collections.py 72.6 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
"""
Classes for the efficient drawing of large collections of objects that
share most properties, e.g., a large number of line segments or
polygons.

The classes are not meant to be as flexible as their single element
counterparts (e.g., you may not be able to select all line styles) but
they are meant to be fast for common use cases (e.g., a large set of solid
line segments).
"""

import math
from numbers import Number
import numpy as np

import matplotlib as mpl
from . import (_path, artist, cbook, cm, colors as mcolors, docstring,
               lines as mlines, path as mpath, transforms)
import warnings


@cbook._define_aliases({
    "antialiased": ["antialiaseds", "aa"],
    "edgecolor": ["edgecolors", "ec"],
    "facecolor": ["facecolors", "fc"],
    "linestyle": ["linestyles", "dashes", "ls"],
    "linewidth": ["linewidths", "lw"],
})
class Collection(artist.Artist, cm.ScalarMappable):
    """
    Base class for Collections.  Must be subclassed to be usable.

    All properties in a collection must be sequences or scalars;
    if scalars, they will be converted to sequences.  The
    property of the ith element of the collection is::

      prop[i % len(props)]

    Exceptions are *capstyle* and *joinstyle* properties, these can
    only be set globally for the whole collection.

    Keyword arguments and default values:

        * *edgecolors*: None
        * *facecolors*: None
        * *linewidths*: None
        * *capstyle*:   None
        * *joinstyle*:  None
        * *antialiaseds*: None
        * *offsets*: None
        * *transOffset*: transforms.IdentityTransform()
        * *offset_position*: 'screen' (default) or 'data'
        * *norm*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)
        * *cmap*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)
        * *hatch*: None
        * *zorder*: 1

    *offsets* and *transOffset* are used to translate the patch after
    rendering (default no offsets).  If offset_position is 'screen'
    (default) the offset is applied after the master transform has
    been applied, that is, the offsets are in screen coordinates.  If
    offset_position is 'data', the offset is applied before the master
    transform, i.e., the offsets are in data coordinates.

    If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds*
    are None, they default to their :data:`matplotlib.rcParams` patch
    setting, in sequence form.

    The use of :class:`~matplotlib.cm.ScalarMappable` is optional.  If
    the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None
    (i.e., a call to set_array has been made), at draw time a call to
    scalar mappable will be made to set the face colors.
    """
    _offsets = np.zeros((0, 2))
    _transOffset = transforms.IdentityTransform()
    #: Either a list of 3x3 arrays or an Nx3x3 array of transforms, suitable
    #: for the `all_transforms` argument to
    #: :meth:`~matplotlib.backend_bases.RendererBase.draw_path_collection`;
    #: each 3x3 array is used to initialize an
    #: :class:`~matplotlib.transforms.Affine2D` object.
    #: Each kind of collection defines this based on its arguments.
    _transforms = np.empty((0, 3, 3))

    # Whether to draw an edge by default.  Set on a
    # subclass-by-subclass basis.
    _edge_default = False

    def __init__(self,
                 edgecolors=None,
                 facecolors=None,
                 linewidths=None,
                 linestyles='solid',
                 capstyle=None,
                 joinstyle=None,
                 antialiaseds=None,
                 offsets=None,
                 transOffset=None,
                 norm=None,  # optional for ScalarMappable
                 cmap=None,  # ditto
                 pickradius=5.0,
                 hatch=None,
                 urls=None,
                 offset_position='screen',
                 zorder=1,
                 **kwargs
                 ):
        """
        Create a Collection

        %(Collection)s
        """
        artist.Artist.__init__(self)
        cm.ScalarMappable.__init__(self, norm, cmap)
        # list of un-scaled dash patterns
        # this is needed scaling the dash pattern by linewidth
        self._us_linestyles = [(None, None)]
        # list of dash patterns
        self._linestyles = [(None, None)]
        # list of unbroadcast/scaled linewidths
        self._us_lw = [0]
        self._linewidths = [0]
        self._is_filled = True  # May be modified by set_facecolor().

        self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color'])
        self.set_facecolor(facecolors)
        self.set_edgecolor(edgecolors)
        self.set_linewidth(linewidths)
        self.set_linestyle(linestyles)
        self.set_antialiased(antialiaseds)
        self.set_pickradius(pickradius)
        self.set_urls(urls)
        self.set_hatch(hatch)
        self.set_offset_position(offset_position)
        self.set_zorder(zorder)

        if capstyle:
            self.set_capstyle(capstyle)
        else:
            self._capstyle = None

        if joinstyle:
            self.set_joinstyle(joinstyle)
        else:
            self._joinstyle = None

        self._offsets = np.zeros((1, 2))
        # save if offsets passed in were none...
        self._offsetsNone = offsets is None
        self._uniform_offsets = None
        if offsets is not None:
            offsets = np.asanyarray(offsets, float)
            # Broadcast (2,) -> (1, 2) but nothing else.
            if offsets.shape == (2,):
                offsets = offsets[None, :]
            if transOffset is not None:
                self._offsets = offsets
                self._transOffset = transOffset
            else:
                self._uniform_offsets = offsets

        self._path_effects = None
        self.update(kwargs)
        self._paths = None

    def get_paths(self):
        return self._paths

    def set_paths(self):
        raise NotImplementedError

    def get_transforms(self):
        return self._transforms

    def get_offset_transform(self):
        t = self._transOffset
        if (not isinstance(t, transforms.Transform)
                and hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)
        return t

    def get_datalim(self, transData):

        # Get the automatic datalim of the collection.
        #
        # This operation depends on the transforms for the data in the
        # collection and whether the collection has offsets.
        #
        # 1) offsets = None, transform child of transData: use the paths for
        # the automatic limits (i.e. for LineCollection in streamline).
        # 2) offsets != None: offset_transform is child of transData:
        #    a) transform is child of transData: use the path + offset for
        #       limits (i.e for bar).
        #    b) transform is not a child of transData: just use the offsets
        #       for the limits (i.e. for scatter)
        # 3) otherwise return a null Bbox.

