are iterable; use lists not arrays to
        # preserve units
        if not np.iterable(x):
            x = [x]

        if not np.iterable(y):
            y = [y]

        if xerr is not None:
            if not np.iterable(xerr):
                xerr = [xerr] * len(x)

        if yerr is not None:
            if not np.iterable(yerr):
                yerr = [yerr] * len(y)

        # make the style dict for the 'normal' plot line
        plot_line_style = {
            **base_style,
            **kwargs,
            'zorder': (kwargs['zorder'] - .1 if barsabove else
                       kwargs['zorder'] + .1),
        }

        # make the style dict for the line collections (the bars)
        eb_lines_style = dict(base_style)
        eb_lines_style.pop('marker', None)
        eb_lines_style.pop('linestyle', None)
        eb_lines_style['color'] = ecolor

        if elinewidth:
            eb_lines_style['linewidth'] = elinewidth
        elif 'linewidth' in kwargs:
            eb_lines_style['linewidth'] = kwargs['linewidth']

        for key in ('transform', 'alpha', 'zorder', 'rasterized'):
            if key in kwargs:
                eb_lines_style[key] = kwargs[key]

        # set up cap style dictionary
        eb_cap_style = dict(base_style)
        # eject any marker information from format string
        eb_cap_style.pop('marker', None)
        eb_lines_style.pop('markerfacecolor', None)
        eb_lines_style.pop('markeredgewidth', None)
        eb_lines_style.pop('markeredgecolor', None)
        eb_cap_style.pop('ls', None)
        eb_cap_style['linestyle'] = 'none'
        if capsize is None:
            capsize = rcParams["errorbar.capsize"]
        if capsize > 0:
            eb_cap_style['markersize'] = 2. * capsize
        if capthick is not None:
            eb_cap_style['markeredgewidth'] = capthick

        # For backwards-compat, allow explicit setting of
        # 'markeredgewidth' to over-ride capthick.
        for key in ('markeredgewidth', 'transform', 'alpha',
                    'zorder', 'rasterized'):
            if key in kwargs:
                eb_cap_style[key] = kwargs[key]
        eb_cap_style['color'] = ecolor

        data_line = None
        if plot_line:
            data_line = mlines.Line2D(x, y, **plot_line_style)
            self.add_line(data_line)

        barcols = []
        caplines = []

        # arrays fine here, they are booleans and hence not units
        lolims = np.broadcast_to(lolims, len(x)).astype(bool)
        uplims = np.broadcast_to(uplims, len(x)).astype(bool)
        xlolims = np.broadcast_to(xlolims, len(x)).astype(bool)
        xuplims = np.broadcast_to(xuplims, len(x)).astype(bool)

        everymask = np.zeros(len(x), bool)
        everymask[offset::errorevery] = True

        def xywhere(xs, ys, mask):
            """
            return xs[mask], ys[mask] where mask is True but xs and
            ys are not arrays
            """
            assert len(xs) == len(ys)
            assert len(xs) == len(mask)
            xs = [thisx for thisx, b in zip(xs, mask) if b]
            ys = [thisy for thisy, b in zip(ys, mask) if b]
            return xs, ys

        def extract_err(err, data):
            """
            Private function to parse *err* and subtract/add it to *data*.

            Both *err* and *data* are already iterables at this point.
            """
            try:  # Asymmetric error: pair of 1D iterables.
                a, b = err
                iter(a)
                iter(b)
            except (TypeError, ValueError):
                a = b = err  # Symmetric error: 1D iterable.
            # This could just be `np.ndim(a) > 1 and np.ndim(b) > 1`, except
            # for the (undocumented, but tested) support for (n, 1) arrays.
            a_sh = np.shape(a)
            b_sh = np.shape(b)
            if (len(a_sh) > 2 or (len(a_sh) == 2 and a_sh[1] != 1)
                    or len(b_sh) > 2 or (len(b_sh) == 2 and b_sh[1] != 1)):
                raise ValueError(
                    "err must be a scalar or a 1D or (2, n) array-like")
            if len(a_sh) == 2 or len(b_sh) == 2:
                cbook.warn_deprecated(
                    "3.1", message="Support for passing a (n, 1)-shaped error "
                    "array to errorbar() is deprecated since Matplotlib "
                    "%(since)s and will be removed %(removal)s; pass a 1D "
                    "array instead.")
            # Using list comprehensions rather than arrays to preserve units.
            for e in [a, b]:
                if len(data) != len(e):
                    raise ValueError(
                        f"The lengths of the data ({len(data)}) and the "
                        f"error {len(e)} do not match")
            low = [v - e for v, e in zip(data, a)]
            high = [v + e for v, e in zip(data, b)]
            return low, high

        if xerr is not None:
            left, right = extract_err(xerr, x)
            # select points without upper/lower limits in x and
            # draw normal errorbars for these points
            noxlims = ~(xlolims | xuplims)
            if noxlims.any() or len(noxlims) == 0:
                yo, _ = xywhere(y, right, noxlims & everymask)
                lo, ro = xywhere(left, right, noxlims & everymask)
                barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
                if capsize > 0:
                    caplines.append(mlines.Line2D(lo, yo, marker='|',
                                                  **eb_cap_style))
                    caplines.append(mlines.Line2D(ro, yo, marker='|',
                                                  **eb_cap_style))

            if xlolims.any():
                yo, _ = xywhere(y, right, xlolims & everymask)
                lo, ro = xywhere(x, right, xlolims & everymask)
                barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
                rightup, yup = xywhere(right, y, xlolims & everymask)
                if self.xaxis_inverted():
                    marker = mlines.CARETLEFTBASE
                else:
                    marker = mlines.CARETRIGHTBASE
                caplines.append(
                    mlines.Line2D(rightup, yup, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xlo, ylo = xywhere(x, y, xlolims & everymask)
                    caplines.append(mlines.Line2D(xlo, ylo, marker='|',
                                                  **eb_cap_style))

            if xuplims.any():
                yo, _ = xywhere(y, right, xuplims & everymask)
                lo, ro = xywhere(left, x, xuplims & everymask)
                barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
                leftlo, ylo = xywhere(left, y, xuplims & everymask)
                if self.xaxis_inverted():
                    marker = mlines.CARETRIGHTBASE
                else:
                    marker = mlines.CARETLEFTBASE
                caplines.append(
                    mlines.Line2D(leftlo, ylo, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xup, yup = xywhere(x, y, xuplims & everymask)
                    caplines.append(mlines.Line2D(xup, yup, marker='|',
                                                  **eb_cap_style))

        if yerr is not None:
            lower, upper = extract_err(yerr, y)
            # select points without upper/lower limits in y and
            # draw normal errorbars for these points
            noylims = ~(lolims | uplims)
            if noylims.any() or len(noylims) == 0:
                xo, _ = xywhere(x, lower, noylims & everymask)
                lo, uo = xywhere(lower, upper, noylims & everymask)
                barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
                if capsize > 0:
                    caplines.append(mlines.Line2D(xo, lo, marker='_',
                                                  **eb_cap_style))
                    caplines.append(mlines.Line2D(xo, uo, marker='_',
                                                  **eb_cap_style))

            if lolims.any():
                xo, _ = xywhere(x, lower, lolims & everymask)
                lo, uo = xywhere(y, upper, lolims & everymask)
                barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
                xup, upperup = xywhere(x, upper, lolims & everymask)
                if self.yaxis_inverted():
                    marker = mlines.CARETDOWNBASE
                else:
                    marker = mlines.CARETUPBASE
                caplines.append(
                    mlines.Line2D(xup, upperup, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xlo, ylo = xywhere(x, y, lolims & everymask)
                    caplines.append(mlines.Line2D(xlo, ylo, marker='_',
                                                  **eb_cap_style))

            if uplims.any():
                xo, _ = xywhere(x, lower, uplims & everymask)
                lo, uo = xywhere(lower, y, uplims & everymask)
                barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
                xlo, lowerlo = xywhere(x, lower, uplims & everymask)
                if self.yaxis_inverted():
                    marker = mlines.CARETUPBASE
                else:
                    marker = mlines.CARETDOWNBASE
                caplines.append(
                    mlines.Line2D(xlo, lowerlo, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xup, yup = xywhere(x, y, uplims & everymask)
                    caplines.append(mlines.Line2D(xup, yup, marker='_',
                                                  **eb_cap_style))
        for l in caplines:
            self.add_line(l)

        self._request_autoscale_view()
        errorbar_container = ErrorbarContainer((data_line, tuple(caplines),
                                                tuple(barcols)),
                                               has_xerr=(xerr is not None),
                                               has_yerr=(yerr is not None),
                                               label=label)
        self.containers.append(errorbar_container)

        return errorbar_container  # (l0, caplines, barcols)

    @cbook._rename_parameter("3.1", "manage_xticks", "manage_ticks")
    @_preprocess_data()
    def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
                positions=None, widths=None, patch_artist=None,
                bootstrap=None, usermedians=None, conf_intervals=None,
                meanline=None, showmeans=None, showcaps=None,
                showbox=None, showfliers=None, boxprops=None,
                labels=None, flierprops=None, medianprops=None,
                meanprops=None, capprops=None, whiskerprops=None,
                manage_ticks=True, autorange=False, zorder=None):
        """
        Make a box and whisker plot.

        Make a box and whisker plot for each column of ``x`` or each
        vector in sequence ``x``.  The box extends from the lower to
        upper quartile values of the data, with a line at the median.
        The whiskers extend from the box to show the range of the
        data.  Flier points are those past the end of the whiskers.

        Parameters
        ----------
        x : Array or a sequence of vectors.
            The input data.

        notch : bool, optional (False)
            If `True`, will produce a notched box plot. Otherwise, a
            rectangular boxplot is produced. The notches represent the
            confidence interval (CI) around the median. See the entry
            for the ``bootstrap`` parameter for information regarding
            how the locations of the notches are computed.

            .. note::

                In cases where the values of the CI are less than the
                lower quartile or greater than the upper quartile, the
                notches will extend beyond the box, giving it a
                distinctive "flipped" appearance. This is expected
                behavior and consistent with other statistical
                visualization packages.

        sym : str, optional
            The default symbol for flier points. Enter an empty string
            ('') if you don't want to show fliers. If `None`, then the
            fliers default to 'b+'  If you want more control use the
            flierprops kwarg.

        vert : bool, optional (True)
            If `True` (default), makes the boxes vertical. If `False`,
            everything is drawn horizontally.

        whis : float or (float, float) (default = 1.5)
            The position of the whiskers.

            If a float, the lower whisker is at the lowest datum above
            ``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum
            below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and
            third quartiles.  The default value of ``whis = 1.5`` corresponds
            to Tukey's original definition of boxplots.

            If a pair of floats, they indicate the percentiles at which to
            draw the whiskers (e.g., (5, 95)).  In particular, setting this to
            (0, 100) results in whiskers covering the whole range of the data.
            "range" is a deprecated synonym for (0, 100).

            In the edge case where ``Q1 == Q3``, *whis* is automatically set
            to (0, 100) (cover the whole range of the data) if *autorange* is
            True.

            Beyond the whiskers, data are considered outliers and are plotted
            as individual points.

        bootstrap : int, optional
            Specifies whether to bootstrap the confidence intervals
            around the median for notched boxplots. If ``bootstrap`` is
            None, no bootstrapping is performed, and notches are
            calculated using a Gaussian-based asymptotic approximation
            (see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
            Kendall and Stuart, 1967). Otherwise, bootstrap specifies
            the number of times to bootstrap the median to determine its
            95% confidence intervals. Values between 1000 and 10000 are
            recommended.

        usermedians : array-like, optional
            An array or sequence whose first dimension (or length) is
            compatible with ``x``. This overrides the medians computed
            by matplotlib for each element of ``usermedians`` that is not
            `None`. When an element of ``usermedians`` is None, the median
            will be computed by matplotlib as normal.

        conf_intervals : array-like, optional
            Array or sequence whose first dimension (or length) is
            compatible with ``x`` and whose second dimension is 2. When
            the an element of ``conf_intervals`` is not None, the
            notch locations computed by matplotlib are overridden
            (provided ``notch`` is `True`). When an element of
            ``conf_intervals`` is `None`, the notches are computed by the
            method specified by the other kwargs (e.g., ``bootstrap``).

        positions : array-like, optional
            Sets the positions of the boxes. The ticks and limits are
            automatically set to match the positions. Defaults to
            `range(1, N+1)` where N is the number of boxes to be drawn.

        widths : scalar or array-like
            Sets the width of each box either with a scalar or a
            sequence. The default is 0.5, or ``0.15*(distance between
            extreme positions)``, if that is smaller.

        patch_artist : bool, optional (False)
            If `False` produces boxes with the Line2D artist. Otherwise,
            boxes and drawn with Patch artists.

        labels : sequence, optional
            Labels for each dataset. Length must be compatible with
            dimensions of ``x``.

        manage_ticks : bool, optional (True)
            If True, the tick locations and labels will be adjusted to match
            the boxplot positions.

        autorange : bool, optional (False)
            When `True` and the data are distributed such that the 25th and
            75th percentiles are equal, ``whis`` is set to (0, 100) such
            that the whisker ends are at the minimum and maximum of the data.

        meanline : bool, optional (False)
            If `True` (and ``showmeans`` is `True`), will try to render
            the mean as a line spanning the full width of the box
            according to ``meanprops`` (see below). Not recommended if
            ``shownotches`` is also True. Otherwise, means will be shown
            as points.

        zorder : scalar, optional (None)
            Sets the zorder of the boxplot.

        Other Parameters
        ----------------
        showcaps : bool, optional (True)
            Show the caps on the ends of whiskers.
        showbox : bool, optional (True)
            Show the central box.
        showfliers : bool, optional (True)
            Show the outliers beyond the caps.
        showmeans : bool, optional (False)
            Show the arithmetic means.
        capprops : dict, optional (None)
            Specifies the style of the caps.
        boxprops : dict, optional (None)
            Specifies the style of the box.
        whiskerprops : dict, optional (None)
            Specifies the style of the whiskers.
        flierprops : dict, optional (None)
            Specifies the style of the fliers.
        medianprops : dict, optional (None)
            Specifies the style of the median.
        meanprops : dict, optional (None)
            Specifies the style of the mean.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the boxplot to a list
          of the `.Line2D` instances created. That dictionary has the
          following keys (assuming vertical boxplots):

          - ``boxes``: the main body of the boxplot showing the
            quartiles and the median's confidence intervals if
            enabled.

          - ``medians``: horizontal lines at the median of each box.

          - ``whiskers``: the vertical lines extending to the most
            extreme, non-outlier data points.

          - ``caps``: the horizontal lines at the ends of the
            whiskers.

          - ``fliers``: points representing data that extend beyond
            the whiskers (fliers).

          - ``means``: points or lines representing the means.

        """

        # Missing arguments default to rcParams.
        if whis is None:
            whis = rcParams['boxplot.whiskers']
        if bootstrap is None:
            bootstrap = rcParams['boxplot.bootstrap']

        bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
                                       labels=labels, autorange=autorange)
        if notch is None:
            notch = rcParams['boxplot.notch']
        if vert is None:
            vert = rcParams['boxplot.vertical']
        if patch_artist is None:
            patch_artist = rcParams['boxplot.patchartist']
        if meanline is None:
            meanline = rcParams['boxplot.meanline']
        if showmeans is None:
            showmeans = rcParams['boxplot.showmeans']
        if showcaps is None:
            showcaps = rcParams['boxplot.showcaps']
        if showbox is None:
            showbox = rcParams['boxplot.showbox']
        if showfliers is None:
            showfliers = rcParams['boxplot.showfliers']

        if boxprops is None:
            boxprops = {}
        if whiskerprops is None:
            whiskerprops = {}
        if capprops is None:
            capprops = {}
        if medianprops is None:
            medianprops = {}
        if meanprops is None:
            meanprops = {}
        if flierprops is None:
            flierprops = {}

        if patch_artist:
            boxprops['linestyle'] = 'solid'  # Not consistent with bxp.
            if 'color' in boxprops:
                boxprops['edgecolor'] = boxprops.pop('color')

        # if non-default sym value, put it into the flier dictionary
        # the logic for providing the default symbol ('b+') now lives
        # in bxp in the initial value of final_flierprops
        # handle all of the *sym* related logic here so we only have to pass
        # on the flierprops dict.
        if sym is not None:
            # no-flier case, which should really be done with
            # 'showfliers=False' but none-the-less deal with it to keep back
            # compatibility
            if sym == '':
                # blow away existing dict and make one for invisible markers
                flierprops = dict(linestyle='none', marker='', color='none')
                # turn the fliers off just to be safe
                showfliers = False
            # now process the symbol string
            else:
                # process the symbol string
                # discarded linestyle
                _, marker, color = _process_plot_format(sym)
                # if we have a marker, use it
                if marker is not None:
                    flierprops['marker'] = marker
                # if we have a color, use it
                if color is not None:
                    # assume that if color is passed in the user want
                    # filled symbol, if the users want more control use
                    # flierprops
                    flierprops['color'] = color
                    flierprops['markerfacecolor'] = color
                    flierprops['markeredgecolor'] = color

        # replace medians if necessary:
        if usermedians is not None:
            if (len(np.ravel(usermedians)) != len(bxpstats) or
                    np.shape(usermedians)[0] != len(bxpstats)):
                raise ValueError('usermedians length not compatible with x')
            else:
                # reassign medians as necessary
                for stats, med in zip(bxpstats, usermedians):
                    if med is not None:
                        stats['med'] = med

        if conf_intervals is not None:
            if np.shape(conf_intervals)[0] != len(bxpstats):
                err_mess = 'conf_intervals length not compatible with x'
                raise ValueError(err_mess)
            else:
                for stats, ci in zip(bxpstats, conf_intervals):
                    if ci is not None:
                        if len(ci) != 2:
                            raise ValueError('each confidence interval must '
                                             'have two values')
                        else:
                            if ci[0] is not None:
                                stats['cilo'] = ci[0]
                            if ci[1] is not None:
                                stats['cihi'] = ci[1]

        artists = self.bxp(bxpstats, positions=positions, widths=widths,
                           vert=vert, patch_artist=patch_artist,
                           shownotches=notch, showmeans=showmeans,
                           showcaps=showcaps, showbox=showbox,
                           boxprops=boxprops, flierprops=flierprops,
                           medianprops=medianprops, meanprops=meanprops,
                           meanline=meanline, showfliers=showfliers,
                           capprops=capprops, whiskerprops=whiskerprops,
                           manage_ticks=manage_ticks, zorder=zorder)
        return artists

    @cbook._rename_parameter("3.1", "manage_xticks", "manage_ticks")
    def bxp(self, bxpstats, positions=None, widths=None, vert=True,
            patch_artist=False, shownotches=False, showmeans=False,
            showcaps=True, showbox=True, showfliers=True,
            boxprops=None, whiskerprops=None, flierprops=None,
            medianprops=None, capprops=None, meanprops=None,
            meanline=False, manage_ticks=True, zorder=None):
        """
        Drawing function for box and whisker plots.

        Make a box and whisker plot for each column of *x* or each
        vector in sequence *x*.  The box extends from the lower to
        upper quartile values of the data, with a line at the median.
        The whiskers extend from the box to show the range of the
        data.  Flier points are those past the end of the whiskers.

        Parameters
        ----------
        bxpstats : list of dicts
          A list of dictionaries containing stats for each boxplot.
          Required keys are:

          - ``med``: The median (scalar float).

          - ``q1``: The first quartile (25th percentile) (scalar
            float).

          - ``q3``: The third quartile (75th percentile) (scalar
            float).

          - ``whislo``: Lower bound of the lower whisker (scalar
            float).

          - ``whishi``: Upper bound of the upper whisker (scalar
            float).

          Optional keys are:

          - ``mean``: The mean (scalar float). Needed if
            ``showmeans=True``.

          - ``fliers``: Data beyond the whiskers (sequence of floats).
            Needed if ``showfliers=True``.

          - ``cilo`` & ``cihi``: Lower and upper confidence intervals
            about the median. Needed if ``shownotches=True``.

          - ``label``: Name of the dataset (string). If available,
            this will be used a tick label for the boxplot

        positions : array-like, default = [1, 2, ..., n]
          Sets the positions of the boxes. The ticks and limits
          are automatically set to match the positions.

        widths : array-like, default = None
          Either a scalar or a vector and sets the width of each
          box. The default is ``0.15*(distance between extreme
          positions)``, clipped to no less than 0.15 and no more than
          0.5.

        vert : bool, default = True
          If `True` (default), makes the boxes vertical.  If `False`,
          makes horizontal boxes.

        patch_artist : bool, default = False
          If `False` produces boxes with the `.Line2D` artist.
          If `True` produces boxes with the `~matplotlib.patches.Patch` artist.

        shownotches : bool, default = False
          If `False` (default), produces a rectangular box plot.
          If `True`, will produce a notched box plot

        showmeans : bool, default = False
          If `True`, will toggle on the rendering of the means

        showcaps  : bool, default = True
          If `True`, will toggle on the rendering of the caps

        showbox  : bool, default = True
          If `True`, will toggle on the rendering of the box

        showfliers : bool, default = True
          If `True`, will toggle on the rendering of the fliers

        boxprops : dict or None (default)
          If provided, will set the plotting style of the boxes

        whiskerprops : dict or None (default)
          If provided, will set the plotting style of the whiskers

        capprops : dict or None (default)
          If provided, will set the plotting style of the caps

        flierprops : dict or None (default)
          If provided will set the plotting style of the fliers

        medianprops : dict or None (default)
          If provided, will set the plotting style of the medians

        meanprops : dict or None (default)
          If provided, will set the plotting style of the means

        meanline : bool, default = False
          If `True` (and *showmeans* is `True`), will try to render the mean
          as a line spanning the full width of the box according to
          *meanprops*. Not recommended if *shownotches* is also True.
          Otherwise, means will be shown as points.

        manage_ticks : bool, default = True
          If True, the tick locations and labels will be adjusted to match the
          boxplot positions.

        zorder : scalar, default = None
          The zorder of the resulting boxplot.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the boxplot to a list
          of the `.Line2D` instances created. That dictionary has the
          following keys (assuming vertical boxplots):

          - ``boxes``: the main body of the boxplot showing the
            quartiles and the median's confidence intervals if
            enabled.

          - ``medians``: horizontal lines at the median of each box.

          - ``whiskers``: the vertical lines extending to the most
            extreme, non-outlier data points.

          - ``caps``: the horizontal lines at the ends of the
            whiskers.

          - ``fliers``: points representing data that extend beyond
            the whiskers (fliers).

          - ``means``: points or lines representing the means.

        Examples
        --------
        .. plot:: gallery/statistics/bxp.py

        """
        # lists of artists to be output
        whiskers = []
        caps = []
        boxes = []
        medians = []
        means = []
        fliers = []

        # empty list of xticklabels
        datalabels = []

        # Use default zorder if none specified
        if zorder is None:
            zorder = mlines.Line2D.zorder

        zdelta = 0.1

        def line_props_with_rcdefaults(subkey, explicit, zdelta=0):
            d = {k.split('.')[-1]: v for k, v in rcParams.items()
                 if k.startswith(f'boxplot.{subkey}')}
            d['zorder'] = zorder + zdelta
            if explicit is not None:
                d.update(
                    cbook.normalize_kwargs(explicit, mlines.Line2D._alias_map))
            return d

        # box properties
        if patch_artist:
            final_boxprops = dict(
                linestyle=rcParams['boxplot.boxprops.linestyle'],
                linewidth=rcParams['boxplot.boxprops.linewidth'],
                edgecolor=rcParams['boxplot.boxprops.color'],
                facecolor=('white' if rcParams['_internal.classic_mode'] else
                           rcParams['patch.facecolor']),
                zorder=zorder,
            )
            if boxprops is not None:
                final_boxprops.update(
                    cbook.normalize_kwargs(
                        boxprops, mpatches.PathPatch._alias_map))
        else:
            final_boxprops = line_props_with_rcdefaults('boxprops', boxprops)
        final_whiskerprops = line_props_with_rcdefaults(
            'whiskerprops', whiskerprops)
        final_capprops = line_props_with_rcdefaults(
            'capprops', capprops)
        final_flierprops = line_props_with_rcdefaults(
            'flierprops', flierprops)
        final_medianprops = line_props_with_rcdefaults(
            'medianprops', medianprops, zdelta)
        final_meanprops = line_props_with_rcdefaults(
            'meanprops', meanprops, zdelta)
        removed_prop = 'marker' if meanline else 'linestyle'
        # Only remove the property if it's not set explicitly as a parameter.
        if meanprops is None or removed_prop not in meanprops:
            final_meanprops[removed_prop] = ''

        def to_vc(xs, ys):
            # convert arguments to verts and codes, append (0, 0) (ignored).
            verts = np.append(np.column_stack([xs, ys]), [(0, 0)], 0)
            codes = ([mpath.Path.MOVETO]
                     + [mpath.Path.LINETO] * (len(verts) - 2)
                     + [mpath.Path.CLOSEPOLY])
            return verts, codes

        def patch_list(xs, ys, **kwargs):
            verts, codes = to_vc(xs, ys)
            path = mpath.Path(verts, codes)
            patch = mpatches.PathPatch(path, **kwargs)
            self.add_artist(patch)
            return [patch]

        # vertical or horizontal plot?
        if vert:
            def doplot(*args, **kwargs):
                return self.plot(*args, **kwargs)

            def dopatch(xs, ys, **kwargs):
                return patch_list(xs, ys, **kwargs)

        else:
            def doplot(*args, **kwargs):
                shuffled = []
                for i in range(0, len(args), 2):
                    shuffled.extend([args[i + 1], args[i]])
                return self.plot(*shuffled, **kwargs)

            def dopatch(xs, ys, **kwargs):
                xs, ys = ys, xs  # flip X, Y
                return patch_list(xs, ys, **kwargs)

        # input validation
        N = len(bxpstats)
        datashape_message = ("List of boxplot statistics and `{0}` "
                             "values must have same the length")
        # check position
        if positions is None:
            positions = list(range(1, N + 1))
        elif len(positions) != N:
            raise ValueError(datashape_message.format("positions"))

        positions = np.array(positions)
        if len(positions) > 0 and not isinstance(positions[0], Number):
            raise TypeError("positions should be an iterable of numbers")

        # width
        if widths is None:
            widths = [np.clip(0.15 * np.ptp(positions), 0.15, 0.5)] * N
        elif np.isscalar(widths):
            widths = [widths] * N
        elif len(widths) != N:
            raise ValueError(datashape_message.format("widths"))

        for pos, width, stats in zip(positions, widths, bxpstats):
            # try to find a new label
            datalabels.append(stats.get('label', pos))

            # whisker coords
            whisker_x = np.ones(2) * pos
            whiskerlo_y = np.array([stats['q1'], stats['whislo']])
            whiskerhi_y = np.array([stats['q3'], stats['whishi']])

            # cap coords
            cap_left = pos - width * 0.25
            cap_right = pos + width * 0.25
            cap_x = np.array([cap_left, cap_right])
            cap_lo = np.ones(2) * stats['whislo']
            cap_hi = np.ones(2) * stats['whishi']

            # box and median coords
            box_left = pos - width * 0.5
            box_right = pos + width * 0.5
            med_y = [stats['med'], stats['med']]

            # notched boxes
            if shownotches:
                box_x = [box_left, box_right, box_right, cap_right, box_right,
                         box_right, box_left, box_left, cap_left, box_left,
                         box_left]
                box_y = [stats['q1'], stats['q1'], stats['cilo'],
                         stats['med'], stats['cihi'], stats['q3'],
                         stats['q3'], stats['cihi'], stats['med'],
                         stats['cilo'], stats['q1']]
                med_x = cap_x

            # plain boxes
            else:
                box_x = [box_left, box_right, box_right, box_left, box_left]
                box_y = [stats['q1'], stats['q1'], stats['q3'], stats['q3'],
                         stats['q1']]
                med_x = [box_left, box_right]

            # maybe draw the box:
            if showbox:
                if patch_artist:
                    boxes.extend(dopatch(box_x, box_y, **final_boxprops))
                else:
                    boxes.extend(doplot(box_x, box_y, **final_boxprops))

            # draw the whiskers
            whiskers.extend(doplot(
                whisker_x, whiskerlo_y, **final_whiskerprops
            ))
            whiskers.extend(doplot(
                whisker_x, whiskerhi_y, **final_whiskerprops
            ))

            # maybe draw the caps:
            if showcaps:
                caps.extend(doplot(cap_x, cap_lo, **final_capprops))
                caps.extend(doplot(cap_x, cap_hi, **final_capprops))

            # draw the medians
            medians.extend(doplot(med_x, med_y, **final_medianprops))

            # maybe draw the means
            if showmeans:
                if meanline:
                    means.extend(doplot(
                        [box_left, box_right], [stats['mean'], stats['mean']],
                        **final_meanprops
                    ))
                else:
                    means.extend(doplot(
                        [pos], [stats['mean']], **final_meanprops
                    ))

            # maybe draw the fliers
            if showfliers:
                # fliers coords
                flier_x = np.full(len(stats['fliers']), pos, dtype=np.float64)
                flier_y = stats['fliers']

                fliers.extend(doplot(
                    flier_x, flier_y, **final_flierprops
                ))

        if manage_ticks:
            axis_name = "x" if vert else "y"
            interval = getattr(self.dataLim, f"interval{axis_name}")
            axis = getattr(self, f"{axis_name}axis")
            positions = axis.convert_units(positions)
            # The 0.5 additional padding ensures reasonable-looking boxes
            # even when drawing a single box.  We set the sticky edge to
            # prevent margins expansion, in order to match old behavior (back
            # when separate calls to boxplot() would completely reset the axis
            # limits regardless of what was drawn before).  The sticky edges
            # are attached to the median lines, as they are always present.
            interval[:] = (min(interval[0], min(positions) - .5),
                           max(interval[1], max(positions) + .5))
            for median, position in zip(medians, positions):
                getattr(median.sticky_edges, axis_name).extend(
                    [position - .5, position + .5])
            # Modified from Axis.set_ticks and Axis.set_ticklabels.
            locator = axis.get_major_locator()
            if not isinstance(axis.get_major_locator(),
                              mticker.FixedLocator):
                locator = mticker.FixedLocator([])
                axis.set_major_locator(locator)
            locator.locs = np.array([*locator.locs, *positions])
            formatter = axis.get_major_formatter()
            if not isinstance(axis.get_major_formatter(),
                              mticker.FixedFormatter):
                formatter = mticker.FixedFormatter([])
                axis.set_major_formatter(formatter)
            formatter.seq = [*formatter.seq, *datalabels]

            self._request_autoscale_view(
                scalex=self._autoscaleXon, scaley=self._autoscaleYon)

        return dict(whiskers=whiskers, caps=caps, boxes=boxes,
                    medians=medians, fliers=fliers, means=means)

    @staticmethod
    def _parse_scatter_color_args(c, edgecolors, kwargs, xsize,
                                  get_next_color_func):
        """
        Helper function to process color related arguments of `.Axes.scatter`.

        Argument precedence for facecolors:

        - c (if not None)
        - kwargs['facecolors']
        - kwargs['facecolor']
        - kwargs['color'] (==kwcolor)
        - 'b' if in classic mode else the result of ``get_next_color_func()``

        Argument precedence for edgecolors:

        - edgecolors (is an explicit kw argument in scatter())
        - kwargs['edgecolor']
        - kwargs['color'] (==kwcolor)
        - 'face' if not in classic mode else None

        Parameters
        ----------
        c : color or sequence or sequence of color or None
            See argument description of `.Axes.scatter`.
        edgecolors : color or sequence of color or {'face', 'none'} or None
            See argument description of `.Axes.scatter`.
        kwargs : dict
            Additional kwargs. If these keys exist, we pop and process them:
            'facecolors', 'facecolor', 'edgecolor', 'color'
            Note: The dict is modified by this function.
        xsize : int
            The size of the x and y arrays passed to `.Axes.scatter`.
        get_next_color_func : callable
            A callable that returns a color. This color is used as facecolor
            if no other color is provided.

            Note, that this is a function rather than a fixed color value to
            support conditional evaluation of the next color.  As of the
            current implementation obtaining the next color from the
            property cycle advances the cycle. This must only happen if we
            actually use the color, which will only be decided within this
            method.

        Returns
        -------
        c
            The input *c* if it was not *None*, else a color derived from the
            other inputs or defaults.
        colors : array(N, 4) or None
            The facecolors as RGBA values, or *None* if a colormap is used.
        edgecolors
            The edgecolor.

        """
        facecolors = kwargs.pop('facecolors', None)
        facecolors = kwargs.pop('facecolor', facecolors)
        edgecolors = kwargs.pop('edgecolor', edgecolors)

        kwcolor = kwargs.pop('color', None)

        if kwcolor is not None and c is not None:
            raise ValueError("Supply a 'c' argument or a 'color'"
                             " kwarg but not both; they differ but"
                             " their functionalities overlap.")

        if kwcolor is not None:
            try:
                mcolors.to_rgba_array(kwcolor)
            except ValueError:
                raise ValueError(
                    "'color' kwarg must be an color or sequence of color "
                    "specs.  For a sequence of values to be color-mapped, use "
                    "the 'c' argument instead.")
            if edgecolors is None:
                edgecolors = kwcolor
            if facecolors is None:
                facecolors = kwcolor

        if edgecolors is None and not rcParams['_internal.classic_mode']:
            edgecolors = rcParams['scatter.edgecolors']

        c_was_none = c is None
        if c is None:
            c = (facecolors if facecolors is not None
                 else "b" if rcParams['_internal.classic_mode']
                 else get_next_color_func())
        c_is_string_or_strings = (
            isinstance(c, str)
            or (isinstance(c, collections.abc.Iterable) and len(c) > 0
                and isinstance(cbook.safe_first_element(c), str)))

        def invalid_shape_exception(csize, xsize):
            return ValueError(
                f"'c' argument has {csize} elements, which is inconsistent "
                f"with 'x' and 'y' with size {xsize}.")

        c_is_mapped = False  # Unless proven otherwise below.
        valid_shape = True  # Unless proven otherwise below.
        if not c_was_none and kwcolor is None and not c_is_string_or_strings:
            try:  # First, does 'c' look suitable for value-mapping?
                c = np.asanyarray(c, dtype=float)
            except ValueError:
                pass  # Failed to convert to float array; must be color specs.
            else:
                # If c can be either mapped values or a RGB(A) color, prefer
                # the former if shapes match, the latter otherwise.
                if c.size == xsize:
                    c = c.ravel()
                    c_is_mapped = True
                else:  # Wrong size; it must not be intended for mapping.
                    if c.shape in ((3,), (4,)):
                        _log.warning(
                            "'c' argument looks like a single numeric RGB or "
                            "RGBA sequence, which should be avoided as value-"
                            "mapping will have precedence in case its length "
                            "matches with 'x' & 'y'.  Please use a 2-D array "
                            "with a single row if you really want to specify "
                            "the same RGB or RGBA value for all points.")
                    valid_shape = False
        if not c_is_mapped:
            try:  # Is 'c' acceptable as PathCollection facecolors?
                colors = mcolors.to_rgba_array(c)
            except ValueError:
                if not valid_shape:
                    raise invalid_shape_exception(c.size, xsize)
                # Both the mapping *and* the RGBA conversion failed: pretty
                # severe failure => one may appreciate a verbose feedback.
                raise ValueError(
                    f"'c' argument must be a color, a sequence of colors, or "
                    f"a sequence of numbers, not {c}")
            else:
                if len(colors) not in (0, 1, xsize):
                    # NB: remember that a single color is also acceptable.
                    # Besides *colors* will be an empty array if c == 'none'.
                    raise invalid_shape_exception(len(colors), xsize)
        else:
            colors = None  # use cmap, norm after collection is created
        return c, colors, edgecolors

    @_preprocess_data(replace_names=["x", "y", "s", "linewidths",
                                     "edgecolors", "c", "facecolor",
                                     "facecolors", "color"],
                      label_namer="y")
    @cbook._delete_parameter("3.2", "verts")
    def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
                vmin=None, vmax=None, alpha=None, linewidths=None,
                verts=None, edgecolors=None, *, plotnonfinite=False,
                **kwargs):
        """
        A scatter plot of *y* vs. *x* with varying marker size and/or color.

        Parameters
        ----------
        x, y : scalar or array-like, shape (n, )
            The data positions.

        s : scalar or array-like, shape (n, ), optional
            The marker size in points**2.
            Default is ``rcParams['lines.markersize'] ** 2``.

        c : color, sequence, or sequence of colors, optional
            The marker color. Possible values:

            - A single color format string.
            - A sequence of colors of length n.
            - A scalar or sequence of n numbers to be mapped to colors using
              *cmap* and *norm*.
            - A 2-D array in which the rows are RGB or RGBA.

            Note that *c* should not be a single numeric RGB or RGBA sequence
            because that is indistinguishable from an array of values to be
            colormapped. If you want to specify the same RGB or RGBA value for
            all points, use a 2-D array with a single row.  Otherwise, value-
            matching will have precedence in case of a size matching with *x*
            and *y*.