        transform = self.get_transform()
        transOffset = self.get_offset_transform()
        if (not self._offsetsNone and
            not transOffset.contains_branch(transData)):
            # if there are offsets but in some co-ords other than data,
            # then don't use them for autoscaling.
            return transforms.Bbox.null()
        offsets = self._offsets

        paths = self.get_paths()

        if not transform.is_affine:
            paths = [transform.transform_path_non_affine(p) for p in paths]
            # Don't convert transform to transform.get_affine() here because
            # we may have transform.contains_branch(transData) but not
            # transforms.get_affine().contains_branch(transData).  But later,
            # be careful to only apply the affine part that remains.
        if not transOffset.is_affine:
            offsets = transOffset.transform_non_affine(offsets)

        if isinstance(offsets, np.ma.MaskedArray):
            offsets = offsets.filled(np.nan)
            # get_path_collection_extents handles nan but not masked arrays

        if len(paths) and len(offsets):
            if transform.contains_branch(transData):
                # collections that are just in data units (like quiver)
                # can properly have the axes limits set by their shape +
                # offset.  LineCollections that have no offsets can
                # also use this algorithm (like streamplot).
                result = mpath.get_path_collection_extents(
                    transform.get_affine(), paths, self.get_transforms(),
                    offsets, transOffset.get_affine().frozen())
                return result.inverse_transformed(transData)
            if not self._offsetsNone:
                # this is for collections that have their paths (shapes)
                # in physical, axes-relative, or figure-relative units
                # (i.e. like scatter). We can't uniquely set limits based on
                # those shapes, so we just set the limits based on their
                # location.
                # Finish the transform:
                offsets = (transOffset.get_affine() +
                           transData.inverted()).transform(offsets)
                offsets = np.ma.masked_invalid(offsets)
                if not offsets.mask.all():
                    points = np.row_stack((offsets.min(axis=0),
                                           offsets.max(axis=0)))
                    return transforms.Bbox(points)
        return transforms.Bbox.null()

    def get_window_extent(self, renderer):
        # TODO: check to ensure that this does not fail for
        # cases other than scatter plot legend
        return self.get_datalim(transforms.IdentityTransform())

    def _prepare_points(self):
        # Helper for drawing and hit testing.

        transform = self.get_transform()
        transOffset = self.get_offset_transform()
        offsets = self._offsets
        paths = self.get_paths()

        if self.have_units():
            paths = []
            for path in self.get_paths():
                vertices = path.vertices
                xs, ys = vertices[:, 0], vertices[:, 1]
                xs = self.convert_xunits(xs)
                ys = self.convert_yunits(ys)
                paths.append(mpath.Path(np.column_stack([xs, ys]), path.codes))
            if offsets.size:
                xs = self.convert_xunits(offsets[:, 0])
                ys = self.convert_yunits(offsets[:, 1])
                offsets = np.column_stack([xs, ys])

        if not transform.is_affine:
            paths = [transform.transform_path_non_affine(path)
                     for path in paths]
            transform = transform.get_affine()
        if not transOffset.is_affine:
            offsets = transOffset.transform_non_affine(offsets)
            # This might have changed an ndarray into a masked array.
            transOffset = transOffset.get_affine()

        if isinstance(offsets, np.ma.MaskedArray):
            offsets = offsets.filled(np.nan)
            # Changing from a masked array to nan-filled ndarray
            # is probably most efficient at this point.

        return transform, transOffset, offsets, paths

    @artist.allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        renderer.open_group(self.__class__.__name__, self.get_gid())

        self.update_scalarmappable()

        transform, transOffset, offsets, paths = self._prepare_points()

        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_snap(self.get_snap())

        if self._hatch:
            gc.set_hatch(self._hatch)
            try:
                gc.set_hatch_color(self._hatch_color)
            except AttributeError:
                # if we end up with a GC that does not have this method
                cbook.warn_deprecated(
                    "3.1", message="Your backend does not support setting the "
                    "hatch color; such backends will become unsupported in "
                    "Matplotlib 3.3.")

        if self.get_sketch_params() is not None:
            gc.set_sketch_params(*self.get_sketch_params())

        if self.get_path_effects():
            from matplotlib.patheffects import PathEffectRenderer
            renderer = PathEffectRenderer(self.get_path_effects(), renderer)

        # If the collection is made up of a single shape/color/stroke,
        # it can be rendered once and blitted multiple times, using
        # `draw_markers` rather than `draw_path_collection`.  This is
        # *much* faster for Agg, and results in smaller file sizes in
        # PDF/SVG/PS.

        trans = self.get_transforms()
        facecolors = self.get_facecolor()
        edgecolors = self.get_edgecolor()
        do_single_path_optimization = False
        if (len(paths) == 1 and len(trans) <= 1 and
            len(facecolors) == 1 and len(edgecolors) == 1 and
            len(self._linewidths) == 1 and
            self._linestyles == [(None, None)] and
            len(self._antialiaseds) == 1 and len(self._urls) == 1 and
            self.get_hatch() is None):
            if len(trans):
                combined_transform = transforms.Affine2D(trans[0]) + transform
            else:
                combined_transform = transform
            extents = paths[0].get_extents(combined_transform)
            if (extents.width < self.figure.bbox.width
                    and extents.height < self.figure.bbox.height):
                do_single_path_optimization = True

        if self._joinstyle:
            gc.set_joinstyle(self._joinstyle)

        if self._capstyle:
            gc.set_capstyle(self._capstyle)

        if do_single_path_optimization:
            gc.set_foreground(tuple(edgecolors[0]))
            gc.set_linewidth(self._linewidths[0])
            gc.set_dashes(*self._linestyles[0])
            gc.set_antialiased(self._antialiaseds[0])
            gc.set_url(self._urls[0])
            renderer.draw_markers(
                gc, paths[0], combined_transform.frozen(),
                mpath.Path(offsets), transOffset, tuple(facecolors[0]))
        else:
            renderer.draw_path_collection(
                gc, transform.frozen(), paths,
                self.get_transforms(), offsets, transOffset,
                self.get_facecolor(), self.get_edgecolor(),
                self._linewidths, self._linestyles,
                self._antialiaseds, self._urls,
                self._offset_position)

        gc.restore()
        renderer.close_group(self.__class__.__name__)
        self.stale = False

    def set_pickradius(self, pr):
        """
        Set the pick radius used for containment tests.