            Defaults to ``None``. In that case the marker color is determined
            by the value of ``color``, ``facecolor`` or ``facecolors``. In case
            those are not specified or ``None``, the marker color is determined
            by the next color of the ``Axes``' current "shape and fill" color
            cycle. This cycle defaults to :rc:`axes.prop_cycle`.

        marker : `~matplotlib.markers.MarkerStyle`, optional
            The marker style. *marker* can be either an instance of the class
            or the text shorthand for a particular marker.
            Defaults to ``None``, in which case it takes the value of
            :rc:`scatter.marker` = 'o'.
            See `~matplotlib.markers` for more information about marker styles.

        cmap : `~matplotlib.colors.Colormap`, optional, default: None
            A `.Colormap` instance or registered colormap name. *cmap* is only
            used if *c* is an array of floats. If ``None``, defaults to rc
            ``image.cmap``.

        norm : `~matplotlib.colors.Normalize`, optional, default: None
            A `.Normalize` instance is used to scale luminance data to 0, 1.
            *norm* is only used if *c* is an array of floats. If *None*, use
            the default `.colors.Normalize`.

        vmin, vmax : scalar, optional, default: None
            *vmin* and *vmax* are used in conjunction with *norm* to normalize
            luminance data. If None, the respective min and max of the color
            array is used. *vmin* and *vmax* are ignored if you pass a *norm*
            instance.

        alpha : scalar, optional, default: None
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        linewidths : scalar or array-like, optional, default: None
            The linewidth of the marker edges. Note: The default *edgecolors*
            is 'face'. You may want to change this as well.
            If *None*, defaults to :rc:`lines.linewidth`.

        edgecolors : {'face', 'none', *None*} or color or sequence of color, \
optional.
            The edge color of the marker. Possible values:

            - 'face': The edge color will always be the same as the face color.
            - 'none': No patch boundary will be drawn.
            - A Matplotlib color or sequence of color.

            Defaults to ``None``, in which case it takes the value of
            :rc:`scatter.edgecolors` = 'face'.

            For non-filled markers, the *edgecolors* kwarg is ignored and
            forced to 'face' internally.

        plotnonfinite : boolean, optional, default: False
            Set to plot points with nonfinite *c*, in conjunction with
            `~matplotlib.colors.Colormap.set_bad`.

        Returns
        -------
        paths : `~matplotlib.collections.PathCollection`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.collections.Collection` properties

        See Also
        --------
        plot : To plot scatter plots when markers are identical in size and
            color.

        Notes
        -----
        * The `.plot` function will be faster for scatterplots where markers
          don't vary in size or color.

        * Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which
          case all masks will be combined and only unmasked points will be
          plotted.

        * Fundamentally, scatter works with 1-D arrays; *x*, *y*, *s*, and *c*
          may be input as N-D arrays, but within scatter they will be
          flattened. The exception is *c*, which will be flattened only if its
          size matches the size of *x* and *y*.

        """
        # Process **kwargs to handle aliases, conflicts with explicit kwargs:

        self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
        x = self.convert_xunits(x)
        y = self.convert_yunits(y)

        # np.ma.ravel yields an ndarray, not a masked array,
        # unless its argument is a masked array.
        x = np.ma.ravel(x)
        y = np.ma.ravel(y)
        if x.size != y.size:
            raise ValueError("x and y must be the same size")

        if s is None:
            s = (20 if rcParams['_internal.classic_mode'] else
                 rcParams['lines.markersize'] ** 2.0)
        s = np.ma.ravel(s)
        if len(s) not in (1, x.size):
            raise ValueError("s must be a scalar, or the same size as x and y")

        c, colors, edgecolors = \
            self._parse_scatter_color_args(
                c, edgecolors, kwargs, x.size,
                get_next_color_func=self._get_patches_for_fill.get_next_color)

        if plotnonfinite and colors is None:
            c = np.ma.masked_invalid(c)
            x, y, s, edgecolors, linewidths = \
                cbook._combine_masks(x, y, s, edgecolors, linewidths)
        else:
            x, y, s, c, colors, edgecolors, linewidths = \
                cbook._combine_masks(
                    x, y, s, c, colors, edgecolors, linewidths)

        scales = s   # Renamed for readability below.

        # load default marker from rcParams
        if marker is None:
            marker = rcParams['scatter.marker']

        if isinstance(marker, mmarkers.MarkerStyle):
            marker_obj = marker
        else:
            marker_obj = mmarkers.MarkerStyle(marker)

        path = marker_obj.get_path().transformed(
            marker_obj.get_transform())
        if not marker_obj.is_filled():
            edgecolors = 'face'
            linewidths = rcParams['lines.linewidth']

        offsets = np.ma.column_stack([x, y])

        collection = mcoll.PathCollection(
                (path,), scales,
                facecolors=colors,
                edgecolors=edgecolors,
                linewidths=linewidths,
                offsets=offsets,
                transOffset=kwargs.pop('transform', self.transData),
                alpha=alpha
                )
        collection.set_transform(mtransforms.IdentityTransform())
        collection.update(kwargs)

        if colors is None:
            collection.set_array(c)
            collection.set_cmap(cmap)
            collection.set_norm(norm)

            if vmin is not None or vmax is not None:
                collection.set_clim(vmin, vmax)
            else:
                collection.autoscale_None()

        # Classic mode only:
        # ensure there are margins to allow for the
        # finite size of the symbols.  In v2.x, margins
        # are present by default, so we disable this
        # scatter-specific override.
        if rcParams['_internal.classic_mode']:
            if self._xmargin < 0.05 and x.size > 0:
                self.set_xmargin(0.05)
            if self._ymargin < 0.05 and x.size > 0:
                self.set_ymargin(0.05)

        self.add_collection(collection)
        self._request_autoscale_view()

        return collection

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    @docstring.dedent_interpd
    def hexbin(self, x, y, C=None, gridsize=100, bins=None,
               xscale='linear', yscale='linear', extent=None,
               cmap=None, norm=None, vmin=None, vmax=None,
               alpha=None, linewidths=None, edgecolors='face',
               reduce_C_function=np.mean, mincnt=None, marginals=False,
               **kwargs):
        """
        Make a 2D hexagonal binning plot of points *x*, *y*.

        If *C* is *None*, the value of the hexagon is determined by the number
        of points in the hexagon. Otherwise, *C* specifies values at the
        coordinate (x[i], y[i]). For each hexagon, these values are reduced
        using *reduce_C_function*.

        Parameters
        ----------
        x, y : array-like
            The data positions. *x* and *y* must be of the same length.

        C : array-like, optional
            If given, these values are accumulated in the bins. Otherwise,
            every point has a value of 1. Must be of the same length as *x*
            and *y*.

        gridsize : int or (int, int), default: 100
            If a single int, the number of hexagons in the *x*-direction.
            The number of hexagons in the *y*-direction is chosen such that
            the hexagons are approximately regular.

            Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
            in the *x*-direction and the *y*-direction.

        bins : 'log' or int or sequence, default: *None*
            Discretization of the hexagon values.

            - If *None*, no binning is applied; the color of each hexagon
              directly corresponds to its count value.
            - If 'log', use a logarithmic scale for the color map.
              Internally, :math:`log_{10}(i+1)` is used to determine the
              hexagon color. This is equivalent to ``norm=LogNorm()``.
            - If an integer, divide the counts in the specified number
              of bins, and color the hexagons accordingly.
            - If a sequence of values, the values of the lower bound of
              the bins to be used.

        xscale : {'linear', 'log'}, default: 'linear'
            Use a linear or log10 scale on the horizontal axis.

        yscale : {'linear', 'log'}, default: 'linear'
            Use a linear or log10 scale on the vertical axis.

        mincnt : int > 0, default: *None*
            If not *None*, only display cells with more than *mincnt*
            number of points in the cell.

        marginals : bool, default: *False*
            If marginals is *True*, plot the marginal density as
            colormapped rectangles along the bottom of the x-axis and
            left of the y-axis.

        extent : float, default: *None*
            The limits of the bins. The default assigns the limits
            based on *gridsize*, *x*, *y*, *xscale* and *yscale*.

            If *xscale* or *yscale* is set to 'log', the limits are
            expected to be the exponent for a power of 10. E.g. for
            x-limits of 1 and 50 in 'linear' scale and y-limits
            of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).

            Order of scalars is (left, right, bottom, top).

        Other Parameters
        ----------------
        cmap : str or `~matplotlib.colors.Colormap`, optional
            The Colormap instance or registered colormap name used to map
            the bin values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the bin values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : float, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of the bins in case of the default
            linear scaling). This is ignored if *norm* is given.

        alpha : float between 0 and 1, optional
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        linewidths : float, default: *None*
            If *None*, defaults to 1.0.

        edgecolors : {'face', 'none', *None*} or color, default: 'face'
            The color of the hexagon edges. Possible values are:

            - 'face': Draw the edges in the same color as the fill color.
            - 'none': No edges are drawn. This can sometimes lead to unsightly
              unpainted pixels between the hexagons.
            - *None*: Draw outlines in the default color.
            - An explicit matplotlib color.

        reduce_C_function : callable, default is `numpy.mean`
            The function to aggregate *C* within the bins. It is ignored if
            *C* is not given. This must have the signature::

                def reduce_C_function(C: array) -> float

            Commonly used functions are:

            - `numpy.mean`: average of the points
            - `numpy.sum`: integral of the point values
            - `numpy.max`: value taken from the largest point

        **kwargs : `~matplotlib.collections.PolyCollection` properties
            All other keyword arguments are passed on to `.PolyCollection`:

            %(PolyCollection)s

        Returns
        -------
        polycollection : `~matplotlib.collections.PolyCollection`
            A `.PolyCollection` defining the hexagonal bins.

            - `.PolyCollection.get_offset` contains a Mx2 array containing
              the x, y positions of the M hexagon centers.
            - `.PolyCollection.get_array` contains the values of the M
              hexagons.

            If *marginals* is *True*, horizontal
            bar and vertical bar (both PolyCollections) will be attached
            to the return collection as attributes *hbar* and *vbar*.

        """
        self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)

        x, y, C = cbook.delete_masked_points(x, y, C)

        # Set the size of the hexagon grid
        if np.iterable(gridsize):
            nx, ny = gridsize
        else:
            nx = gridsize
            ny = int(nx / math.sqrt(3))
        # Count the number of data in each hexagon
        x = np.array(x, float)
        y = np.array(y, float)
        if xscale == 'log':
            if np.any(x <= 0.0):
                raise ValueError("x contains non-positive values, so can not"
                                 " be log-scaled")
            x = np.log10(x)
        if yscale == 'log':
            if np.any(y <= 0.0):
                raise ValueError("y contains non-positive values, so can not"
                                 " be log-scaled")
            y = np.log10(y)
        if extent is not None:
            xmin, xmax, ymin, ymax = extent
        else:
            xmin, xmax = (np.min(x), np.max(x)) if len(x) else (0, 1)
            ymin, ymax = (np.min(y), np.max(y)) if len(y) else (0, 1)

            # to avoid issues with singular data, expand the min/max pairs
            xmin, xmax = mtransforms.nonsingular(xmin, xmax, expander=0.1)
            ymin, ymax = mtransforms.nonsingular(ymin, ymax, expander=0.1)

        # In the x-direction, the hexagons exactly cover the region from
        # xmin to xmax. Need some padding to avoid roundoff errors.
        padding = 1.e-9 * (xmax - xmin)
        xmin -= padding
        xmax += padding
        sx = (xmax - xmin) / nx
        sy = (ymax - ymin) / ny

        if marginals:
            xorig = x.copy()
            yorig = y.copy()

        x = (x - xmin) / sx
        y = (y - ymin) / sy
        ix1 = np.round(x).astype(int)
        iy1 = np.round(y).astype(int)
        ix2 = np.floor(x).astype(int)
        iy2 = np.floor(y).astype(int)

        nx1 = nx + 1
        ny1 = ny + 1
        nx2 = nx
        ny2 = ny
        n = nx1 * ny1 + nx2 * ny2

        d1 = (x - ix1) ** 2 + 3.0 * (y - iy1) ** 2
        d2 = (x - ix2 - 0.5) ** 2 + 3.0 * (y - iy2 - 0.5) ** 2
        bdist = (d1 < d2)
        if C is None:
            lattice1 = np.zeros((nx1, ny1))
            lattice2 = np.zeros((nx2, ny2))
            c1 = (0 <= ix1) & (ix1 < nx1) & (0 <= iy1) & (iy1 < ny1) & bdist
            c2 = (0 <= ix2) & (ix2 < nx2) & (0 <= iy2) & (iy2 < ny2) & ~bdist
            np.add.at(lattice1, (ix1[c1], iy1[c1]), 1)
            np.add.at(lattice2, (ix2[c2], iy2[c2]), 1)
            if mincnt is not None:
                lattice1[lattice1 < mincnt] = np.nan
                lattice2[lattice2 < mincnt] = np.nan
            accum = np.concatenate([lattice1.ravel(), lattice2.ravel()])
            good_idxs = ~np.isnan(accum)

        else:
            if mincnt is None:
                mincnt = 0

            # create accumulation arrays
            lattice1 = np.empty((nx1, ny1), dtype=object)
            for i in range(nx1):
                for j in range(ny1):
                    lattice1[i, j] = []
            lattice2 = np.empty((nx2, ny2), dtype=object)
            for i in range(nx2):
                for j in range(ny2):
                    lattice2[i, j] = []

            for i in range(len(x)):
                if bdist[i]:
                    if 0 <= ix1[i] < nx1 and 0 <= iy1[i] < ny1:
                        lattice1[ix1[i], iy1[i]].append(C[i])
                else:
                    if 0 <= ix2[i] < nx2 and 0 <= iy2[i] < ny2:
                        lattice2[ix2[i], iy2[i]].append(C[i])

            for i in range(nx1):
                for j in range(ny1):
                    vals = lattice1[i, j]
                    if len(vals) > mincnt:
                        lattice1[i, j] = reduce_C_function(vals)
                    else:
                        lattice1[i, j] = np.nan
            for i in range(nx2):
                for j in range(ny2):
                    vals = lattice2[i, j]
                    if len(vals) > mincnt:
                        lattice2[i, j] = reduce_C_function(vals)
                    else:
                        lattice2[i, j] = np.nan

            accum = np.hstack((lattice1.astype(float).ravel(),
                               lattice2.astype(float).ravel()))
            good_idxs = ~np.isnan(accum)

        offsets = np.zeros((n, 2), float)
        offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
        offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
        offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
        offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
        offsets[:, 0] *= sx
        offsets[:, 1] *= sy
        offsets[:, 0] += xmin
        offsets[:, 1] += ymin
        # remove accumulation bins with no data
        offsets = offsets[good_idxs, :]
        accum = accum[good_idxs]

        polygon = [sx, sy / 3] * np.array(
            [[.5, -.5], [.5, .5], [0., 1.], [-.5, .5], [-.5, -.5], [0., -1.]])

        if linewidths is None:
            linewidths = [1.0]

        if xscale == 'log' or yscale == 'log':
            polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
            if xscale == 'log':
                polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
                xmin = 10.0 ** xmin
                xmax = 10.0 ** xmax
                self.set_xscale(xscale)
            if yscale == 'log':
                polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
                ymin = 10.0 ** ymin
                ymax = 10.0 ** ymax
                self.set_yscale(yscale)
            collection = mcoll.PolyCollection(
                polygons,
                edgecolors=edgecolors,
                linewidths=linewidths,
                )
        else:
            collection = mcoll.PolyCollection(
                [polygon],
                edgecolors=edgecolors,
                linewidths=linewidths,
                offsets=offsets,
                transOffset=mtransforms.IdentityTransform(),
                offset_position="data"
                )

        # Set normalizer if bins is 'log'
        if bins == 'log':
            if norm is not None:
                cbook._warn_external("Only one of 'bins' and 'norm' "
                                     "arguments can be supplied, ignoring "
                                     "bins={}".format(bins))
            else:
                norm = mcolors.LogNorm()
            bins = None

        if isinstance(norm, mcolors.LogNorm):
            if (accum == 0).any():
                # make sure we have no zeros
                accum += 1

        # autoscale the norm with curren accum values if it hasn't
        # been set
        if norm is not None:
            if norm.vmin is None and norm.vmax is None:
                norm.autoscale(accum)

        if bins is not None:
            if not np.iterable(bins):
                minimum, maximum = min(accum), max(accum)
                bins -= 1  # one less edge than bins
                bins = minimum + (maximum - minimum) * np.arange(bins) / bins
            bins = np.sort(bins)
            accum = bins.searchsorted(accum)

        collection.set_array(accum)
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_alpha(alpha)
        collection.update(kwargs)

        if vmin is not None or vmax is not None:
            collection.set_clim(vmin, vmax)
        else:
            collection.autoscale_None()

        corners = ((xmin, ymin), (xmax, ymax))
        self.update_datalim(corners)
        self._request_autoscale_view(tight=True)

        # add the collection last
        self.add_collection(collection, autolim=False)
        if not marginals:
            return collection

        if C is None:
            C = np.ones(len(x))

        def coarse_bin(x, y, coarse):
            ind = coarse.searchsorted(x).clip(0, len(coarse) - 1)
            mus = np.zeros(len(coarse))
            for i in range(len(coarse)):
                yi = y[ind == i]
                if len(yi) > 0:
                    mu = reduce_C_function(yi)
                else:
                    mu = np.nan
                mus[i] = mu
            return mus

        coarse = np.linspace(xmin, xmax, gridsize)

        xcoarse = coarse_bin(xorig, C, coarse)
        valid = ~np.isnan(xcoarse)
        verts, values = [], []
        for i, val in enumerate(xcoarse):
            thismin = coarse[i]
            if i < len(coarse) - 1:
                thismax = coarse[i + 1]
            else:
                thismax = thismin + np.diff(coarse)[-1]

            if not valid[i]:
                continue

            verts.append([(thismin, 0),
                          (thismin, 0.05),
                          (thismax, 0.05),
                          (thismax, 0)])
            values.append(val)

        values = np.array(values)
        trans = self.get_xaxis_transform(which='grid')

        hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')

        hbar.set_array(values)
        hbar.set_cmap(cmap)
        hbar.set_norm(norm)
        hbar.set_alpha(alpha)
        hbar.update(kwargs)
        self.add_collection(hbar, autolim=False)

        coarse = np.linspace(ymin, ymax, gridsize)
        ycoarse = coarse_bin(yorig, C, coarse)
        valid = ~np.isnan(ycoarse)
        verts, values = [], []
        for i, val in enumerate(ycoarse):
            thismin = coarse[i]
            if i < len(coarse) - 1:
                thismax = coarse[i + 1]
            else:
                thismax = thismin + np.diff(coarse)[-1]
            if not valid[i]:
                continue
            verts.append([(0, thismin), (0.0, thismax),
                          (0.05, thismax), (0.05, thismin)])
            values.append(val)

        values = np.array(values)

        trans = self.get_yaxis_transform(which='grid')

        vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
        vbar.set_array(values)
        vbar.set_cmap(cmap)
        vbar.set_norm(norm)
        vbar.set_alpha(alpha)
        vbar.update(kwargs)
        self.add_collection(vbar, autolim=False)

        collection.hbar = hbar
        collection.vbar = vbar

        def on_changed(collection):
            hbar.set_cmap(collection.get_cmap())
            hbar.set_clim(collection.get_clim())
            vbar.set_cmap(collection.get_cmap())
            vbar.set_clim(collection.get_clim())

        collection.callbacksSM.connect('changed', on_changed)

        return collection

    @docstring.dedent_interpd
    def arrow(self, x, y, dx, dy, **kwargs):
        """
        Add an arrow to the axes.

        This draws an arrow from ``(x, y)`` to ``(x+dx, y+dy)``.

        Parameters
        ----------
        x, y : float
            The x and y coordinates of the arrow base.
        dx, dy : float
            The length of the arrow along x and y direction.

        Returns
        -------
        arrow : `.FancyArrow`
            The created `.FancyArrow` object.

        Other Parameters
        ----------------
        **kwargs
            Optional kwargs (inherited from `.FancyArrow` patch) control the
            arrow construction and properties:

        %(FancyArrow)s

        Notes
        -----
        The resulting arrow is affected by the axes aspect ratio and limits.
        This may produce an arrow whose head is not square with its stem. To
        create an arrow whose head is square with its stem,
        use :meth:`annotate` for example:

        >>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
        ...             arrowprops=dict(arrowstyle="->"))

        """
        # Strip away units for the underlying patch since units
        # do not make sense to most patch-like code
        x = self.convert_xunits(x)
        y = self.convert_yunits(y)
        dx = self.convert_xunits(dx)
        dy = self.convert_yunits(dy)

        a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
        self.add_artist(a)
        return a

    @docstring.copy(mquiver.QuiverKey.__init__)
    def quiverkey(self, Q, X, Y, U, label, **kw):
        qk = mquiver.QuiverKey(Q, X, Y, U, label, **kw)
        self.add_artist(qk)
        return qk

    # Handle units for x and y, if they've been passed
    def _quiver_units(self, args, kw):
        if len(args) > 3:
            x, y = args[0:2]
            self._process_unit_info(xdata=x, ydata=y, kwargs=kw)
            x = self.convert_xunits(x)
            y = self.convert_yunits(y)
            return (x, y) + args[2:]
        return args

    # args can by a combination if X, Y, U, V, C and all should be replaced
    @_preprocess_data()
    def quiver(self, *args, **kw):
        # Make sure units are handled for x and y values
        args = self._quiver_units(args, kw)

        q = mquiver.Quiver(self, *args, **kw)

        self.add_collection(q, autolim=True)
        self._request_autoscale_view()
        return q
    quiver.__doc__ = mquiver.Quiver.quiver_doc

    # args can be some combination of X, Y, U, V, C and all should be replaced
    @_preprocess_data()
    @docstring.dedent_interpd
    def barbs(self, *args, **kw):
        """
        %(barbs_doc)s
        """
        # Make sure units are handled for x and y values
        args = self._quiver_units(args, kw)

        b = mquiver.Barbs(self, *args, **kw)
        self.add_collection(b, autolim=True)
        self._request_autoscale_view()
        return b

    # Uses a custom implementation of data-kwarg handling in
    # _process_plot_var_args.
    def fill(self, *args, data=None, **kwargs):
        """
        Plot filled polygons.

        Parameters
        ----------
        *args : sequence of x, y, [color]
            Each polygon is defined by the lists of *x* and *y* positions of
            its nodes, optionally followed by a *color* specifier. See
            :mod:`matplotlib.colors` for supported color specifiers. The
            standard color cycle is used for polygons without a color
            specifier.

            You can plot multiple polygons by providing multiple *x*, *y*,
            *[color]* groups.

            For example, each of the following is legal::

                ax.fill(x, y)                    # a polygon with default color
                ax.fill(x, y, "b")               # a blue polygon
                ax.fill(x, y, x2, y2)            # two polygons
                ax.fill(x, y, "b", x2, y2, "r")  # a blue and a red polygon

        data : indexable object, optional
            An object with labelled data. If given, provide the label names to
            plot in *x* and *y*, e.g.::

                ax.fill("time", "signal",
                        data={"time": [0, 1, 2], "signal": [0, 1, 0]})

        Returns
        -------
        a list of :class:`~matplotlib.patches.Polygon`

        Other Parameters
        ----------------
        **kwargs : :class:`~matplotlib.patches.Polygon` properties

        Notes
        -----
        Use :meth:`fill_between` if you would like to fill the region between
        two curves.
        """
        # For compatibility(!), get aliases from Line2D rather than Patch.
        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
        # _get_patches_for_fill returns a generator, convert it to a list.
        patches = [*self._get_patches_for_fill(*args, data=data, **kwargs)]
        for poly in patches:
            self.add_patch(poly)
        self._request_autoscale_view()
        return patches

    @_preprocess_data(replace_names=["x", "y1", "y2", "where"])
    @docstring.dedent_interpd
    def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
                     step=None, **kwargs):
        """
        Fill the area between two horizontal curves.

        The curves are defined by the points (*x*, *y1*) and (*x*, *y2*). This
        creates one or multiple polygons describing the filled area.

        You may exclude some horizontal sections from filling using *where*.

        By default, the edges connect the given points directly. Use *step* if
        the filling should be a step function, i.e. constant in between *x*.


        Parameters
        ----------
        x : array (length N)
            The x coordinates of the nodes defining the curves.

        y1 : array (length N) or scalar
            The y coordinates of the nodes defining the first curve.

        y2 : array (length N) or scalar, optional, default: 0
            The y coordinates of the nodes defining the second curve.

        where : array of bool (length N), optional, default: None
            Define *where* to exclude some horizontal regions from being
            filled. The filled regions are defined by the coordinates
            ``x[where]``.  More precisely, fill between ``x[i]`` and ``x[i+1]``
            if ``where[i] and where[i+1]``.  Note that this definition implies
            that an isolated *True* value between two *False* values in
            *where* will not result in filling.  Both sides of the *True*
            position remain unfilled due to the adjacent *False* values.

        interpolate : bool, optional
            This option is only relevant if *where* is used and the two curves
            are crossing each other.

            Semantically, *where* is often used for *y1* > *y2* or similar.
            By default, the nodes of the polygon defining the filled region
            will only be placed at the positions in the *x* array.  Such a
            polygon cannot describe the above semantics close to the
            intersection.  The x-sections containing the intersection are
            simply clipped.

            Setting *interpolate* to *True* will calculate the actual
            intersection point and extend the filled region up to this point.

        step : {'pre', 'post', 'mid'}, optional
            Define *step* if the filling should be a step function,
            i.e. constant in between *x*. The value determines where the
            step will occur:

            - 'pre': The y value is continued constantly to the left from
              every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
              value ``y[i]``.
            - 'post': The y value is continued constantly to the right from
              every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
              value ``y[i]``.
            - 'mid': Steps occur half-way between the *x* positions.

        Other Parameters
        ----------------
        **kwargs
            All other keyword arguments are passed on to `.PolyCollection`.
            They control the `.Polygon` properties:

            %(PolyCollection)s

        Returns
        -------
        `.PolyCollection`
            A `.PolyCollection` containing the plotted polygons.

        See Also
        --------
        fill_betweenx : Fill between two sets of x-values.

        Notes
        -----
        .. [notes section required to get data note injection right]

        """
        if not rcParams['_internal.classic_mode']:
            kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
            if not any(c in kwargs for c in ('color', 'facecolor')):
                kwargs['facecolor'] = \
                    self._get_patches_for_fill.get_next_color()

        # Handle united data, such as dates
        self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs)
        self._process_unit_info(ydata=y2)

        # Convert the arrays so we can work with them
        x = ma.masked_invalid(self.convert_xunits(x))
        y1 = ma.masked_invalid(self.convert_yunits(y1))
        y2 = ma.masked_invalid(self.convert_yunits(y2))

        for name, array in [('x', x), ('y1', y1), ('y2', y2)]:
            if array.ndim > 1:
                raise ValueError('Input passed into argument "%r"' % name +
                                 'is not 1-dimensional.')

        if where is None:
            where = True
        else:
            where = np.asarray(where, dtype=bool)
            if where.size != x.size:
                cbook.warn_deprecated(
                    "3.2",
                    message="The parameter where must have the same size as x "
                            "in fill_between(). This will become an error in "
                            "future versions of Matplotlib.")
        where = where & ~functools.reduce(np.logical_or,
                                          map(np.ma.getmask, [x, y1, y2]))

        x, y1, y2 = np.broadcast_arrays(np.atleast_1d(x), y1, y2)

        polys = []
        for ind0, ind1 in cbook.contiguous_regions(where):
            xslice = x[ind0:ind1]
            y1slice = y1[ind0:ind1]
            y2slice = y2[ind0:ind1]
            if step is not None:
                step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
                xslice, y1slice, y2slice = step_func(xslice, y1slice, y2slice)

            if not len(xslice):
                continue

            N = len(xslice)
            X = np.zeros((2 * N + 2, 2), float)

            if interpolate:
                def get_interp_point(ind):
                    im1 = max(ind - 1, 0)
                    x_values = x[im1:ind + 1]
                    diff_values = y1[im1:ind + 1] - y2[im1:ind + 1]
                    y1_values = y1[im1:ind + 1]

                    if len(diff_values) == 2:
                        if np.ma.is_masked(diff_values[1]):
                            return x[im1], y1[im1]
                        elif np.ma.is_masked(diff_values[0]):
                            return x[ind], y1[ind]

                    diff_order = diff_values.argsort()
                    diff_root_x = np.interp(
                        0, diff_values[diff_order], x_values[diff_order])
                    x_order = x_values.argsort()
                    diff_root_y = np.interp(diff_root_x, x_values[x_order],
                                            y1_values[x_order])
                    return diff_root_x, diff_root_y

                start = get_interp_point(ind0)
                end = get_interp_point(ind1)
            else:
                # the purpose of the next two lines is for when y2 is a
                # scalar like 0 and we want the fill to go all the way
                # down to 0 even if none of the y1 sample points do
                start = xslice[0], y2slice[0]
                end = xslice[-1], y2slice[-1]

            X[0] = start
            X[N + 1] = end

            X[1:N + 1, 0] = xslice
            X[1:N + 1, 1] = y1slice
            X[N + 2:, 0] = xslice[::-1]
            X[N + 2:, 1] = y2slice[::-1]

            polys.append(X)

        collection = mcoll.PolyCollection(polys, **kwargs)

        # now update the datalim and autoscale
        XY1 = np.array([x[where], y1[where]]).T
        XY2 = np.array([x[where], y2[where]]).T
        self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits,
                                         updatex=True, updatey=True)
        self.ignore_existing_data_limits = False
        self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits,
                                         updatex=False, updatey=True)
        self.add_collection(collection, autolim=False)
        self._request_autoscale_view()
        return collection

    @_preprocess_data(replace_names=["y", "x1", "x2", "where"])
    @docstring.dedent_interpd
    def fill_betweenx(self, y, x1, x2=0, where=None,
                      step=None, interpolate=False, **kwargs):
        """
        Fill the area between two vertical curves.

        The curves are defined by the points (*x1*, *y*) and (*x2*, *y*). This
        creates one or multiple polygons describing the filled area.

        You may exclude some vertical sections from filling using *where*.

        By default, the edges connect the given points directly. Use *step* if
        the filling should be a step function, i.e. constant in between *y*.


        Parameters
        ----------
        y : array (length N)
            The y coordinates of the nodes defining the curves.

        x1 : array (length N) or scalar
            The x coordinates of the nodes defining the first curve.

        x2 : array (length N) or scalar, optional, default: 0
            The x coordinates of the nodes defining the second curve.

        where : array of bool (length N), optional, default: None
            Define *where* to exclude some vertical regions from being
            filled. The filled regions are defined by the coordinates
            ``y[where]``.  More precisely, fill between ``y[i]`` and ``y[i+1]``
            if ``where[i] and where[i+1]``.  Note that this definition implies
            that an isolated *True* value between two *False* values in
            *where* will not result in filling.  Both sides of the *True*
            position remain unfilled due to the adjacent *False* values.

        interpolate : bool, optional
            This option is only relevant if *where* is used and the two curves
            are crossing each other.

            Semantically, *where* is often used for *x1* > *x2* or similar.
            By default, the nodes of the polygon defining the filled region
            will only be placed at the positions in the *y* array.  Such a
            polygon cannot describe the above semantics close to the
            intersection.  The y-sections containing the intersection are
            simply clipped.

            Setting *interpolate* to *True* will calculate the actual
            intersection point and extend the filled region up to this point.

        step : {'pre', 'post', 'mid'}, optional
            Define *step* if the filling should be a step function,
            i.e. constant in between *y*. The value determines where the
            step will occur:

            - 'pre': The y value is continued constantly to the left from
              every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
              value ``y[i]``.
            - 'post': The y value is continued constantly to the right from
              every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
              value ``y[i]``.
            - 'mid': Steps occur half-way between the *x* positions.

        Other Parameters
        ----------------
        **kwargs
            All other keyword arguments are passed on to `.PolyCollection`.
            They control the `.Polygon` properties:

            %(PolyCollection)s

        Returns
        -------
        `.PolyCollection`
            A `.PolyCollection` containing the plotted polygons.

        See Also
        --------
        fill_between : Fill between two sets of y-values.

        Notes
        -----
        .. [notes section required to get data note injection right]

        """
        if not rcParams['_internal.classic_mode']:
            kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
            if not any(c in kwargs for c in ('color', 'facecolor')):
                kwargs['facecolor'] = \
                    self._get_patches_for_fill.get_next_color()

        # Handle united data, such as dates
        self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs)
        self._process_unit_info(xdata=x2)

        # Convert the arrays so we can work with them
        y = ma.masked_invalid(self.convert_yunits(y))
        x1 = ma.masked_invalid(self.convert_xunits(x1))
        x2 = ma.masked_invalid(self.convert_xunits(x2))

        for name, array in [('y', y), ('x1', x1), ('x2', x2)]:
            if array.ndim > 1:
                raise ValueError('Input passed into argument "%r"' % name +
                                 'is not 1-dimensional.')

        if where is None:
            where = True
        else:
            where = np.asarray(where, dtype=bool)
            if where.size != y.size:
                cbook.warn_deprecated(
                    "3.2",
                    message="The parameter where must have the same size as y "
                            "in fill_between(). This will become an error in "
                            "future versions of Matplotlib.")
        where = where & ~functools.reduce(np.logical_or,
                                          map(np.ma.getmask, [y, x1, x2]))

        y, x1, x2 = np.broadcast_arrays(np.atleast_1d(y), x1, x2)

        polys = []
        for ind0, ind1 in cbook.contiguous_regions(where):
            yslice = y[ind0:ind1]
            x1slice = x1[ind0:ind1]
            x2slice = x2[ind0:ind1]
            if step is not None:
                step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
                yslice, x1slice, x2slice = step_func(yslice, x1slice, x2slice)

            if not len(yslice):
                continue

            N = len(yslice)
            Y = np.zeros((2 * N + 2, 2), float)
            if interpolate:
                def get_interp_point(ind):
                    im1 = max(ind - 1, 0)
                    y_values = y[im1:ind + 1]
                    diff_values = x1[im1:ind + 1] - x2[im1:ind + 1]
                    x1_values = x1[im1:ind + 1]

                    if len(diff_values) == 2:
                        if np.ma.is_masked(diff_values[1]):
                            return x1[im1], y[im1]
                        elif np.ma.is_masked(diff_values[0]):
                            return x1[ind], y[ind]

                    diff_order = diff_values.argsort()
                    diff_root_y = np.interp(
                        0, diff_values[diff_order], y_values[diff_order])
                    y_order = y_values.argsort()
                    diff_root_x = np.interp(diff_root_y, y_values[y_order],
                                            x1_values[y_order])
                    return diff_root_x, diff_root_y

                start = get_interp_point(ind0)
                end = get_interp_point(ind1)
            else:
                # the purpose of the next two lines is for when x2 is a
                # scalar like 0 and we want the fill to go all the way
                # down to 0 even if none of the x1 sample points do
                start = x2slice[0], yslice[0]
                end = x2slice[-1], yslice[-1]

            Y[0] = start
            Y[N + 1] = end

            Y[1:N + 1, 0] = x1slice
            Y[1:N + 1, 1] = yslice
            Y[N + 2:, 0] = x2slice[::-1]
            Y[N + 2:, 1] = yslice[::-1]

            polys.append(Y)

        collection = mcoll.PolyCollection(polys, **kwargs)

        # now update the datalim and autoscale
        X1Y = np.array([x1[where], y[where]]).T
        X2Y = np.array([x2[where], y[where]]).T
        self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits,
                                         updatex=True, updatey=True)
        self.ignore_existing_data_limits = False
        self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits,
                                         updatex=True, updatey=False)
        self.add_collection(collection, autolim=False)
        self._request_autoscale_view()
        return collection

    #### plotting z(x, y): imshow, pcolor and relatives, contour
    @_preprocess_data()
    @cbook._delete_parameter("3.1", "shape")
    @cbook._delete_parameter("3.1", "imlim")
    def imshow(self, X, cmap=None, norm=None, aspect=None,
               interpolation=None, alpha=None, vmin=None, vmax=None,
               origin=None, extent=None, shape=None, filternorm=1,
               filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
        """
        Display data as an image; i.e. on a 2D regular raster.

        The input may either be actual RGB(A) data, or 2D scalar data, which
        will be rendered as a pseudocolor image. Note: For actually displaying
        a grayscale image set up the color mapping using the parameters
        ``cmap='gray', vmin=0, vmax=255``.

        Parameters
        ----------
        X : array-like or PIL image
            The image data. Supported array shapes are:

            - (M, N): an image with scalar data. The values are mapped to
              colors using normalization and a colormap. See parameters *norm*,
              *cmap*, *vmin*, *vmax*.
            - (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
            - (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
              i.e. including transparency.

            The first two dimensions (M, N) define the rows and columns of
            the image.

            Out-of-range RGB(A) values are clipped.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            The Colormap instance or registered colormap name used to map
            scalar data to colors. This parameter is ignored for RGB(A) data.
            Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The `Normalize` instance used to scale scalar data to the [0, 1]
            range before mapping to colors using *cmap*. By default, a linear
            scaling mapping the lowest value to 0 and the highest to 1 is used.
            This parameter is ignored for RGB(A) data.

        aspect : {'equal', 'auto'} or float, optional
            Controls the aspect ratio of the axes. The aspect is of particular
            relevance for images since it may distort the image, i.e. pixel
            will not be square.

            This parameter is a shortcut for explicitly calling
            `.Axes.set_aspect`. See there for further details.

            - 'equal': Ensures an aspect ratio of 1. Pixels will be square
              (unless pixel sizes are explicitly made non-square in data
              coordinates using *extent*).
            - 'auto': The axes is kept fixed and the aspect is adjusted so
              that the data fit in the axes. In general, this will result in
              non-square pixels.

            If not given, use :rc:`image.aspect`.

        interpolation : str, optional
            The interpolation method used. If *None*, :rc:`image.interpolation`
            is used.

            Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
            'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
            'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
            'sinc', 'lanczos'.

            If *interpolation* is 'none', then no interpolation is performed
            on the Agg, ps, pdf and svg backends. Other backends will fall back
            to 'nearest'. Note that most SVG renders perform interpolation at
            rendering and that the default interpolation method they implement
            may differ.