        Parameters
        ----------
        d : float
            Pick radius, in points.
        """
        self._pickradius = pr

    def get_pickradius(self):
        return self._pickradius

    def contains(self, mouseevent):
        """
        Test whether the mouse event occurred in the collection.

        Returns ``bool, dict(ind=itemlist)``, where every item in itemlist
        contains the event.
        """
        inside, info = self._default_contains(mouseevent)
        if inside is not None:
            return inside, info

        if not self.get_visible():
            return False, {}

        pickradius = (
            float(self._picker)
            if isinstance(self._picker, Number) and
               self._picker is not True  # the bool, not just nonzero or 1
            else self._pickradius)

        if self.axes and self.get_offset_position() == "data":
            self.axes._unstale_viewLim()

        transform, transOffset, offsets, paths = self._prepare_points()

        ind = _path.point_in_path_collection(
            mouseevent.x, mouseevent.y, pickradius,
            transform.frozen(), paths, self.get_transforms(),
            offsets, transOffset, pickradius <= 0,
            self.get_offset_position())

        return len(ind) > 0, dict(ind=ind)

    def set_urls(self, urls):
        """
        Parameters
        ----------
        urls : List[str] or None
        """
        self._urls = urls if urls is not None else [None]
        self.stale = True

    def get_urls(self):
        return self._urls

    def set_hatch(self, hatch):
        r"""
        Set the hatching pattern

        *hatch* can be one of::

          /   - diagonal hatching
          \   - back diagonal
          |   - vertical
          -   - horizontal
          +   - crossed
          x   - crossed diagonal
          o   - small circle
          O   - large circle
          .   - dots
          *   - stars

        Letters can be combined, in which case all the specified
        hatchings are done.  If same letter repeats, it increases the
        density of hatching of that pattern.

        Hatching is supported in the PostScript, PDF, SVG and Agg
        backends only.

        Unlike other properties such as linewidth and colors, hatching
        can only be specified for the collection as a whole, not separately
        for each member.

        Parameters
        ----------
        hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
        """
        self._hatch = hatch
        self.stale = True

    def get_hatch(self):
        """Return the current hatching pattern."""
        return self._hatch

    def set_offsets(self, offsets):
        """
        Set the offsets for the collection.

        Parameters
        ----------
        offsets : array-like (N, 2) or (2,)
        """
        offsets = np.asanyarray(offsets, float)
        if offsets.shape == (2,):  # Broadcast (2,) -> (1, 2) but nothing else.
            offsets = offsets[None, :]
        # This decision is based on how they are initialized above in __init__.
        if self._uniform_offsets is None:
            self._offsets = offsets
        else:
            self._uniform_offsets = offsets
        self.stale = True

    def get_offsets(self):
        """Return the offsets for the collection."""
        # This decision is based on how they are initialized above in __init__.
        if self._uniform_offsets is None:
            return self._offsets
        else:
            return self._uniform_offsets

    def set_offset_position(self, offset_position):
        """
        Set how offsets are applied.  If *offset_position* is 'screen'
        (default) the offset is applied after the master transform has
        been applied, that is, the offsets are in screen coordinates.
        If offset_position is 'data', the offset is applied before the
        master transform, i.e., the offsets are in data coordinates.

        Parameters
        ----------
        offset_position : {'screen', 'data'}
        """
        cbook._check_in_list(['screen', 'data'],
                             offset_position=offset_position)
        self._offset_position = offset_position
        self.stale = True

    def get_offset_position(self):
        """
        Returns how offsets are applied for the collection.  If
        *offset_position* is 'screen', the offset is applied after the
        master transform has been applied, that is, the offsets are in
        screen coordinates.  If offset_position is 'data', the offset
        is applied before the master transform, i.e., the offsets are
        in data coordinates.
        """
        return self._offset_position

    def set_linewidth(self, lw):
        """
        Set the linewidth(s) for the collection.  *lw* can be a scalar
        or a sequence; if it is a sequence the patches will cycle
        through the sequence

        Parameters
        ----------
        lw : float or sequence of floats
        """
        if lw is None:
            lw = mpl.rcParams['patch.linewidth']
            if lw is None:
                lw = mpl.rcParams['lines.linewidth']
        # get the un-scaled/broadcast lw
        self._us_lw = np.atleast_1d(np.asarray(lw))

        # scale all of the dash patterns.
        self._linewidths, self._linestyles = self._bcast_lwls(
            self._us_lw, self._us_linestyles)
        self.stale = True

    def set_linestyle(self, ls):
        """
        Set the linestyle(s) for the collection.

        ===========================   =================
        linestyle                     description
        ===========================   =================
        ``'-'`` or ``'solid'``        solid line
        ``'--'`` or  ``'dashed'``     dashed line
        ``'-.'`` or  ``'dashdot'``    dash-dotted line
        ``':'`` or ``'dotted'``       dotted line
        ===========================   =================

        Alternatively a dash tuple of the following form can be provided::

            (offset, onoffseq),

        where ``onoffseq`` is an even length tuple of on and off ink in points.

        Parameters
        ----------
        ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
            The line style.
        """
        try:
            if isinstance(ls, str):
                ls = cbook.ls_mapper.get(ls, ls)
                dashes = [mlines._get_dash_pattern(ls)]
            else:
                try:
                    dashes = [mlines._get_dash_pattern(ls)]
                except ValueError:
                    dashes = [mlines._get_dash_pattern(x) for x in ls]

        except ValueError:
            raise ValueError(
                'Do not know how to convert {!r} to dashes'.format(ls))

        # get the list of raw 'unscaled' dash patterns
        self._us_linestyles = dashes

        # broadcast and scale the lw and dash patterns
        self._linewidths, self._linestyles = self._bcast_lwls(
            self._us_lw, self._us_linestyles)

    def set_capstyle(self, cs):
        """
        Set the capstyle for the collection (for all its elements).

        Parameters
        ----------
        cs : {'butt', 'round', 'projecting'}
            The capstyle
        """
        cbook._check_in_list(('butt', 'round', 'projecting'), capstyle=cs)
        self._capstyle = cs

    def get_capstyle(self):
        return self._capstyle

    def set_joinstyle(self, js):
        """
        Set the joinstyle for the collection (for all its elements).

        Parameters
        ----------
        js : {'miter', 'round', 'bevel'}
            The joinstyle
        """
        cbook._check_in_list(('miter', 'round', 'bevel'), joinstyle=js)
        self._joinstyle = js

    def get_joinstyle(self):
        return self._joinstyle

    @staticmethod
    def _bcast_lwls(linewidths, dashes):
        """
        Internal helper function to broadcast + scale ls/lw

        In the collection drawing code, the linewidth and linestyle are cycled
        through as circular buffers (via ``v[i % len(v)]``).  Thus, if we are
        going to scale the dash pattern at set time (not draw time) we need to
        do the broadcasting now and expand both lists to be the same length.

        Parameters
        ----------
        linewidths : list
            line widths of collection
        dashes : list
            dash specification (offset, (dash pattern tuple))

        Returns
        -------
        linewidths, dashes : list
             Will be the same length, dashes are scaled by paired linewidth
        """
        if mpl.rcParams['_internal.classic_mode']:
            return linewidths, dashes
        # make sure they are the same length so we can zip them
        if len(dashes) != len(linewidths):
            l_dashes = len(dashes)
            l_lw = len(linewidths)
            gcd = math.gcd(l_dashes, l_lw)
            dashes = list(dashes) * (l_lw // gcd)
            linewidths = list(linewidths) * (l_dashes // gcd)

        # scale the dash patters
        dashes = [mlines._scale_dashes(o, d, lw)
                  for (o, d), lw in zip(dashes, linewidths)]

        return linewidths, dashes

    def set_antialiased(self, aa):
        """
        Set the antialiasing state for rendering.

        Parameters
        ----------
        aa : bool or sequence of bools
        """
        if aa is None:
            aa = mpl.rcParams['patch.antialiased']
        self._antialiaseds = np.atleast_1d(np.asarray(aa, bool))
        self.stale = True

    def set_color(self, c):
        """
        Set both the edgecolor and the facecolor.

        Parameters
        ----------
        c : color or sequence of rgba tuples

        See Also
        --------
        Collection.set_facecolor, Collection.set_edgecolor
            For setting the edge or face color individually.
        """
        self.set_facecolor(c)
        self.set_edgecolor(c)

    def _set_facecolor(self, c):
        if c is None:
            c = mpl.rcParams['patch.facecolor']

        self._is_filled = True
        try:
            if c.lower() == 'none':
                self._is_filled = False
        except AttributeError:
            pass
        self._facecolors = mcolors.to_rgba_array(c, self._alpha)
        self.stale = True

    def set_facecolor(self, c):
        """
        Set the facecolor(s) of the collection. *c* can be a color (all patches
        have same color), or a sequence of colors; if it is a sequence the
        patches will cycle through the sequence.

        If *c* is 'none', the patch will not be filled.

        Parameters
        ----------
        c : color or sequence of colors
        """
        self._original_facecolor = c
        self._set_facecolor(c)

    def get_facecolor(self):
        return self._facecolors

    def get_edgecolor(self):
        if cbook._str_equal(self._edgecolors, 'face'):
            return self.get_facecolor()
        else:
            return self._edgecolors

    def _set_edgecolor(self, c):
        set_hatch_color = True
        if c is None:
            if (mpl.rcParams['patch.force_edgecolor'] or
                    not self._is_filled or self._edge_default):
                c = mpl.rcParams['patch.edgecolor']
            else:
                c = 'none'
                set_hatch_color = False

        self._is_stroked = True
        try:
            if c.lower() == 'none':
                self._is_stroked = False
        except AttributeError:
            pass

        try:
            if c.lower() == 'face':   # Special case: lookup in "get" method.
                self._edgecolors = 'face'
                return
        except AttributeError:
            pass
        self._edgecolors = mcolors.to_rgba_array(c, self._alpha)
        if set_hatch_color and len(self._edgecolors):
            self._hatch_color = tuple(self._edgecolors[0])
        self.stale = True

    def set_edgecolor(self, c):
        """
        Set the edgecolor(s) of the collection.

        Parameters
        ----------
        c : color or sequence of colors or 'face'
            The collection edgecolor(s).  If a sequence, the patches cycle
            through it.  If 'face', match the facecolor.
        """
        self._original_edgecolor = c
        self._set_edgecolor(c)

    def set_alpha(self, alpha):
        # docstring inherited
        super().set_alpha(alpha)
        self.update_dict['array'] = True
        self._set_facecolor(self._original_facecolor)
        self._set_edgecolor(self._original_edgecolor)

    def get_linewidth(self):
        return self._linewidths

    def get_linestyle(self):
        return self._linestyles

    def update_scalarmappable(self):
        """Update colors from the scalar mappable array, if it is not None."""
        if self._A is None:
            return
        if self._A.ndim > 1:
            raise ValueError('Collections can only map rank 1 arrays')
        if not self.check_update("array"):
            return
        if self._is_filled:
            self._facecolors = self.to_rgba(self._A, self._alpha)
        elif self._is_stroked:
            self._edgecolors = self.to_rgba(self._A, self._alpha)
        self.stale = True

    def get_fill(self):
        'return whether fill is set'
        return self._is_filled

    def update_from(self, other):
        'copy properties from other to self'

        artist.Artist.update_from(self, other)
        self._antialiaseds = other._antialiaseds
        self._original_edgecolor = other._original_edgecolor
        self._edgecolors = other._edgecolors
        self._original_facecolor = other._original_facecolor
        self._facecolors = other._facecolors
        self._linewidths = other._linewidths
        self._linestyles = other._linestyles
        self._us_linestyles = other._us_linestyles
        self._pickradius = other._pickradius
        self._hatch = other._hatch

        # update_from for scalarmappable
        self._A = other._A
        self.norm = other.norm
        self.cmap = other.cmap
        # self.update_dict = other.update_dict # do we need to copy this? -JJL
        self.stale = True


# these are not available for the object inspector until after the
# class is built so we define an initial set here for the init
# function and they will be overridden after object defn
docstring.interpd.update(Collection="""\
    Valid Collection keyword arguments:

        * *edgecolors*: None
        * *facecolors*: None
        * *linewidths*: None
        * *antialiaseds*: None
        * *offsets*: None
        * *transOffset*: transforms.IdentityTransform()
        * *norm*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)
        * *cmap*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)

    *offsets* and *transOffset* are used to translate the patch after
    rendering (default no offsets)

    If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds*
    are None, they default to their :data:`matplotlib.rcParams` patch
    setting, in sequence form.
""")


class _CollectionWithSizes(Collection):
    """
    Base class for collections that have an array of sizes.
    """
    _factor = 1.0

    def get_sizes(self):
        """
        Returns the sizes of the elements in the collection.  The
        value represents the 'area' of the element.