            If *interpolation* is the default 'antialiased', then 'nearest'
            interpolation is used if the image is upsampled by more than a
            factor of three (i.e. the number of display pixels is at least
            three times the size of the data array).  If the upsampling rate is
            smaller than 3, or the image is downsampled, then 'hanning'
            interpolation is used to act as an anti-aliasing filter, unless the
            image happens to be upsampled by exactly a factor of two or one.

            See
            :doc:`/gallery/images_contours_and_fields/interpolation_methods`
            for an overview of the supported interpolation methods, and
            :doc:`/gallery/images_contours_and_fields/image_antialiasing` for
            a discussion of image antialiasing.

            Some interpolation methods require an additional radius parameter,
            which can be set by *filterrad*. Additionally, the antigrain image
            resize filter is controlled by the parameter *filternorm*.

        alpha : scalar or array-like, optional
            The alpha blending value, between 0 (transparent) and 1 (opaque).
            If *alpha* is an array, the alpha blending values are applied pixel
            by pixel, and *alpha* must have the same shape as *X*.

        vmin, vmax : scalar, optional
            When using scalar data and no explicit *norm*, *vmin* and *vmax*
            define the data range that the colormap covers. By default,
            the colormap covers the complete value range of the supplied
            data. *vmin*, *vmax* are ignored if the *norm* parameter is used.

        origin : {'upper', 'lower'}, optional
            Place the [0, 0] index of the array in the upper left or lower left
            corner of the axes. The convention 'upper' is typically used for
            matrices and images.
            If not given, :rc:`image.origin` is used, defaulting to 'upper'.

            Note that the vertical axes points upward for 'lower'
            but downward for 'upper'.

            See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
            examples and a more detailed description.

        extent : scalars (left, right, bottom, top), optional
            The bounding box in data coordinates that the image will fill.
            The image is stretched individually along x and y to fill the box.

            The default extent is determined by the following conditions.
            Pixels have unit size in data coordinates. Their centers are on
            integer coordinates, and their center coordinates range from 0 to
            columns-1 horizontally and from 0 to rows-1 vertically.

            Note that the direction of the vertical axis and thus the default
            values for top and bottom depend on *origin*:

            - For ``origin == 'upper'`` the default is
              ``(-0.5, numcols-0.5, numrows-0.5, -0.5)``.
            - For ``origin == 'lower'`` the default is
              ``(-0.5, numcols-0.5, -0.5, numrows-0.5)``.

            See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
            examples and a more detailed description.

        filternorm : bool, optional, default: True
            A parameter for the antigrain image resize filter (see the
            antigrain documentation).  If *filternorm* is set, the filter
            normalizes integer values and corrects the rounding errors. It
            doesn't do anything with the source floating point values, it
            corrects only integers according to the rule of 1.0 which means
            that any sum of pixel weights must be equal to 1.0.  So, the
            filter function must produce a graph of the proper shape.

        filterrad : float > 0, optional, default: 4.0
            The filter radius for filters that have a radius parameter, i.e.
            when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.

        resample : bool, optional
            When *True*, use a full resampling method.  When *False*, only
            resample when the output image is larger than the input image.

        url : str, optional
            Set the url of the created `.AxesImage`. See `.Artist.set_url`.

        Returns
        -------
        image : `~matplotlib.image.AxesImage`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.artist.Artist` properties
            These parameters are passed on to the constructor of the
            `.AxesImage` artist.

        See also
        --------
        matshow : Plot a matrix or an array as an image.

        Notes
        -----
        Unless *extent* is used, pixel centers will be located at integer
        coordinates. In other words: the origin will coincide with the center
        of pixel (0, 0).

        There are two common representations for RGB images with an alpha
        channel:

        -   Straight (unassociated) alpha: R, G, and B channels represent the
            color of the pixel, disregarding its opacity.
        -   Premultiplied (associated) alpha: R, G, and B channels represent
            the color of the pixel, adjusted for its opacity by multiplication.

        `~matplotlib.pyplot.imshow` expects RGB images adopting the straight
        (unassociated) alpha representation.
        """
        if aspect is None:
            aspect = rcParams['image.aspect']
        self.set_aspect(aspect)
        im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
                              filternorm=filternorm, filterrad=filterrad,
                              resample=resample, **kwargs)

        im.set_data(X)
        im.set_alpha(alpha)
        if im.get_clip_path() is None:
            # image does not already have clipping set, clip to axes patch
            im.set_clip_path(self.patch)
        if vmin is not None or vmax is not None:
            im.set_clim(vmin, vmax)
        else:
            im.autoscale_None()
        im.set_url(url)

        # update ax.dataLim, and, if autoscaling, set viewLim
        # to tightly fit the image, regardless of dataLim.
        im.set_extent(im.get_extent())

        self.add_image(im)
        return im

    @staticmethod
    def _pcolorargs(funcname, *args, allmatch=False):
        # If allmatch is True, then the incoming X, Y, C must have matching
        # dimensions, taking into account that X and Y can be 1-D rather than
        # 2-D.  This perfect match is required for Gouraud shading.  For flat
        # shading, X and Y specify boundaries, so we need one more boundary
        # than color in each direction.  For convenience, and consistent with
        # Matlab, we discard the last row and/or column of C if necessary to
        # meet this condition.  This is done if allmatch is False.

        if len(args) == 1:
            C = np.asanyarray(args[0])
            nrows, ncols = C.shape
            if allmatch:
                X, Y = np.meshgrid(np.arange(ncols), np.arange(nrows))
            else:
                X, Y = np.meshgrid(np.arange(ncols + 1), np.arange(nrows + 1))
            C = cbook.safe_masked_invalid(C)
            return X, Y, C

        if len(args) == 3:
            # Check x and y for bad data...
            C = np.asanyarray(args[2])
            X, Y = [cbook.safe_masked_invalid(a) for a in args[:2]]
            if funcname == 'pcolormesh':
                if np.ma.is_masked(X) or np.ma.is_masked(Y):
                    raise ValueError(
                        'x and y arguments to pcolormesh cannot have '
                        'non-finite values or be of type '
                        'numpy.ma.core.MaskedArray with masked values')
                # safe_masked_invalid() returns an ndarray for dtypes other
                # than floating point.
                if isinstance(X, np.ma.core.MaskedArray):
                    X = X.data  # strip mask as downstream doesn't like it...
                if isinstance(Y, np.ma.core.MaskedArray):
                    Y = Y.data
            nrows, ncols = C.shape
        else:
            raise TypeError(
                'Illegal arguments to %s; see help(%s)' % (funcname, funcname))

        Nx = X.shape[-1]
        Ny = Y.shape[0]
        if X.ndim != 2 or X.shape[0] == 1:
            x = X.reshape(1, Nx)
            X = x.repeat(Ny, axis=0)
        if Y.ndim != 2 or Y.shape[1] == 1:
            y = Y.reshape(Ny, 1)
            Y = y.repeat(Nx, axis=1)
        if X.shape != Y.shape:
            raise TypeError(
                'Incompatible X, Y inputs to %s; see help(%s)' % (
                funcname, funcname))
        if allmatch:
            if (Nx, Ny) != (ncols, nrows):
                raise TypeError('Dimensions of C %s are incompatible with'
                                ' X (%d) and/or Y (%d); see help(%s)' % (
                                    C.shape, Nx, Ny, funcname))
        else:
            if not (ncols in (Nx, Nx - 1) and nrows in (Ny, Ny - 1)):
                raise TypeError('Dimensions of C %s are incompatible with'
                                ' X (%d) and/or Y (%d); see help(%s)' % (
                                    C.shape, Nx, Ny, funcname))
            C = C[:Ny - 1, :Nx - 1]
        C = cbook.safe_masked_invalid(C)
        return X, Y, C

    @_preprocess_data()
    @docstring.dedent_interpd
    def pcolor(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
               vmax=None, **kwargs):
        r"""
        Create a pseudocolor plot with a non-regular rectangular grid.

        Call signature::

            pcolor([X, Y,] C, **kwargs)

        *X* and *Y* can be used to specify the corners of the quadrilaterals.

        .. hint::

            ``pcolor()`` can be very slow for large arrays. In most
            cases you should use the similar but much faster
            `~.Axes.pcolormesh` instead. See there for a discussion of the
            differences.

        Parameters
        ----------
        C : array-like
            A scalar 2-D array. The values will be color-mapped.

        X, Y : array-like, optional
            The coordinates of the quadrilateral corners. The quadrilateral
            for ``C[i, j]`` has corners at::

                (X[i+1, j], Y[i+1, j])           (X[i+1, j+1], Y[i+1, j+1])
                                      +---------+
                                      | C[i, j] |
                                      +---------+
                    (X[i, j], Y[i, j])           (X[i, j+1], Y[i, j+1])

            Note that the column index corresponds to the
            x-coordinate, and the row index corresponds to y. For
            details, see the :ref:`Notes <axes-pcolor-grid-orientation>`
            section below.

            The dimensions of *X* and *Y* should be one greater than those of
            *C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
            which case the last row and column of *C* will be ignored.

            If *X* and/or *Y* are 1-D arrays or column vectors they will be
            expanded as needed into the appropriate 2-D arrays, making a
            rectangular grid.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            A Colormap instance or registered colormap name. The colormap
            maps the *C* values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the data values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : scalar, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of *C* in case of the default linear
            scaling).

        edgecolors : {'none', None, 'face', color, color sequence}, optional
            The color of the edges. Defaults to 'none'. Possible values:

            - 'none' or '': No edge.
            - *None*: :rc:`patch.edgecolor` will be used. Note that currently
              :rc:`patch.force_edgecolor` has to be True for this to work.
            - 'face': Use the adjacent face color.
            - A color or sequence of colors will set the edge color.

            The singular form *edgecolor* works as an alias.

        alpha : scalar, optional, default: None
            The alpha blending value of the face color, between 0 (transparent)
            and 1 (opaque). Note: The edgecolor is currently not affected by
            this.

        snap : bool, optional, default: False
            Whether to snap the mesh to pixel boundaries.

        Returns
        -------
        collection : `matplotlib.collections.Collection`

        Other Parameters
        ----------------
        antialiaseds : bool, optional, default: False
            The default *antialiaseds* is False if the default
            *edgecolors*\ ="none" is used.  This eliminates artificial lines
            at patch boundaries, and works regardless of the value of alpha.
            If *edgecolors* is not "none", then the default *antialiaseds*
            is taken from :rc:`patch.antialiased`.
            Stroking the edges may be preferred if *alpha* is 1, but will
            cause artifacts otherwise.

        **kwargs
            Additionally, the following arguments are allowed. They are passed
            along to the `~matplotlib.collections.PolyCollection` constructor:

        %(PolyCollection)s

        See Also
        --------
        pcolormesh : for an explanation of the differences between
            pcolor and pcolormesh.
        imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
            faster alternative.

        Notes
        -----
        **Masked arrays**

        *X*, *Y* and *C* may be masked arrays. If either ``C[i, j]``, or one
        of the vertices surrounding ``C[i, j]`` (*X* or *Y* at
        ``[i, j], [i+1, j], [i, j+1], [i+1, j+1]``) is masked, nothing is
        plotted.

        .. _axes-pcolor-grid-orientation:

        **Grid orientation**

        The grid orientation follows the standard matrix convention: An array
        *C* with shape (nrows, ncolumns) is plotted with the column number as
        *X* and the row number as *Y*.

        **Handling of pcolor() end-cases**

        ``pcolor()`` displays all columns of *C* if *X* and *Y* are not
        specified, or if *X* and *Y* have one more column than *C*.
        If *X* and *Y* have the same number of columns as *C* then the last
        column of *C* is dropped. Similarly for the rows.

        Note: This behavior is different from MATLAB's ``pcolor()``, which
        always discards the last row and column of *C*.
        """
        X, Y, C = self._pcolorargs('pcolor', *args, allmatch=False)
        Ny, Nx = X.shape

        # unit conversion allows e.g. datetime objects as axis values
        self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
        X = self.convert_xunits(X)
        Y = self.convert_yunits(Y)

        # convert to MA, if necessary.
        C = ma.asarray(C)
        X = ma.asarray(X)
        Y = ma.asarray(Y)

        mask = ma.getmaskarray(X) + ma.getmaskarray(Y)
        xymask = (mask[0:-1, 0:-1] + mask[1:, 1:] +
                  mask[0:-1, 1:] + mask[1:, 0:-1])
        # don't plot if C or any of the surrounding vertices are masked.
        mask = ma.getmaskarray(C) + xymask

        unmask = ~mask
        X1 = ma.filled(X[:-1, :-1])[unmask]
        Y1 = ma.filled(Y[:-1, :-1])[unmask]
        X2 = ma.filled(X[1:, :-1])[unmask]
        Y2 = ma.filled(Y[1:, :-1])[unmask]
        X3 = ma.filled(X[1:, 1:])[unmask]
        Y3 = ma.filled(Y[1:, 1:])[unmask]
        X4 = ma.filled(X[:-1, 1:])[unmask]
        Y4 = ma.filled(Y[:-1, 1:])[unmask]
        npoly = len(X1)

        xy = np.stack([X1, Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1], axis=-1)
        verts = xy.reshape((npoly, 5, 2))

        C = ma.filled(C[:Ny - 1, :Nx - 1])[unmask]

        linewidths = (0.25,)
        if 'linewidth' in kwargs:
            kwargs['linewidths'] = kwargs.pop('linewidth')
        kwargs.setdefault('linewidths', linewidths)

        if 'edgecolor' in kwargs:
            kwargs['edgecolors'] = kwargs.pop('edgecolor')
        ec = kwargs.setdefault('edgecolors', 'none')

        # aa setting will default via collections to patch.antialiased
        # unless the boundary is not stroked, in which case the
        # default will be False; with unstroked boundaries, aa
        # makes artifacts that are often disturbing.
        if 'antialiased' in kwargs:
            kwargs['antialiaseds'] = kwargs.pop('antialiased')
        if 'antialiaseds' not in kwargs and cbook._str_lower_equal(ec, "none"):
            kwargs['antialiaseds'] = False

        kwargs.setdefault('snap', False)

        collection = mcoll.PolyCollection(verts, **kwargs)

        collection.set_alpha(alpha)
        collection.set_array(C)
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_clim(vmin, vmax)
        collection.autoscale_None()
        self.grid(False)

        x = X.compressed()
        y = Y.compressed()

        # Transform from native to data coordinates?
        t = collection._transform
        if (not isinstance(t, mtransforms.Transform) and
            hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)

        if t and any(t.contains_branch_seperately(self.transData)):
            trans_to_data = t - self.transData
            pts = np.vstack([x, y]).T.astype(float)
            transformed_pts = trans_to_data.transform(pts)
            x = transformed_pts[..., 0]
            y = transformed_pts[..., 1]

        self.add_collection(collection, autolim=False)

        minx = np.min(x)
        maxx = np.max(x)
        miny = np.min(y)
        maxy = np.max(y)
        collection.sticky_edges.x[:] = [minx, maxx]
        collection.sticky_edges.y[:] = [miny, maxy]
        corners = (minx, miny), (maxx, maxy)
        self.update_datalim(corners)
        self._request_autoscale_view()
        return collection

    @_preprocess_data()
    @docstring.dedent_interpd
    def pcolormesh(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
                   vmax=None, shading='flat', antialiased=False, **kwargs):
        """
        Create a pseudocolor plot with a non-regular rectangular grid.

        Call signature::

            pcolor([X, Y,] C, **kwargs)

        *X* and *Y* can be used to specify the corners of the quadrilaterals.

        .. note::

           `~Axes.pcolormesh` is similar to `~Axes.pcolor`. It's much faster
           and preferred in most cases. For a detailed discussion on the
           differences see :ref:`Differences between pcolor() and pcolormesh()
           <differences-pcolor-pcolormesh>`.

        Parameters
        ----------
        C : array-like
            A scalar 2-D array. The values will be color-mapped.

        X, Y : array-like, optional
            The coordinates of the quadrilateral corners. The quadrilateral
            for ``C[i, j]`` has corners at::

                (X[i+1, j], Y[i+1, j])           (X[i+1, j+1], Y[i+1, j+1])
                                      +---------+
                                      | C[i, j] |
                                      +---------+
                    (X[i, j], Y[i, j])           (X[i, j+1], Y[i, j+1])

            Note that the column index corresponds to the
            x-coordinate, and the row index corresponds to y. For
            details, see the :ref:`Notes <axes-pcolormesh-grid-orientation>`
            section below.

            The dimensions of *X* and *Y* should be one greater than those of
            *C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
            which case the last row and column of *C* will be ignored.

            If *X* and/or *Y* are 1-D arrays or column vectors they will be
            expanded as needed into the appropriate 2-D arrays, making a
            rectangular grid.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            A Colormap instance or registered colormap name. The colormap
            maps the *C* values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the data values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : scalar, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of *C* in case of the default linear
            scaling).

        edgecolors : {'none', None, 'face', color, color sequence}, optional
            The color of the edges. Defaults to 'none'. Possible values:

            - 'none' or '': No edge.
            - *None*: :rc:`patch.edgecolor` will be used. Note that currently
              :rc:`patch.force_edgecolor` has to be True for this to work.
            - 'face': Use the adjacent face color.
            - A color or sequence of colors will set the edge color.

            The singular form *edgecolor* works as an alias.

        alpha : scalar, optional, default: None
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        shading : {'flat', 'gouraud'}, optional
            The fill style, Possible values:

            - 'flat': A solid color is used for each quad. The color of the
              quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
              ``C[i, j]``.
            - 'gouraud': Each quad will be Gouraud shaded: The color of the
              corners (i', j') are given by ``C[i',j']``. The color values of
              the area in between is interpolated from the corner values.
              When Gouraud shading is used, *edgecolors* is ignored.

        snap : bool, optional, default: False
            Whether to snap the mesh to pixel boundaries.

        Returns
        -------
        mesh : `matplotlib.collections.QuadMesh`

        Other Parameters
        ----------------
        **kwargs
            Additionally, the following arguments are allowed. They are passed
            along to the `~matplotlib.collections.QuadMesh` constructor:

        %(QuadMesh)s

        See Also
        --------
        pcolor : An alternative implementation with slightly different
            features. For a detailed discussion on the differences see
            :ref:`Differences between pcolor() and pcolormesh()
            <differences-pcolor-pcolormesh>`.
        imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
            faster alternative.

        Notes
        -----
        **Masked arrays**

        *C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
        quadrilateral will be transparent. Masking of *X* and *Y* is not
        supported. Use `~.Axes.pcolor` if you need this functionality.

        .. _axes-pcolormesh-grid-orientation:

        **Grid orientation**

        The grid orientation follows the standard matrix convention: An array
        *C* with shape (nrows, ncolumns) is plotted with the column number as
        *X* and the row number as *Y*.

        .. _differences-pcolor-pcolormesh:

        **Differences between pcolor() and pcolormesh()**

        Both methods are used to create a pseudocolor plot of a 2-D array
        using quadrilaterals.

        The main difference lies in the created object and internal data
        handling:
        While `~.Axes.pcolor` returns a `.PolyCollection`, `~.Axes.pcolormesh`
        returns a `.QuadMesh`. The latter is more specialized for the given
        purpose and thus is faster. It should almost always be preferred.

        There is also a slight difference in the handling of masked arrays.
        Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
        for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
        and *Y*. The reason lies in the internal handling of the masked values.
        `~.Axes.pcolor` leaves out the respective polygons from the
        PolyCollection. `~.Axes.pcolormesh` sets the facecolor of the masked
        elements to transparent. You can see the difference when using
        edgecolors. While all edges are drawn irrespective of masking in a
        QuadMesh, the edge between two adjacent masked quadrilaterals in
        `~.Axes.pcolor` is not drawn as the corresponding polygons do not
        exist in the PolyCollection.

        Another difference is the support of Gouraud shading in
        `~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.

        """
        shading = shading.lower()
        kwargs.setdefault('edgecolors', 'None')

        allmatch = (shading == 'gouraud')

        X, Y, C = self._pcolorargs('pcolormesh', *args, allmatch=allmatch)
        Ny, Nx = X.shape
        X = X.ravel()
        Y = Y.ravel()
        # unit conversion allows e.g. datetime objects as axis values
        self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
        X = self.convert_xunits(X)
        Y = self.convert_yunits(Y)

        # convert to one dimensional arrays
        C = C.ravel()
        coords = np.column_stack((X, Y)).astype(float, copy=False)
        collection = mcoll.QuadMesh(Nx - 1, Ny - 1, coords,
                                    antialiased=antialiased, shading=shading,
                                    **kwargs)
        collection.set_alpha(alpha)
        collection.set_array(C)
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_clim(vmin, vmax)
        collection.autoscale_None()

        self.grid(False)

        # Transform from native to data coordinates?
        t = collection._transform
        if (not isinstance(t, mtransforms.Transform) and
            hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)

        if t and any(t.contains_branch_seperately(self.transData)):
            trans_to_data = t - self.transData
            coords = trans_to_data.transform(coords)

        self.add_collection(collection, autolim=False)

        minx, miny = np.min(coords, axis=0)
        maxx, maxy = np.max(coords, axis=0)
        collection.sticky_edges.x[:] = [minx, maxx]
        collection.sticky_edges.y[:] = [miny, maxy]
        corners = (minx, miny), (maxx, maxy)
        self.update_datalim(corners)
        self._request_autoscale_view()
        return collection

    @_preprocess_data()
    @docstring.dedent_interpd
    def pcolorfast(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
                   vmax=None, **kwargs):
        """
        Create a pseudocolor plot with a non-regular rectangular grid.

        Call signature::

          ax.pcolorfast([X, Y], C, /, **kwargs)

        This method is similar to ~.Axes.pcolor` and `~.Axes.pcolormesh`.
        It's designed to provide the fastest pcolor-type plotting with the
        Agg backend. To achieve this, it uses different algorithms internally
        depending on the complexity of the input grid (regular rectangular,
        non-regular rectangular or arbitrary quadrilateral).

        .. warning::

           This method is experimental. Compared to `~.Axes.pcolor` or
           `~.Axes.pcolormesh` it has some limitations:

           - It supports only flat shading (no outlines)
           - It lacks support for log scaling of the axes.
           - It does not have a have a pyplot wrapper.

        Parameters
        ----------
        C : array-like(M, N)
            The image data. Supported array shapes are:

            - (M, N): an image with scalar data. The data is visualized
              using a colormap.
            - (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
            - (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
              i.e. including transparency.

            The first two dimensions (M, N) define the rows and columns of
            the image.

            This parameter can only be passed positionally.

        X, Y : tuple or array-like, default: ``(0, N)``, ``(0, M)``
            *X* and *Y* are used to specify the coordinates of the
            quadrilaterals. There are different ways to do this:

            - Use tuples ``X=(xmin, xmax)`` and ``Y=(ymin, ymax)`` to define
              a *uniform rectangular grid*.

              The tuples define the outer edges of the grid. All individual
              quadrilaterals will be of the same size. This is the fastest
              version.

            - Use 1D arrays *X*, *Y* to specify a *non-uniform rectangular
              grid*.

              In this case *X* and *Y* have to be monotonic 1D arrays of length
              *N+1* and *M+1*, specifying the x and y boundaries of the cells.

              The speed is intermediate. Note: The grid is checked, and if
              found to be uniform the fast version is used.

            - Use 2D arrays *X*, *Y* if you need an *arbitrary quadrilateral
              grid* (i.e. if the quadrilaterals are not rectangular).

              In this case *X* and *Y* are 2D arrays with shape (M + 1, N + 1),
              specifying the x and y coordinates of the corners of the colored
              quadrilaterals.

              This is the most general, but the slowest to render.  It may
              produce faster and more compact output using ps, pdf, and
              svg backends, however.

            These arguments can only be passed positionally.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            A Colormap instance or registered colormap name. The colormap
            maps the *C* values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the data values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : scalar, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of *C* in case of the default linear
            scaling).

        alpha : scalar, optional, default: None
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        snap : bool, optional, default: False
            Whether to snap the mesh to pixel boundaries.

        Returns
        -------
        image : `.AxesImage` or `.PcolorImage` or `.QuadMesh`
            The return type depends on the type of grid:

            - `.AxesImage` for a regular rectangular grid.
            - `.PcolorImage` for a non-regular rectangular grid.
            - `.QuadMesh` for a non-rectangular grid.

        Notes
        -----
        .. [notes section required to get data note injection right]
        """

        C = args[-1]
        nr, nc = np.shape(C)[:2]
        if len(args) == 1:
            style = "image"
            x = [0, nc]
            y = [0, nr]
        elif len(args) == 3:
            x, y = args[:2]
            x = np.asarray(x)
            y = np.asarray(y)
            if x.ndim == 1 and y.ndim == 1:
                if x.size == 2 and y.size == 2:
                    style = "image"
                else:
                    dx = np.diff(x)
                    dy = np.diff(y)
                    if (np.ptp(dx) < 0.01 * np.abs(dx.mean()) and
                        np.ptp(dy) < 0.01 * np.abs(dy.mean())):
                        style = "image"
                    else:
                        style = "pcolorimage"
            elif x.ndim == 2 and y.ndim == 2:
                style = "quadmesh"
            else:
                raise TypeError("arguments do not match valid signatures")
        else:
            raise TypeError("need 1 argument or 3 arguments")

        if style == "quadmesh":
            # data point in each cell is value at lower left corner
            coords = np.stack([x, y], axis=-1)
            if np.ndim(C) == 2:
                qm_kwargs = {"array": np.ma.ravel(C)}
            elif np.ndim(C) == 3:
                qm_kwargs = {"color": np.ma.reshape(C, (-1, C.shape[-1]))}
            else:
                raise ValueError("C must be 2D or 3D")
            collection = mcoll.QuadMesh(
                nc, nr, coords, **qm_kwargs,
                alpha=alpha, cmap=cmap, norm=norm,
                antialiased=False, edgecolors="none")
            self.add_collection(collection, autolim=False)
            xl, xr, yb, yt = x.min(), x.max(), y.min(), y.max()
            ret = collection

        else:  # It's one of the two image styles.
            extent = xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
            if style == "image":
                im = mimage.AxesImage(
                    self, cmap, norm,
                    data=C, alpha=alpha, extent=extent,
                    interpolation='nearest', origin='lower',
                    **kwargs)
            elif style == "pcolorimage":
                im = mimage.PcolorImage(
                    self, x, y, C,
                    cmap=cmap, norm=norm, alpha=alpha, extent=extent,
                    **kwargs)
            self.add_image(im)
            ret = im

        if vmin is not None or vmax is not None:
            ret.set_clim(vmin, vmax)
        elif np.ndim(C) == 2:  # C.ndim == 3 is RGB(A) so doesn't need scaling.
            ret.autoscale_None()
        if ret.get_clip_path() is None:
            # image does not already have clipping set, clip to axes patch
            ret.set_clip_path(self.patch)

        ret.sticky_edges.x[:] = [xl, xr]
        ret.sticky_edges.y[:] = [yb, yt]
        self.update_datalim(np.array([[xl, yb], [xr, yt]]))
        self._request_autoscale_view(tight=True)
        return ret

    @_preprocess_data()
    def contour(self, *args, **kwargs):
        kwargs['filled'] = False
        contours = mcontour.QuadContourSet(self, *args, **kwargs)
        self._request_autoscale_view()
        return contours
    contour.__doc__ = mcontour.QuadContourSet._contour_doc

    @_preprocess_data()
    def contourf(self, *args, **kwargs):
        kwargs['filled'] = True
        contours = mcontour.QuadContourSet(self, *args, **kwargs)
        self._request_autoscale_view()
        return contours
    contourf.__doc__ = mcontour.QuadContourSet._contour_doc

    def clabel(self, CS, *args, **kwargs):
        return CS.clabel(*args, **kwargs)
    clabel.__doc__ = mcontour.ContourSet.clabel.__doc__

    #### Data analysis

    @_preprocess_data(replace_names=["x", 'weights'], label_namer="x")
    def hist(self, x, bins=None, range=None, density=False, weights=None,
             cumulative=False, bottom=None, histtype='bar', align='mid',
             orientation='vertical', rwidth=None, log=False,
             color=None, label=None, stacked=False, **kwargs):
        """
        Plot a histogram.

        Compute and draw the histogram of *x*.  The return value is a tuple
        (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*,
        *patches1*,...]) if the input contains multiple data.  See the
        documentation of the *weights* parameter to draw a histogram of
        already-binned data.

        Multiple data can be provided via *x* as a list of datasets
        of potentially different length ([*x0*, *x1*, ...]), or as
        a 2-D ndarray in which each column is a dataset.  Note that
        the ndarray form is transposed relative to the list form.

        Masked arrays are not supported.

        The *bins*, *range*, *weights*, and *density* parameters behave as in
        `numpy.histogram`.

        Parameters
        ----------
        x : (n,) array or sequence of (n,) arrays
            Input values, this takes either a single array or a sequence of
            arrays which are not required to be of the same length.

        bins : int or sequence or str, optional
            If *bins* is an integer, it defines the number of equal-width bins
            in the range.

            If *bins* is a sequence, it defines the bin edges, including the
            left edge of the first bin and the right edge of the last bin;
            in this case, bins may be unequally spaced.  All but the last
            (righthand-most) bin is half-open.  In other words, if *bins* is::

                [1, 2, 3, 4]

            then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
            the second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which
            *includes* 4.

            If *bins* is a string, it is one of the binning strategies
            supported by `numpy.histogram_bin_edges`: 'auto', 'fd', 'doane',
            'scott', 'stone', 'rice', 'sturges', or 'sqrt'.

            The default is :rc:`hist.bins`.

        range : tuple or None, optional
            The lower and upper range of the bins. Lower and upper outliers
            are ignored. If not provided, *range* is ``(x.min(), x.max())``.
            Range has no effect if *bins* is a sequence.

            If *bins* is a sequence or *range* is specified, autoscaling
            is based on the specified bin range instead of the
            range of x.

            Default is ``None``

        density : bool, optional
            If ``True``, the first element of the return tuple will
            be the counts normalized to form a probability density, i.e.,
            the area (or integral) under the histogram will sum to 1.
            This is achieved by dividing the count by the number of
            observations times the bin width and not dividing by the total
            number of observations. If *stacked* is also ``True``, the sum of
            the histograms is normalized to 1.

            Default is ``False``.

        weights : (n, ) array-like or None, optional
            An array of weights, of the same shape as *x*.  Each value in *x*
            only contributes its associated weight towards the bin count
            (instead of 1).  If *normed* or *density* is ``True``,
            the weights are normalized, so that the integral of the density
            over the range remains 1.

            Default is ``None``.

            This parameter can be used to draw a histogram of data that has
            already been binned, e.g. using `np.histogram` (by treating each
            bin as a single point with a weight equal to its count) ::

                counts, bins = np.histogram(data)
                plt.hist(bins[:-1], bins, weights=counts)

            (or you may alternatively use `~.bar()`).

        cumulative : bool or -1, optional
            If ``True``, then a histogram is computed where each bin gives the
            counts in that bin plus all bins for smaller values. The last bin
            gives the total number of datapoints.

            If *density* is also ``True`` then the histogram is normalized such
            that the last bin equals 1.

            If *cumulative* is a number less than 0 (e.g., -1), the direction
            of accumulation is reversed.  In this case, if *density* is also
            ``True``, then the histogram is normalized such that the first bin
            equals 1.

        bottom : array-like, scalar, or None, default: None
            Location of the bottom of each bin, ie. bins are drawn from
            ``bottom`` to ``bottom + hist(x, bins)`` If a scalar, the bottom
            of each bin is shifted by the same amount. If an array, each bin
            is shifted independently and the length of bottom must match the
            number of bins. If None, defaults to 0.

        histtype : {'bar', 'barstacked', 'step',  'stepfilled'}, optional
            The type of histogram to draw.

            - 'bar' is a traditional bar-type histogram.  If multiple data
              are given the bars are arranged side by side.
            - 'barstacked' is a bar-type histogram where multiple
              data are stacked on top of each other.
            - 'step' generates a lineplot that is by default unfilled.
            - 'stepfilled' generates a lineplot that is by default filled.

            Default is 'bar'

        align : {'left', 'mid', 'right'}, optional
            Controls how the histogram is plotted.

            - 'left': bars are centered on the left bin edges.
            - 'mid': bars are centered between the bin edges.
            - 'right': bars are centered on the right bin edges.

            Default is 'mid'

        orientation : {'horizontal', 'vertical'}, optional
            If 'horizontal', `~matplotlib.pyplot.barh` will be used for
            bar-type histograms and the *bottom* kwarg will be the left edges.

        rwidth : scalar or None, optional
            The relative width of the bars as a fraction of the bin width.  If
            ``None``, automatically compute the width.

            Ignored if *histtype* is 'step' or 'stepfilled'.

            Default is ``None``

        log : bool, optional
            If ``True``, the histogram axis will be set to a log scale. If
            *log* is ``True`` and *x* is a 1D array, empty bins will be
            filtered out and only the non-empty ``(n, bins, patches)``
            will be returned.

            Default is ``False``

        color : color or array-like of colors or None, optional
            Color or sequence of colors, one per dataset.  Default (``None``)
            uses the standard line color sequence.

            Default is ``None``

        label : str or None, optional
            String, or sequence of strings to match multiple datasets.  Bar
            charts yield multiple patches per dataset, but only the first gets
            the label, so that the legend command will work as expected.

            default is ``None``

        stacked : bool, optional
            If ``True``, multiple data are stacked on top of each other If
            ``False`` multiple data are arranged side by side if histtype is
            'bar' or on top of each other if histtype is 'step'

            Default is ``False``

        Returns
        -------
        n : array or list of arrays
            The values of the histogram bins. See *density* and *weights* for a
            description of the possible semantics.  If input *x* is an array,
            then this is an array of length *nbins*. If input is a sequence of
            arrays ``[data1, data2, ...]``, then this is a list of arrays with
            the values of the histograms for each of the arrays in the same
            order.  The dtype of the array *n* (or of its element arrays) will
            always be float even if no weighting or normalization is used.

        bins : array
            The edges of the bins. Length nbins + 1 (nbins left edges and right
            edge of last bin).  Always a single array even when multiple data
            sets are passed in.

        patches : list or list of lists
            Silent list of individual patches used to create the histogram
            or list of such list if multiple input datasets.

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.patches.Patch` properties

        See also
        --------
        hist2d : 2D histograms

        """
        # Avoid shadowing the builtin.
        bin_range = range
        from builtins import range

        if np.isscalar(x):
            x = [x]

        if bins is None:
            bins = rcParams['hist.bins']

        # Validate string inputs here to avoid cluttering subsequent code.
        cbook._check_in_list(['bar', 'barstacked', 'step', 'stepfilled'],
                             histtype=histtype)
        cbook._check_in_list(['left', 'mid', 'right'], align=align)
        cbook._check_in_list(['horizontal', 'vertical'],
                             orientation=orientation)

        if histtype == 'barstacked' and not stacked:
            stacked = True

        # basic input validation
        input_empty = np.size(x) == 0
        # Massage 'x' for processing.
        x = cbook._reshape_2D(x, 'x')
        nx = len(x)  # number of datasets

        # Process unit information
        # Unit conversion is done individually on each dataset
        self._process_unit_info(xdata=x[0], kwargs=kwargs)
        x = [self.convert_xunits(xi) for xi in x]

        if bin_range is not None:
            bin_range = self.convert_xunits(bin_range)

        if not cbook.is_scalar_or_string(bins):
            bins = self.convert_xunits(bins)

        # We need to do to 'weights' what was done to 'x'
        if weights is not None:
            w = cbook._reshape_2D(weights, 'weights')
        else:
            w = [None] * nx

        if len(w) != nx:
            raise ValueError('weights should have the same shape as x')

        for xi, wi in zip(x, w):
            if wi is not None and len(wi) != len(xi):
                raise ValueError(
                    'weights should have the same shape as x')

        if color is None:
            color = [self._get_lines.get_next_color() for i in range(nx)]
        else:
            color = mcolors.to_rgba_array(color)
            if len(color) != nx:
                error_message = (
                    "color kwarg must have one color per data set. %d data "
                    "sets and %d colors were provided" % (nx, len(color)))
                raise ValueError(error_message)

        hist_kwargs = dict()

        # if the bin_range is not given, compute without nan numpy
        # does not do this for us when guessing the range (but will
        # happily ignore nans when computing the histogram).
        if bin_range is None:
            xmin = np.inf
            xmax = -np.inf
            for xi in x:
                if len(xi):
                    # python's min/max ignore nan,
                    # np.minnan returns nan for all nan input
                    xmin = min(xmin, np.nanmin(xi))
                    xmax = max(xmax, np.nanmax(xi))
            # make sure we have seen at least one non-nan and finite
            # value before we reset the bin range
            if not np.isnan([xmin, xmax]).any() and not (xmin > xmax):
                bin_range = (xmin, xmax)

        # If bins are not specified either explicitly or via range,
        # we need to figure out the range required for all datasets,
        # and supply that to np.histogram.
        if not input_empty and len(x) > 1:
            if weights is not None:
                _w = np.concatenate(w)
            else:
                _w = None

            bins = _histogram_bin_edges(np.concatenate(x), bins, bin_range, _w)
        else:
            hist_kwargs['range'] = bin_range

        density = bool(density)
        if density and not stacked:
            hist_kwargs['density'] = density

        # List to store all the top coordinates of the histograms
        tops = []  # Will have shape (n_datasets, n_bins).
        # Loop through datasets
        for i in range(nx):
            # this will automatically overwrite bins,
            # so that each histogram uses the same bins
            m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
            tops.append(m)
        tops = np.array(tops, float)  # causes problems later if it's an int
        if stacked:
            tops = tops.cumsum(axis=0)
            # If a stacked density plot, normalize so the area of all the
            # stacked histograms together is 1
            if density:
                tops = (tops / np.diff(bins)) / tops[-1].sum()
        if cumulative:
            slc = slice(None)
            if isinstance(cumulative, Number) and cumulative < 0:
                slc = slice(None, None, -1)
            if density:
                tops = (tops * np.diff(bins))[:, slc].cumsum(axis=1)[:, slc]
            else:
                tops = tops[:, slc].cumsum(axis=1)[:, slc]

        patches = []