        Returns
        -------
        sizes : array
            The 'area' of each element.
        """
        return self._sizes

    def set_sizes(self, sizes, dpi=72.0):
        """
        Set the sizes of each member of the collection.

        Parameters
        ----------
        sizes : ndarray or None
            The size to set for each element of the collection.  The
            value is the 'area' of the element.
        dpi : float
            The dpi of the canvas. Defaults to 72.0.
        """
        if sizes is None:
            self._sizes = np.array([])
            self._transforms = np.empty((0, 3, 3))
        else:
            self._sizes = np.asarray(sizes)
            self._transforms = np.zeros((len(self._sizes), 3, 3))
            scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor
            self._transforms[:, 0, 0] = scale
            self._transforms[:, 1, 1] = scale
            self._transforms[:, 2, 2] = 1.0
        self.stale = True

    @artist.allow_rasterization
    def draw(self, renderer):
        self.set_sizes(self._sizes, self.figure.dpi)
        Collection.draw(self, renderer)


class PathCollection(_CollectionWithSizes):
    """
    This is the most basic :class:`Collection` subclass.
    A :class:`PathCollection` is e.g. created by a :meth:`~.Axes.scatter` plot.
    """
    @docstring.dedent_interpd
    def __init__(self, paths, sizes=None, **kwargs):
        """
        *paths* is a sequence of :class:`matplotlib.path.Path`
        instances.

        %(Collection)s
        """

        Collection.__init__(self, **kwargs)
        self.set_paths(paths)
        self.set_sizes(sizes)
        self.stale = True

    def set_paths(self, paths):
        self._paths = paths
        self.stale = True

    def get_paths(self):
        return self._paths

    def legend_elements(self, prop="colors", num="auto",
                     fmt=None, func=lambda x: x, **kwargs):
        """
        Creates legend handles and labels for a PathCollection. This is useful
        for obtaining a legend for a :meth:`~.Axes.scatter` plot. E.g.::

            scatter = plt.scatter([1, 2, 3],  [4, 5, 6],  c=[7, 2, 3])
            plt.legend(*scatter.legend_elements())

        Also see the :ref:`automatedlegendcreation` example.

        Parameters
        ----------
        prop : string, optional, default *"colors"*
            Can be *"colors"* or *"sizes"*. In case of *"colors"*, the legend
            handles will show the different colors of the collection. In case
            of "sizes", the legend will show the different sizes.
        num : int, None, "auto" (default), array-like, or `~.ticker.Locator`,
            optional
            Target number of elements to create.
            If None, use all unique elements of the mappable array. If an
            integer, target to use *num* elements in the normed range.
            If *"auto"*, try to determine which option better suits the nature
            of the data.
            The number of created elements may slightly deviate from *num* due
            to a `~.ticker.Locator` being used to find useful locations.
            If a list or array, use exactly those elements for the legend.
            Finally, a `~.ticker.Locator` can be provided.
        fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
            The format or formatter to use for the labels. If a string must be
            a valid input for a `~.StrMethodFormatter`. If None (the default),
            use a `~.ScalarFormatter`.
        func : function, default *lambda x: x*
            Function to calculate the labels. Often the size (or color)
            argument to :meth:`~.Axes.scatter` will have been pre-processed
            by the user using a function *s = f(x)* to make the markers
            visible; e.g. *size = np.log10(x)*. Providing the inverse of this
            function here allows that pre-processing to be inverted, so that
            the legend labels have the correct values;
            e.g. *func = np.exp(x, 10)*.
        kwargs : further parameters
            Allowed keyword arguments are *color* and *size*. E.g. it may be
            useful to set the color of the markers if *prop="sizes"* is used;
            similarly to set the size of the markers if *prop="colors"* is
            used. Any further parameters are passed onto the `.Line2D`
            instance. This may be useful to e.g. specify a different
            *markeredgecolor* or *alpha* for the legend handles.

        Returns
        -------
        tuple (handles, labels)
            with *handles* being a list of `.Line2D`  objects
            and *labels* a matching list of strings.
        """
        handles = []
        labels = []
        hasarray = self.get_array() is not None
        if fmt is None:
            fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True)
        elif isinstance(fmt, str):
            fmt = mpl.ticker.StrMethodFormatter(fmt)
        fmt.create_dummy_axis()

        if prop == "colors":
            if not hasarray:
                warnings.warn("Collection without array used. Make sure to "
                              "specify the values to be colormapped via the "
                              "`c` argument.")
                return handles, labels
            u = np.unique(self.get_array())
            size = kwargs.pop("size", mpl.rcParams["lines.markersize"])
        elif prop == "sizes":
            u = np.unique(self.get_sizes())
            color = kwargs.pop("color", "k")
        else:
            raise ValueError("Valid values for `prop` are 'colors' or "
                             f"'sizes'. You supplied '{prop}' instead.")