        # Save autoscale state for later restoration; turn autoscaling
        # off so we can do it all a single time at the end, instead
        # of having it done by bar or fill and then having to be redone.
        _saved_autoscalex = self.get_autoscalex_on()
        _saved_autoscaley = self.get_autoscaley_on()
        self.set_autoscalex_on(False)
        self.set_autoscaley_on(False)

        if histtype.startswith('bar'):

            totwidth = np.diff(bins)

            if rwidth is not None:
                dr = np.clip(rwidth, 0, 1)
            elif (len(tops) > 1 and
                  ((not stacked) or rcParams['_internal.classic_mode'])):
                dr = 0.8
            else:
                dr = 1.0

            if histtype == 'bar' and not stacked:
                width = dr * totwidth / nx
                dw = width
                boffset = -0.5 * dr * totwidth * (1 - 1 / nx)
            elif histtype == 'barstacked' or stacked:
                width = dr * totwidth
                boffset, dw = 0.0, 0.0

            if align == 'mid':
                boffset += 0.5 * totwidth
            elif align == 'right':
                boffset += totwidth

            if orientation == 'horizontal':
                _barfunc = self.barh
                bottom_kwarg = 'left'
            else:  # orientation == 'vertical'
                _barfunc = self.bar
                bottom_kwarg = 'bottom'

            for m, c in zip(tops, color):
                if bottom is None:
                    bottom = np.zeros(len(m))
                if stacked:
                    height = m - bottom
                else:
                    height = m
                patch = _barfunc(bins[:-1]+boffset, height, width,
                                 align='center', log=log,
                                 color=c, **{bottom_kwarg: bottom})
                patches.append(patch)
                if stacked:
                    bottom[:] = m
                boffset += dw

        elif histtype.startswith('step'):
            # these define the perimeter of the polygon
            x = np.zeros(4 * len(bins) - 3)
            y = np.zeros(4 * len(bins) - 3)

            x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
            x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]

            if bottom is None:
                bottom = np.zeros(len(bins) - 1)

            y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = bottom, bottom
            y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]

            if log:
                if orientation == 'horizontal':
                    self.set_xscale('log', nonposx='clip')
                else:  # orientation == 'vertical'
                    self.set_yscale('log', nonposy='clip')

            if align == 'left':
                x -= 0.5*(bins[1]-bins[0])
            elif align == 'right':
                x += 0.5*(bins[1]-bins[0])

            # If fill kwarg is set, it will be passed to the patch collection,
            # overriding this
            fill = (histtype == 'stepfilled')

            xvals, yvals = [], []
            for m in tops:
                if stacked:
                    # starting point for drawing polygon
                    y[0] = y[1]
                    # top of the previous polygon becomes the bottom
                    y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
                # set the top of this polygon
                y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = (m + bottom,
                                                            m + bottom)
                if orientation == 'horizontal':
                    xvals.append(y.copy())
                    yvals.append(x.copy())
                else:
                    xvals.append(x.copy())
                    yvals.append(y.copy())

            # stepfill is closed, step is not
            split = -1 if fill else 2 * len(bins)
            # add patches in reverse order so that when stacking,
            # items lower in the stack are plotted on top of
            # items higher in the stack
            for x, y, c in reversed(list(zip(xvals, yvals, color))):
                patches.append(self.fill(
                    x[:split], y[:split],
                    closed=True if fill else None,
                    facecolor=c,
                    edgecolor=None if fill else c,
                    fill=fill if fill else None))
            for patch_list in patches:
                for patch in patch_list:
                    if orientation == 'vertical':
                        patch.sticky_edges.y.append(0)
                    elif orientation == 'horizontal':
                        patch.sticky_edges.x.append(0)

            # we return patches, so put it back in the expected order
            patches.reverse()

        self.set_autoscalex_on(_saved_autoscalex)
        self.set_autoscaley_on(_saved_autoscaley)
        self._request_autoscale_view()

        if label is None:
            labels = [None]
        elif isinstance(label, str):
            labels = [label]
        elif not np.iterable(label):
            labels = [str(label)]
        else:
            labels = [str(lab) for lab in label]

        for patch, lbl in itertools.zip_longest(patches, labels):
            if patch:
                p = patch[0]
                p.update(kwargs)
                if lbl is not None:
                    p.set_label(lbl)

                for p in patch[1:]:
                    p.update(kwargs)
                    p.set_label('_nolegend_')

        if nx == 1:
            return tops[0], bins, cbook.silent_list('Patch', patches[0])
        else:
            return tops, bins, cbook.silent_list('Lists of Patches', patches)

    @_preprocess_data(replace_names=["x", "y", "weights"])
    @cbook._rename_parameter("3.1", "normed", "density")
    def hist2d(self, x, y, bins=10, range=None, density=False, weights=None,
               cmin=None, cmax=None, **kwargs):
        """
        Make a 2D histogram plot.

        Parameters
        ----------
        x, y : array-like, shape (n, )
            Input values

        bins : None or int or [int, int] or array-like or [array, array]

            The bin specification:

            - If int, the number of bins for the two dimensions
              (nx=ny=bins).
            - If ``[int, int]``, the number of bins in each dimension
              (nx, ny = bins).
            - If array-like, the bin edges for the two dimensions
              (x_edges=y_edges=bins).
            - If ``[array, array]``, the bin edges in each dimension
              (x_edges, y_edges = bins).

            The default value is 10.

        range : array-like shape(2, 2), optional, default: None
            The leftmost and rightmost edges of the bins along each dimension
            (if not specified explicitly in the bins parameters): ``[[xmin,
            xmax], [ymin, ymax]]``. All values outside of this range will be
            considered outliers and not tallied in the histogram.

        density : bool, optional, default: False
            Normalize histogram.  *normed* is a deprecated synonym for this
            parameter.

        weights : array-like, shape (n, ), optional, default: None
            An array of values w_i weighing each sample (x_i, y_i).

        cmin : scalar, optional, default: None
            All bins that has count less than cmin will not be displayed (set
            to NaN before passing to imshow) and these count values in the
            return value count histogram will also be set to nan upon return.

        cmax : scalar, optional, default: None
            All bins that has count more than cmax will not be displayed (set
            to NaN before passing to imshow) and these count values in the
            return value count histogram will also be set to nan upon return.

        Returns
        -------
        h : 2D array
            The bi-dimensional histogram of samples x and y. Values in x are
            histogrammed along the first dimension and values in y are
            histogrammed along the second dimension.
        xedges : 1D array
            The bin edges along the x axis.
        yedges : 1D array
            The bin edges along the y axis.
        image : `~.matplotlib.collections.QuadMesh`

        Other Parameters
        ----------------
        cmap : Colormap or str, optional
            A `.colors.Colormap` instance.  If not set, use rc settings.

        norm : Normalize, optional
            A `.colors.Normalize` instance is used to
            scale luminance data to ``[0, 1]``. If not set, defaults to
            `.colors.Normalize()`.

        vmin/vmax : None or scalar, optional
            Arguments passed to the `~.colors.Normalize` instance.

        alpha : ``0 <= scalar <= 1`` or ``None``, optional
            The alpha blending value.

        See also
        --------
        hist : 1D histogram plotting

        Notes
        -----
        - Currently ``hist2d`` calculates its own axis limits, and any limits
          previously set are ignored.
        - Rendering the histogram with a logarithmic color scale is
          accomplished by passing a `.colors.LogNorm` instance to the *norm*
          keyword argument. Likewise, power-law normalization (similar
          in effect to gamma correction) can be accomplished with
          `.colors.PowerNorm`.
        """

        h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=range,
                                           normed=density, weights=weights)

        if cmin is not None:
            h[h < cmin] = None
        if cmax is not None:
            h[h > cmax] = None

        pc = self.pcolormesh(xedges, yedges, h.T, **kwargs)
        self.set_xlim(xedges[0], xedges[-1])
        self.set_ylim(yedges[0], yedges[-1])

        return h, xedges, yedges, pc

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def psd(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
            window=None, noverlap=None, pad_to=None,
            sides=None, scale_by_freq=None, return_line=None, **kwargs):
        r"""
        Plot the power spectral density.

        The power spectral density :math:`P_{xx}` by Welch's average
        periodogram method.  The vector *x* is divided into *NFFT* length
        segments.  Each segment is detrended by function *detrend* and
        windowed by function *window*.  *noverlap* gives the length of
        the overlap between segments.  The :math:`|\mathrm{fft}(i)|^2`
        of each segment :math:`i` are averaged to compute :math:`P_{xx}`,
        with a scaling to correct for power loss due to windowing.

        If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data

        %(Spectral)s

        %(PSD)s

        noverlap : int
            The number of points of overlap between segments.
            The default value is 0 (no overlap).

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        return_line : bool
            Whether to include the line object plotted in the returned values.
            Default is False.

        Returns
        -------
        Pxx : 1-D array
            The values for the power spectrum `P_{xx}` before scaling
            (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *Pxx*.

        line : `~matplotlib.lines.Line2D`
            The line created by this function.
            Only returned if *return_line* is True.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        See Also
        --------
        :func:`specgram`
            :func:`specgram` differs in the default overlap; in not returning
            the mean of the segment periodograms; in returning the times of the
            segments; and in plotting a colormap instead of a line.

        :func:`magnitude_spectrum`
            :func:`magnitude_spectrum` plots the magnitude spectrum.

        :func:`csd`
            :func:`csd` plots the spectral density between two signals.

        Notes
        -----
        For plotting, the power is plotted as
        :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
        is returned.

        References
        ----------
        Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
        John Wiley & Sons (1986)
        """
        if Fc is None:
            Fc = 0

        pxx, freqs = mlab.psd(x=x, NFFT=NFFT, Fs=Fs, detrend=detrend,
                              window=window, noverlap=noverlap, pad_to=pad_to,
                              sides=sides, scale_by_freq=scale_by_freq)
        freqs += Fc

        if scale_by_freq in (None, True):
            psd_units = 'dB/Hz'
        else:
            psd_units = 'dB'

        line = self.plot(freqs, 10 * np.log10(pxx), **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Power Spectral Density (%s)' % psd_units)
        self.grid(True)
        vmin, vmax = self.viewLim.intervaly
        intv = vmax - vmin
        logi = int(np.log10(intv))
        if logi == 0:
            logi = .1
        step = 10 * logi
        ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
        self.set_yticks(ticks)

        if return_line is None or not return_line:
            return pxx, freqs
        else:
            return pxx, freqs, line

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    @docstring.dedent_interpd
    def csd(self, x, y, NFFT=None, Fs=None, Fc=None, detrend=None,
            window=None, noverlap=None, pad_to=None,
            sides=None, scale_by_freq=None, return_line=None, **kwargs):
        r"""
        Plot the cross-spectral density.

        The cross spectral density :math:`P_{xy}` by Welch's average
        periodogram method.  The vectors *x* and *y* are divided into
        *NFFT* length segments.  Each segment is detrended by function
        *detrend* and windowed by function *window*.  *noverlap* gives
        the length of the overlap between segments.  The product of
        the direct FFTs of *x* and *y* are averaged over each segment
        to compute :math:`P_{xy}`, with a scaling to correct for power
        loss due to windowing.

        If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
        padded to *NFFT*.

        Parameters
        ----------
        x, y : 1-D arrays or sequences
            Arrays or sequences containing the data.

        %(Spectral)s

        %(PSD)s

        noverlap : int
            The number of points of overlap between segments.
            The default value is 0 (no overlap).

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        return_line : bool
            Whether to include the line object plotted in the returned values.
            Default is False.

        Returns
        -------
        Pxy : 1-D array
            The values for the cross spectrum `P_{xy}` before scaling
            (complex valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *Pxy*.

        line : `~matplotlib.lines.Line2D`
            The line created by this function.
            Only returned if *return_line* is True.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        See Also
        --------
        :func:`psd`
            :func:`psd` is the equivalent to setting y=x.

        Notes
        -----
        For plotting, the power is plotted as
        :math:`10 \log_{10}(P_{xy})` for decibels, though `P_{xy}` itself
        is returned.

        References
        ----------
        Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
        John Wiley & Sons (1986)
        """
        if Fc is None:
            Fc = 0

        pxy, freqs = mlab.csd(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
                              window=window, noverlap=noverlap, pad_to=pad_to,
                              sides=sides, scale_by_freq=scale_by_freq)
        # pxy is complex
        freqs += Fc

        line = self.plot(freqs, 10 * np.log10(np.abs(pxy)), **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Cross Spectrum Magnitude (dB)')
        self.grid(True)
        vmin, vmax = self.viewLim.intervaly

        intv = vmax - vmin
        step = 10 * int(np.log10(intv))

        ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
        self.set_yticks(ticks)

        if return_line is None or not return_line:
            return pxy, freqs
        else:
            return pxy, freqs, line

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def magnitude_spectrum(self, x, Fs=None, Fc=None, window=None,
                           pad_to=None, sides=None, scale=None,
                           **kwargs):
        """
        Plot the magnitude spectrum.

        Compute the magnitude spectrum of *x*.  Data is padded to a
        length of *pad_to* and the windowing function *window* is applied to
        the signal.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data.

        %(Spectral)s

        %(Single_Spectrum)s

        scale : {'default', 'linear', 'dB'}
            The scaling of the values in the *spec*.  'linear' is no scaling.
            'dB' returns the values in dB scale, i.e., the dB amplitude
            (20 * log10). 'default' is 'linear'.

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns
        -------
        spectrum : 1-D array
            The values for the magnitude spectrum before scaling (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *spectrum*.

        line : `~matplotlib.lines.Line2D`
            The line created by this function.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        See Also
        --------
        :func:`psd`
            :func:`psd` plots the power spectral density.`.

        :func:`angle_spectrum`
            :func:`angle_spectrum` plots the angles of the corresponding
            frequencies.

        :func:`phase_spectrum`
            :func:`phase_spectrum` plots the phase (unwrapped angle) of the
            corresponding frequencies.

        :func:`specgram`
            :func:`specgram` can plot the magnitude spectrum of segments within
            the signal in a colormap.

        """
        if Fc is None:
            Fc = 0

        if scale is None or scale == 'default':
            scale = 'linear'

        spec, freqs = mlab.magnitude_spectrum(x=x, Fs=Fs, window=window,
                                              pad_to=pad_to, sides=sides)
        freqs += Fc

        if scale == 'linear':
            Z = spec
            yunits = 'energy'
        elif scale == 'dB':
            Z = 20. * np.log10(spec)
            yunits = 'dB'
        else:
            raise ValueError('Unknown scale %s', scale)

        lines = self.plot(freqs, Z, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Magnitude (%s)' % yunits)

        return spec, freqs, lines[0]

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def angle_spectrum(self, x, Fs=None, Fc=None, window=None,
                       pad_to=None, sides=None, **kwargs):
        """
        Plot the angle spectrum.

        Compute the angle spectrum (wrapped phase spectrum) of *x*.
        Data is padded to a length of *pad_to* and the windowing function
        *window* is applied to the signal.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data.

        %(Spectral)s

        %(Single_Spectrum)s

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns
        -------
        spectrum : 1-D array
            The values for the angle spectrum in radians (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *spectrum*.

        line : `~matplotlib.lines.Line2D`
            The line created by this function.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        See Also
        --------
        :func:`magnitude_spectrum`
            :func:`angle_spectrum` plots the magnitudes of the corresponding
            frequencies.

        :func:`phase_spectrum`
            :func:`phase_spectrum` plots the unwrapped version of this
            function.

        :func:`specgram`
            :func:`specgram` can plot the angle spectrum of segments within the
            signal in a colormap.

        """
        if Fc is None:
            Fc = 0

        spec, freqs = mlab.angle_spectrum(x=x, Fs=Fs, window=window,
                                          pad_to=pad_to, sides=sides)
        freqs += Fc

        lines = self.plot(freqs, spec, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Angle (radians)')

        return spec, freqs, lines[0]

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def phase_spectrum(self, x, Fs=None, Fc=None, window=None,
                       pad_to=None, sides=None, **kwargs):
        """
        Plot the phase spectrum.

        Compute the phase spectrum (unwrapped angle spectrum) of *x*.
        Data is padded to a length of *pad_to* and the windowing function
        *window* is applied to the signal.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data

        %(Spectral)s

        %(Single_Spectrum)s

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns
        -------
        spectrum : 1-D array
            The values for the phase spectrum in radians (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *spectrum*.

        line : `~matplotlib.lines.Line2D`
            The line created by this function.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        See Also
        --------
        :func:`magnitude_spectrum`
            :func:`magnitude_spectrum` plots the magnitudes of the
            corresponding frequencies.

        :func:`angle_spectrum`
            :func:`angle_spectrum` plots the wrapped version of this function.

        :func:`specgram`
            :func:`specgram` can plot the phase spectrum of segments within the
            signal in a colormap.

        """
        if Fc is None:
            Fc = 0

        spec, freqs = mlab.phase_spectrum(x=x, Fs=Fs, window=window,
                                          pad_to=pad_to, sides=sides)
        freqs += Fc

        lines = self.plot(freqs, spec, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Phase (radians)')

        return spec, freqs, lines[0]

    @_preprocess_data(replace_names=["x", "y"])
    @docstring.dedent_interpd
    def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
               window=mlab.window_hanning, noverlap=0, pad_to=None,
               sides='default', scale_by_freq=None, **kwargs):
        r"""
        Plot the coherence between *x* and *y*.

        Plot the coherence between *x* and *y*.  Coherence is the
        normalized cross spectral density:

        .. math::

          C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}

        Parameters
        ----------
        %(Spectral)s

        %(PSD)s

        noverlap : int
            The number of points of overlap between blocks.  The
            default value is 0 (no overlap).

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.


        Returns
        -------
        Cxy : 1-D array
            The coherence vector.

        freqs : 1-D array
            The frequencies for the elements in *Cxy*.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the `.Line2D` properties:

            %(_Line2D_docstr)s

        References
        ----------
        Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
        John Wiley & Sons (1986)
        """
        cxy, freqs = mlab.cohere(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
                                 window=window, noverlap=noverlap,
                                 scale_by_freq=scale_by_freq)
        freqs += Fc

        self.plot(freqs, cxy, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Coherence')
        self.grid(True)

        return cxy, freqs

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def specgram(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
                 window=None, noverlap=None,
                 cmap=None, xextent=None, pad_to=None, sides=None,
                 scale_by_freq=None, mode=None, scale=None,
                 vmin=None, vmax=None, **kwargs):
        """
        Plot a spectrogram.

        Compute and plot a spectrogram of data in *x*.  Data are split into
        *NFFT* length segments and the spectrum of each section is
        computed.  The windowing function *window* is applied to each
        segment, and the amount of overlap of each segment is
        specified with *noverlap*. The spectrogram is plotted as a colormap
        (using imshow).

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data.

        %(Spectral)s

        %(PSD)s

        mode : {'default', 'psd', 'magnitude', 'angle', 'phase'}
            What sort of spectrum to use.  Default is 'psd', which takes the
            power spectral density.  'magnitude' returns the magnitude
            spectrum.  'angle' returns the phase spectrum without unwrapping.
            'phase' returns the phase spectrum with unwrapping.

        noverlap : int
            The number of points of overlap between blocks.  The
            default value is 128.

        scale : {'default', 'linear', 'dB'}
            The scaling of the values in the *spec*.  'linear' is no scaling.
            'dB' returns the values in dB scale.  When *mode* is 'psd',
            this is dB power (10 * log10).  Otherwise this is dB amplitude
            (20 * log10). 'default' is 'dB' if *mode* is 'psd' or
            'magnitude' and 'linear' otherwise.  This must be 'linear'
            if *mode* is 'angle' or 'phase'.

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        cmap
            A :class:`matplotlib.colors.Colormap` instance; if *None*, use
            default determined by rc

        xextent : *None* or (xmin, xmax)
            The image extent along the x-axis. The default sets *xmin* to the
            left border of the first bin (*spectrum* column) and *xmax* to the
            right border of the last bin. Note that for *noverlap>0* the width
            of the bins is smaller than those of the segments.

        **kwargs
            Additional keyword arguments are passed on to imshow which makes
            the specgram image.

        Returns
        -------
        spectrum : 2-D array
            Columns are the periodograms of successive segments.

        freqs : 1-D array
            The frequencies corresponding to the rows in *spectrum*.

        t : 1-D array
            The times corresponding to midpoints of segments (i.e., the columns
            in *spectrum*).

        im : instance of class :class:`~matplotlib.image.AxesImage`
            The image created by imshow containing the spectrogram

        See Also
        --------
        :func:`psd`
            :func:`psd` differs in the default overlap; in returning the mean
            of the segment periodograms; in not returning times; and in
            generating a line plot instead of colormap.

        :func:`magnitude_spectrum`
            A single spectrum, similar to having a single segment when *mode*
            is 'magnitude'. Plots a line instead of a colormap.

        :func:`angle_spectrum`
            A single spectrum, similar to having a single segment when *mode*
            is 'angle'. Plots a line instead of a colormap.

        :func:`phase_spectrum`
            A single spectrum, similar to having a single segment when *mode*
            is 'phase'. Plots a line instead of a colormap.

        Notes
        -----
        The parameters *detrend* and *scale_by_freq* do only apply when *mode*
        is set to 'psd'.
        """
        if NFFT is None:
            NFFT = 256  # same default as in mlab.specgram()
        if Fc is None:
            Fc = 0  # same default as in mlab._spectral_helper()
        if noverlap is None:
            noverlap = 128  # same default as in mlab.specgram()

        if mode == 'complex':
            raise ValueError('Cannot plot a complex specgram')

        if scale is None or scale == 'default':
            if mode in ['angle', 'phase']:
                scale = 'linear'
            else:
                scale = 'dB'
        elif mode in ['angle', 'phase'] and scale == 'dB':
            raise ValueError('Cannot use dB scale with angle or phase mode')

        spec, freqs, t = mlab.specgram(x=x, NFFT=NFFT, Fs=Fs,
                                       detrend=detrend, window=window,
                                       noverlap=noverlap, pad_to=pad_to,
                                       sides=sides,
                                       scale_by_freq=scale_by_freq,
                                       mode=mode)

        if scale == 'linear':
            Z = spec
        elif scale == 'dB':
            if mode is None or mode == 'default' or mode == 'psd':
                Z = 10. * np.log10(spec)
            else:
                Z = 20. * np.log10(spec)
        else:
            raise ValueError('Unknown scale %s', scale)

        Z = np.flipud(Z)

        if xextent is None:
            # padding is needed for first and last segment:
            pad_xextent = (NFFT-noverlap) / Fs / 2
            xextent = np.min(t) - pad_xextent, np.max(t) + pad_xextent
        xmin, xmax = xextent
        freqs += Fc
        extent = xmin, xmax, freqs[0], freqs[-1]
        im = self.imshow(Z, cmap, extent=extent, vmin=vmin, vmax=vmax,
                         **kwargs)
        self.axis('auto')

        return spec, freqs, t, im

    @docstring.dedent_interpd
    def spy(self, Z, precision=0, marker=None, markersize=None,
            aspect='equal', origin="upper", **kwargs):
        """
        Plot the sparsity pattern of a 2D array.

        This visualizes the non-zero values of the array.

        Two plotting styles are available: image and marker. Both
        are available for full arrays, but only the marker style
        works for `scipy.sparse.spmatrix` instances.

        **Image style**

        If *marker* and *markersize* are *None*, `~.Axes.imshow` is used. Any
        extra remaining keyword arguments are passed to this method.

        **Marker style**

        If *Z* is a `scipy.sparse.spmatrix` or *marker* or *markersize* are
        *None*, a `.Line2D` object will be returned with the value of marker
        determining the marker type, and any remaining keyword arguments
        passed to `~.Axes.plot`.

        Parameters
        ----------
        Z : array-like (M, N)
            The array to be plotted.

        precision : float or 'present', optional, default: 0
            If *precision* is 0, any non-zero value will be plotted. Otherwise,
            values of :math:`|Z| > precision` will be plotted.

            For :class:`scipy.sparse.spmatrix` instances, you can also
            pass 'present'. In this case any value present in the array
            will be plotted, even if it is identically zero.

        origin : {'upper', 'lower'}, optional
            Place the [0, 0] index of the array in the upper left or lower left
            corner of the axes. The convention 'upper' is typically used for
            matrices and images.
            If not given, :rc:`image.origin` is used, defaulting to 'upper'.


        aspect : {'equal', 'auto', None} or float, optional
            Controls the aspect ratio of the axes. The aspect is of particular
            relevance for images since it may distort the image, i.e. pixel
            will not be square.

            This parameter is a shortcut for explicitly calling
            `.Axes.set_aspect`. See there for further details.

            - 'equal': Ensures an aspect ratio of 1. Pixels will be square.
            - 'auto': The axes is kept fixed and the aspect is adjusted so
              that the data fit in the axes. In general, this will result in
              non-square pixels.
            - *None*: Use :rc:`image.aspect`.

            Default: 'equal'

        Returns
        -------
        ret : `~matplotlib.image.AxesImage` or `.Line2D`
            The return type depends on the plotting style (see above).

        Other Parameters
        ----------------
        **kwargs
            The supported additional parameters depend on the plotting style.

            For the image style, you can pass the following additional
            parameters of `~.Axes.imshow`:

            - *cmap*
            - *alpha*
            - *url*
            - any `.Artist` properties (passed on to the `.AxesImage`)

            For the marker style, you can pass any `.Line2D` property except
            for *linestyle*:

            %(_Line2D_docstr)s
        """
        if marker is None and markersize is None and hasattr(Z, 'tocoo'):
            marker = 's'
        if marker is None and markersize is None:
            Z = np.asarray(Z)
            mask = np.abs(Z) > precision

            if 'cmap' not in kwargs:
                kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
                                                        name='binary')
            if 'interpolation' in kwargs:
                raise TypeError(
                    "spy() got an unexpected keyword argument 'interpolation'")
            ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
                              origin=origin, **kwargs)
        else:
            if hasattr(Z, 'tocoo'):
                c = Z.tocoo()
                if precision == 'present':
                    y = c.row
                    x = c.col
                else:
                    nonzero = np.abs(c.data) > precision
                    y = c.row[nonzero]
                    x = c.col[nonzero]
            else:
                Z = np.asarray(Z)
                nonzero = np.abs(Z) > precision
                y, x = np.nonzero(nonzero)
            if marker is None:
                marker = 's'
            if markersize is None:
                markersize = 10
            if 'linestyle' in kwargs:
                raise TypeError(
                    "spy() got an unexpected keyword argument 'linestyle'")
            marks = mlines.Line2D(x, y, linestyle='None',
                         marker=marker, markersize=markersize, **kwargs)
            self.add_line(marks)
            nr, nc = Z.shape
            self.set_xlim(-0.5, nc - 0.5)
            self.set_ylim(nr - 0.5, -0.5)
            self.set_aspect(aspect)
            ret = marks
        self.title.set_y(1.05)
        self.xaxis.tick_top()
        self.xaxis.set_ticks_position('both')
        self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        return ret

    def matshow(self, Z, **kwargs):
        """
        Plot the values of a 2D matrix or array as color-coded image.

        The matrix will be shown the way it would be printed, with the first
        row at the top.  Row and column numbering is zero-based.

        Parameters
        ----------
        Z : array-like(M, N)
            The matrix to be displayed.

        Returns
        -------
        image : `~matplotlib.image.AxesImage`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.axes.Axes.imshow` arguments

        See Also
        --------
        imshow : More general function to plot data on a 2D regular raster.

        Notes
        -----
        This is just a convenience function wrapping `.imshow` to set useful
        defaults for displaying a matrix. In particular:

        - Set ``origin='upper'``.
        - Set ``interpolation='nearest'``.
        - Set ``aspect='equal'``.
        - Ticks are placed to the left and above.
        - Ticks are formatted to show integer indices.

        """
        Z = np.asanyarray(Z)
        kw = {'origin': 'upper',
              'interpolation': 'nearest',
              'aspect': 'equal',          # (already the imshow default)
              **kwargs}
        im = self.imshow(Z, **kw)
        self.title.set_y(1.05)
        self.xaxis.tick_top()
        self.xaxis.set_ticks_position('both')
        self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        return im

    @_preprocess_data(replace_names=["dataset"])
    def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
                   showmeans=False, showextrema=True, showmedians=False,
                   quantiles=None, points=100, bw_method=None):
        """
        Make a violin plot.

        Make a violin plot for each column of *dataset* or each vector in
        sequence *dataset*.  Each filled area extends to represent the
        entire data range, with optional lines at the mean, the median,
        the minimum, the maximum, and user-specified quantiles.

        Parameters
        ----------
        dataset : Array or a sequence of vectors.
          The input data.

        positions : array-like, default = [1, 2, ..., n]
          Sets the positions of the violins. The ticks and limits are
          automatically set to match the positions.

        vert : bool, default = True.
          If true, creates a vertical violin plot.
          Otherwise, creates a horizontal violin plot.

        widths : array-like, default = 0.5
          Either a scalar or a vector that sets the maximal width of
          each violin. The default is 0.5, which uses about half of the
          available horizontal space.

        showmeans : bool, default = False
          If `True`, will toggle rendering of the means.

        showextrema : bool, default = True
          If `True`, will toggle rendering of the extrema.

        showmedians : bool, default = False
          If `True`, will toggle rendering of the medians.

        quantiles : array-like, default = None
          If not None, set a list of floats in interval [0, 1] for each violin,
          which stands for the quantiles that will be rendered for that
          violin.

        points : scalar, default = 100
          Defines the number of points to evaluate each of the
          gaussian kernel density estimations at.

        bw_method : str, scalar or callable, optional
          The method used to calculate the estimator bandwidth.  This can be
          'scott', 'silverman', a scalar constant or a callable.  If a
          scalar, this will be used directly as `kde.factor`.  If a
          callable, it should take a `GaussianKDE` instance as its only
          parameter and return a scalar. If None (default), 'scott' is used.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the violinplot to a
          list of the corresponding collection instances created. The
          dictionary has the following keys:

          - ``bodies``: A list of the `~.collections.PolyCollection`
            instances containing the filled area of each violin.

          - ``cmeans``: A `~.collections.LineCollection` instance that marks
            the mean values of each of the violin's distribution.

          - ``cmins``: A `~.collections.LineCollection` instance that marks
            the bottom of each violin's distribution.

          - ``cmaxes``: A `~.collections.LineCollection` instance that marks
            the top of each violin's distribution.

          - ``cbars``: A `~.collections.LineCollection` instance that marks
            the centers of each violin's distribution.

          - ``cmedians``: A `~.collections.LineCollection` instance that
            marks the median values of each of the violin's distribution.

          - ``cquantiles``: A `~.collections.LineCollection` instance created
            to identify the quantile values of each of the violin's
            distribution.

        """

        def _kde_method(X, coords):
            # fallback gracefully if the vector contains only one value
            if np.all(X[0] == X):
                return (X[0] == coords).astype(float)
            kde = mlab.GaussianKDE(X, bw_method)
            return kde.evaluate(coords)

        vpstats = cbook.violin_stats(dataset, _kde_method, points=points,
                                     quantiles=quantiles)
        return self.violin(vpstats, positions=positions, vert=vert,
                           widths=widths, showmeans=showmeans,
                           showextrema=showextrema, showmedians=showmedians)

    def violin(self, vpstats, positions=None, vert=True, widths=0.5,
               showmeans=False, showextrema=True, showmedians=False):
        """Drawing function for violin plots.

        Draw a violin plot for each column of *vpstats*. Each filled area
        extends to represent the entire data range, with optional lines at the
        mean, the median, the minimum, the maximum, and the quantiles values.

        Parameters
        ----------
        vpstats : list of dicts
          A list of dictionaries containing stats for each violin plot.
          Required keys are:

          - ``coords``: A list of scalars containing the coordinates that
            the violin's kernel density estimate were evaluated at.

          - ``vals``: A list of scalars containing the values of the
            kernel density estimate at each of the coordinates given
            in *coords*.

          - ``mean``: The mean value for this violin's dataset.

          - ``median``: The median value for this violin's dataset.

          - ``min``: The minimum value for this violin's dataset.

          - ``max``: The maximum value for this violin's dataset.

          Optional keys are:

          - ``quantiles``: A list of scalars containing the quantile values
            for this violin's dataset.

        positions : array-like, default = [1, 2, ..., n]
          Sets the positions of the violins. The ticks and limits are
          automatically set to match the positions.

        vert : bool, default = True.
          If true, plots the violins vertically.
          Otherwise, plots the violins horizontally.

        widths : array-like, default = 0.5
          Either a scalar or a vector that sets the maximal width of
          each violin. The default is 0.5, which uses about half of the
          available horizontal space.

        showmeans : bool, default = False
          If true, will toggle rendering of the means.

        showextrema : bool, default = True
          If true, will toggle rendering of the extrema.

        showmedians : bool, default = False
          If true, will toggle rendering of the medians.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the violinplot to a
          list of the corresponding collection instances created. The
          dictionary has the following keys:

          - ``bodies``: A list of the `~.collections.PolyCollection`
            instances containing the filled area of each violin.

          - ``cmeans``: A `~.collections.LineCollection` instance that marks
            the mean values of each of the violin's distribution.

          - ``cmins``: A `~.collections.LineCollection` instance that marks
            the bottom of each violin's distribution.

          - ``cmaxes``: A `~.collections.LineCollection` instance that marks
            the top of each violin's distribution.

          - ``cbars``: A `~.collections.LineCollection` instance that marks
            the centers of each violin's distribution.

          - ``cmedians``: A `~.collections.LineCollection` instance that
            marks the median values of each of the violin's distribution.

          - ``cquantiles``: A `~.collections.LineCollection` instance created
            to identify the quantiles values of each of the violin's
            distribution.

        """

        # Statistical quantities to be plotted on the violins
        means = []
        mins = []
        maxes = []
        medians = []
        quantiles = np.asarray([])

        # Collections to be returned
        artists = {}

        N = len(vpstats)
        datashape_message = ("List of violinplot statistics and `{0}` "
                             "values must have the same length")

        # Validate positions
        if positions is None:
            positions = range(1, N + 1)
        elif len(positions) != N:
            raise ValueError(datashape_message.format("positions"))

        # Validate widths
        if np.isscalar(widths):
            widths = [widths] * N
        elif len(widths) != N:
            raise ValueError(datashape_message.format("widths"))

        # Calculate ranges for statistics lines
        pmins = -0.25 * np.array(widths) + positions
        pmaxes = 0.25 * np.array(widths) + positions

        # Check whether we are rendering vertically or horizontally
        if vert:
            fill = self.fill_betweenx
            perp_lines = self.hlines
            par_lines = self.vlines
        else:
            fill = self.fill_between
            perp_lines = self.vlines
            par_lines = self.hlines

        if rcParams['_internal.classic_mode']:
            fillcolor = 'y'
            edgecolor = 'r'
        else:
            fillcolor = edgecolor = self._get_lines.get_next_color()

        # Render violins
        bodies = []
        for stats, pos, width in zip(vpstats, positions, widths):
            # The 0.5 factor reflects the fact that we plot from v-p to
            # v+p
            vals = np.array(stats['vals'])
            vals = 0.5 * width * vals / vals.max()
            bodies += [fill(stats['coords'],
                            -vals + pos,
                            vals + pos,
                            facecolor=fillcolor,
                            alpha=0.3)]
            means.append(stats['mean'])
            mins.append(stats['min'])
            maxes.append(stats['max'])
            medians.append(stats['median'])
            q = stats.get('quantiles')
            if q is not None:
                # If exist key quantiles, assume it's a list of floats
                quantiles = np.concatenate((quantiles, q))
        artists['bodies'] = bodies

        # Render means
        if showmeans:
            artists['cmeans'] = perp_lines(means, pmins, pmaxes,
                                           colors=edgecolor)

        # Render extrema
        if showextrema:
            artists['cmaxes'] = perp_lines(maxes, pmins, pmaxes,
                                           colors=edgecolor)
            artists['cmins'] = perp_lines(mins, pmins, pmaxes,
                                          colors=edgecolor)
            artists['cbars'] = par_lines(positions, mins, maxes,
                                         colors=edgecolor)

        # Render medians
        if showmedians:
            artists['cmedians'] = perp_lines(medians,
                                             pmins,
                                             pmaxes,
                                             colors=edgecolor)

        # Render quantile values
        if quantiles.size > 0:
            # Recalculate ranges for statistics lines for quantiles.
            # ppmins are the left end of quantiles lines
            ppmins = np.asarray([])
            # pmaxes are the right end of quantiles lines
            ppmaxs = np.asarray([])
            for stats, cmin, cmax in zip(vpstats, pmins, pmaxes):
                q = stats.get('quantiles')
                if q is not None:
                    ppmins = np.concatenate((ppmins, [cmin] * np.size(q)))
                    ppmaxs = np.concatenate((ppmaxs, [cmax] * np.size(q)))
            # Start rendering
            artists['cquantiles'] = perp_lines(quantiles, ppmins, ppmaxs,
                                                 colors=edgecolor)

        return artists

    # Methods that are entirely implemented in other modules.

    table = mtable.table

    # args can by either Y or y1, y2, ... and all should be replaced
    stackplot = _preprocess_data()(mstack.stackplot)

    streamplot = _preprocess_data(
        replace_names=["x", "y", "u", "v", "start_points"])(mstream.streamplot)

    tricontour = mtri.tricontour
    tricontourf = mtri.tricontourf
    tripcolor = mtri.tripcolor
    triplot = mtri.triplot