        fmt.set_bounds(func(u).min(), func(u).max())
        if num == "auto":
            num = 9
            if len(u) <= num:
                num = None
        if num is None:
            values = u
            label_values = func(values)
        else:
            if prop == "colors":
                arr = self.get_array()
            elif prop == "sizes":
                arr = self.get_sizes()
            if isinstance(num, mpl.ticker.Locator):
                loc = num
            elif np.iterable(num):
                loc = mpl.ticker.FixedLocator(num)
            else:
                num = int(num)
                loc = mpl.ticker.MaxNLocator(nbins=num, min_n_ticks=num-1,
                                             steps=[1, 2, 2.5, 3, 5, 6, 8, 10])
            label_values = loc.tick_values(func(arr).min(), func(arr).max())
            cond = ((label_values >= func(arr).min()) &
                    (label_values <= func(arr).max()))
            label_values = label_values[cond]
            xarr = np.linspace(arr.min(), arr.max(), 256)
            values = np.interp(label_values, func(xarr), xarr)

        kw = dict(markeredgewidth=self.get_linewidths()[0],
                  alpha=self.get_alpha())
        kw.update(kwargs)

        for val, lab in zip(values, label_values):
            if prop == "colors":
                color = self.cmap(self.norm(val))
            elif prop == "sizes":
                size = np.sqrt(val)
                if np.isclose(size, 0.0):
                    continue
            h = mlines.Line2D([0], [0], ls="", color=color, ms=size,
                              marker=self.get_paths()[0], **kw)
            handles.append(h)
            if hasattr(fmt, "set_locs"):
                fmt.set_locs(label_values)
            l = fmt(lab)
            labels.append(l)

        return handles, labels


class PolyCollection(_CollectionWithSizes):
    @docstring.dedent_interpd
    def __init__(self, verts, sizes=None, closed=True, **kwargs):
        """
        *verts* is a sequence of ( *verts0*, *verts1*, ...) where
        *verts_i* is a sequence of *xy* tuples of vertices, or an
        equivalent :mod:`numpy` array of shape (*nv*, 2).

        *sizes* is *None* (default) or a sequence of floats that
        scale the corresponding *verts_i*.  The scaling is applied
        before the Artist master transform; if the latter is an identity
        transform, then the overall scaling is such that if
        *verts_i* specify a unit square, then *sizes_i* is the area
        of that square in points^2.
        If len(*sizes*) < *nv*, the additional values will be
        taken cyclically from the array.

        *closed*, when *True*, will explicitly close the polygon.

        %(Collection)s
        """
        Collection.__init__(self, **kwargs)
        self.set_sizes(sizes)
        self.set_verts(verts, closed)
        self.stale = True

    def set_verts(self, verts, closed=True):
        '''This allows one to delay initialization of the vertices.'''
        if isinstance(verts, np.ma.MaskedArray):
            verts = verts.astype(float).filled(np.nan)
            # This is much faster than having Path do it one at a time.
        if closed:
            self._paths = []
            for xy in verts:
                if len(xy):
                    if isinstance(xy, np.ma.MaskedArray):
                        xy = np.ma.concatenate([xy, xy[0:1]])
                    else:
                        xy = np.asarray(xy)
                        xy = np.concatenate([xy, xy[0:1]])
                    codes = np.empty(xy.shape[0], dtype=mpath.Path.code_type)
                    codes[:] = mpath.Path.LINETO
                    codes[0] = mpath.Path.MOVETO
                    codes[-1] = mpath.Path.CLOSEPOLY
                    self._paths.append(mpath.Path(xy, codes))
                else:
                    self._paths.append(mpath.Path(xy))
        else:
            self._paths = [mpath.Path(xy) for xy in verts]
        self.stale = True

    set_paths = set_verts

    def set_verts_and_codes(self, verts, codes):
        """This allows one to initialize vertices with path codes."""
        if len(verts) != len(codes):
            raise ValueError("'codes' must be a 1D list or array "
                             "with the same length of 'verts'")
        self._paths = []
        for xy, cds in zip(verts, codes):
            if len(xy):
                self._paths.append(mpath.Path(xy, cds))
            else:
                self._paths.append(mpath.Path(xy))
        self.stale = True


class BrokenBarHCollection(PolyCollection):
    """
    A collection of horizontal bars spanning *yrange* with a sequence of
    *xranges*.
    """
    @docstring.dedent_interpd
    def __init__(self, xranges, yrange, **kwargs):
        """
        *xranges*
            sequence of (*xmin*, *xwidth*)

        *yrange*
            *ymin*, *ywidth*

        %(Collection)s
        """
        ymin, ywidth = yrange
        ymax = ymin + ywidth
        verts = [[(xmin, ymin),
                  (xmin, ymax),
                  (xmin + xwidth, ymax),
                  (xmin + xwidth, ymin),
                  (xmin, ymin)] for xmin, xwidth in xranges]
        PolyCollection.__init__(self, verts, **kwargs)

    @staticmethod
    def span_where(x, ymin, ymax, where, **kwargs):
        """
        Create a BrokenBarHCollection to plot horizontal bars from
        over the regions in *x* where *where* is True.  The bars range
        on the y-axis from *ymin* to *ymax*

        A :class:`BrokenBarHCollection` is returned.  *kwargs* are
        passed on to the collection.
        """
        xranges = []
        for ind0, ind1 in cbook.contiguous_regions(where):
            xslice = x[ind0:ind1]
            if not len(xslice):
                continue
            xranges.append((xslice[0], xslice[-1] - xslice[0]))

        collection = BrokenBarHCollection(
            xranges, [ymin, ymax - ymin], **kwargs)
        return collection


class RegularPolyCollection(_CollectionWithSizes):
    """Draw a collection of regular polygons with *numsides*."""

    _path_generator = mpath.Path.unit_regular_polygon
    _factor = np.pi ** (-1/2)

    @docstring.dedent_interpd
    def __init__(self,
                 numsides,
                 rotation=0,
                 sizes=(1,),
                 **kwargs):
        """
        *numsides*
            the number of sides of the polygon

        *rotation*
            the rotation of the polygon in radians

        *sizes*
            gives the area of the circle circumscribing the
            regular polygon in points^2

        %(Collection)s

        Example: see :doc:`/gallery/event_handling/lasso_demo` for a
        complete example::

            offsets = np.random.rand(20, 2)
            facecolors = [cm.jet(x) for x in np.random.rand(20)]

            collection = RegularPolyCollection(
                numsides=5, # a pentagon
                rotation=0, sizes=(50,),
                facecolors=facecolors,
                edgecolors=("black",),
                linewidths=(1,),
                offsets=offsets,
                transOffset=ax.transData,
                )
        """
        Collection.__init__(self, **kwargs)
        self.set_sizes(sizes)
        self._numsides = numsides
        self._paths = [self._path_generator(numsides)]
        self._rotation = rotation
        self.set_transform(transforms.IdentityTransform())

    def get_numsides(self):
        return self._numsides

    def get_rotation(self):
        return self._rotation

    @artist.allow_rasterization
    def draw(self, renderer):
        self.set_sizes(self._sizes, self.figure.dpi)
        self._transforms = [
            transforms.Affine2D(x).rotate(-self._rotation).get_matrix()
            for x in self._transforms
        ]
        Collection.draw(self, renderer)


class StarPolygonCollection(RegularPolyCollection):
    """Draw a collection of regular stars with *numsides* points."""
    _path_generator = mpath.Path.unit_regular_star


class AsteriskPolygonCollection(RegularPolyCollection):
    """Draw a collection of regular asterisks with *numsides* points."""
    _path_generator = mpath.Path.unit_regular_asterisk


class LineCollection(Collection):
    """
    All parameters must be sequences or scalars; if scalars, they will
    be converted to sequences.  The property of the ith line
    segment is::

       prop[i % len(props)]

    i.e., the properties cycle if the ``len`` of props is less than the
    number of segments.
    """

    _edge_default = True

    def __init__(self, segments,     # Can be None.
                 linewidths=None,
                 colors=None,
                 antialiaseds=None,
                 linestyles='solid',
                 offsets=None,
                 transOffset=None,
                 norm=None,
                 cmap=None,
                 pickradius=5,
                 zorder=2,
                 facecolors='none',
                 **kwargs
                 ):
        """
        Parameters
        ----------
        segments
            A sequence of (*line0*, *line1*, *line2*), where::

                linen = (x0, y0), (x1, y1), ... (xm, ym)

            or the equivalent numpy array with two columns. Each line
            can be a different length.

        colors : sequence, optional
            A sequence of RGBA tuples (e.g., arbitrary color
            strings, etc, not allowed).

        antialiaseds : sequence, optional
            A sequence of ones or zeros.

        linestyles : str or tuple, optional
            Either one of {'solid', 'dashed', 'dashdot', 'dotted'}, or
            a dash tuple. The dash tuple is::

                (offset, onoffseq)

            where ``onoffseq`` is an even length tuple of on and off ink
            in points.

        norm : Normalize, optional
            `~.colors.Normalize` instance.

        cmap : str or Colormap, optional
            Colormap name or `~.colors.Colormap` instance.

        pickradius : float, optional
            The tolerance in points for mouse clicks picking a line.
            Default is 5 pt.

        zorder : int, optional
           zorder of the LineCollection. Default is 2.

        facecolors : optional
           The facecolors of the LineCollection. Default is 'none'.
           Setting to a value other than 'none' will lead to a filled
           polygon being drawn between points on each line.

        Notes
        -----
        If *linewidths*, *colors*, or *antialiaseds* is None, they
        default to their rcParams setting, in sequence form.

        If *offsets* and *transOffset* are not None, then
        *offsets* are transformed by *transOffset* and applied after
        the segments have been transformed to display coordinates.

        If *offsets* is not None but *transOffset* is None, then the
        *offsets* are added to the segments before any transformation.
        In this case, a single offset can be specified as::

            offsets=(xo, yo)

        and this value will be added cumulatively to each successive
        segment, so as to produce a set of successively offset curves.

        The use of :class:`~matplotlib.cm.ScalarMappable` is optional.
        If the :class:`~matplotlib.cm.ScalarMappable` array
        :attr:`~matplotlib.cm.ScalarMappable._A` is not None (i.e., a call to
        :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at
        draw time a call to scalar mappable will be made to set the colors.
        """
        if colors is None:
            colors = mpl.rcParams['lines.color']
        if linewidths is None:
            linewidths = (mpl.rcParams['lines.linewidth'],)
        if antialiaseds is None:
            antialiaseds = (mpl.rcParams['lines.antialiased'],)

        colors = mcolors.to_rgba_array(colors)
        Collection.__init__(
            self,
            edgecolors=colors,
            facecolors=facecolors,
            linewidths=linewidths,
            linestyles=linestyles,
            antialiaseds=antialiaseds,
            offsets=offsets,
            transOffset=transOffset,
            norm=norm,
            cmap=cmap,
            pickradius=pickradius,
            zorder=zorder,
            **kwargs)

        self.set_segments(segments)

    def set_segments(self, segments):
        if segments is None:
            return
        _segments = []

        for seg in segments:
            if not isinstance(seg, np.ma.MaskedArray):
                seg = np.asarray(seg, float)
            _segments.append(seg)

        if self._uniform_offsets is not None:
            _segments = self._add_offsets(_segments)

        self._paths = [mpath.Path(_seg) for _seg in _segments]
        self.stale = True

    set_verts = set_segments  # for compatibility with PolyCollection
    set_paths = set_segments

    def get_segments(self):
        """
        Returns
        -------
        segments : list
            List of segments in the LineCollection. Each list item contains an
            array of vertices.
        """
        segments = []

        for path in self._paths:
            vertices = [vertex for vertex, _ in path.iter_segments()]
            vertices = np.asarray(vertices)
            segments.append(vertices)

        return segments

    def _add_offsets(self, segs):
        offsets = self._uniform_offsets
        Nsegs = len(segs)
        Noffs = offsets.shape[0]
        if Noffs == 1:
            for i in range(Nsegs):
                segs[i] = segs[i] + i * offsets
        else:
            for i in range(Nsegs):
                io = i % Noffs
                segs[i] = segs[i] + offsets[io:io + 1]
        return segs

    def set_color(self, c):
        """
        Set the color(s) of the LineCollection.

        Parameters
        ----------
        c : color or list of colors
            Matplotlib color argument (all patches have same color), or a
            sequence or rgba tuples; if it is a sequence the patches will
            cycle through the sequence.
        """
        self.set_edgecolor(c)
        self.stale = True

    def get_color(self):
        return self._edgecolors

    get_colors = get_color  # for compatibility with old versions


class EventCollection(LineCollection):
    """
    A collection of discrete events.

    The events are given by a 1-dimensional array, usually the position of
    something along an axis, such as time or length.  They do not have an
    amplitude and are displayed as vertical or horizontal parallel bars.
    """

    _edge_default = True

    def __init__(self,
                 positions,     # Cannot be None.
                 orientation=None,
                 lineoffset=0,
                 linelength=1,
                 linewidth=None,
                 color=None,
                 linestyle='solid',
                 antialiased=None,
                 **kwargs
                 ):
        """
        Parameters
        ----------
        positions : 1D array-like object
            Each value is an event.

        orientation : {None, 'horizontal', 'vertical'}, optional
            The orientation of the **collection** (the event bars are along
            the orthogonal direction). Defaults to 'horizontal' if not
            specified or None.

        lineoffset : scalar, optional, default: 0
            The offset of the center of the markers from the origin, in the
            direction orthogonal to *orientation*.

        linelength : scalar, optional, default: 1
            The total height of the marker (i.e. the marker stretches from
            ``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).

        linewidth : scalar or None, optional, default: None
            If it is None, defaults to its rcParams setting, in sequence form.

        color : color, sequence of colors or None, optional, default: None
            If it is None, defaults to its rcParams setting, in sequence form.

        linestyle : str or tuple, optional, default: 'solid'
            Valid strings are ['solid', 'dashed', 'dashdot', 'dotted',
            '-', '--', '-.', ':']. Dash tuples should be of the form::

                (offset, onoffseq),

            where *onoffseq* is an even length tuple of on and off ink
            in points.

        antialiased : {None, 1, 2}, optional
            If it is None, defaults to its rcParams setting, in sequence form.

        **kwargs : optional
            Other keyword arguments are line collection properties.  See
            :class:`~matplotlib.collections.LineCollection` for a list of
            the valid properties.

        Examples
        --------
        .. plot:: gallery/lines_bars_and_markers/eventcollection_demo.py
        """
        if positions is None:
            raise ValueError('positions must be an array-like object')
        # Force a copy of positions
        positions = np.array(positions, copy=True)
        segment = (lineoffset + linelength / 2.,
                   lineoffset - linelength / 2.)
        if positions.size == 0:
            segments = []
        elif positions.ndim > 1:
            raise ValueError('positions cannot be an array with more than '
                             'one dimension.')
        elif (orientation is None or orientation.lower() == 'none' or
              orientation.lower() == 'horizontal'):
            positions.sort()
            segments = [[(coord1, coord2) for coord2 in segment] for
                        coord1 in positions]
            self._is_horizontal = True
        elif orientation.lower() == 'vertical':
            positions.sort()
            segments = [[(coord2, coord1) for coord2 in segment] for
                        coord1 in positions]
            self._is_horizontal = False
        else:
            cbook._check_in_list(['horizontal', 'vertical'],
                                 orientation=orientation)

        LineCollection.__init__(self,
                                segments,
                                linewidths=linewidth,
                                colors=color,
                                antialiaseds=antialiased,
                                linestyles=linestyle,
                                **kwargs)

        self._linelength = linelength
        self._lineoffset = lineoffset

    def get_positions(self):
        '''
        return an array containing the floating-point values of the positions
        '''
        pos = 0 if self.is_horizontal() else 1
        return [segment[0, pos] for segment in self.get_segments()]

    def set_positions(self, positions):
        '''
        set the positions of the events to the specified value
        '''
        if positions is None or (hasattr(positions, 'len') and
                                 len(positions) == 0):
            self.set_segments([])
            return

        lineoffset = self.get_lineoffset()
        linelength = self.get_linelength()
        segment = (lineoffset + linelength / 2.,
                   lineoffset - linelength / 2.)
        positions = np.asanyarray(positions)
        positions.sort()
        if self.is_horizontal():
            segments = [[(coord1, coord2) for coord2 in segment] for
                        coord1 in positions]
        else:
            segments = [[(coord2, coord1) for coord2 in segment] for
                        coord1 in positions]
        self.set_segments(segments)

    def add_positions(self, position):
        '''
        add one or more events at the specified positions
        '''
        if position is None or (hasattr(position, 'len') and
                                len(position) == 0):
            return
        positions = self.get_positions()
        positions = np.hstack([positions, np.asanyarray(position)])
        self.set_positions(positions)
    extend_positions = append_positions = add_positions

    def is_horizontal(self):
        '''
        True if the eventcollection is horizontal, False if vertical
        '''
        return self._is_horizontal

    def get_orientation(self):
        """
        Return the orientation of the event line ('horizontal' or 'vertical').
        """
        return 'horizontal' if self.is_horizontal() else 'vertical'

    def switch_orientation(self):
        '''
        switch the orientation of the event line, either from vertical to
        horizontal or vice versus
        '''
        segments = self.get_segments()
        for i, segment in enumerate(segments):
            segments[i] = np.fliplr(segment)
        self.set_segments(segments)
        self._is_horizontal = not self.is_horizontal()
        self.stale = True

    def set_orientation(self, orientation=None):
        """
        Set the orientation of the event line.

        Parameters
        ----------
        orientation: {'horizontal', 'vertical'} or None
            Defaults to 'horizontal' if not specified or None.
        """
        if (orientation is None or orientation.lower() == 'none' or
                orientation.lower() == 'horizontal'):
            is_horizontal = True
        elif orientation.lower() == 'vertical':
            is_horizontal = False
        else:
            cbook._check_in_list(['horizontal', 'vertical'],
                                 orientation=orientation)
        if is_horizontal == self.is_horizontal():
            return
        self.switch_orientation()

    def get_linelength(self):
        '''
        get the length of the lines used to mark each event
        '''
        return self._linelength

    def set_linelength(self, linelength):
        '''
        set the length of the lines used to mark each event
        '''
        if linelength == self.get_linelength():
            return
        lineoffset = self.get_lineoffset()
        segments = self.get_segments()
        pos = 1 if self.is_horizontal() else 0
        for segment in segments:
            segment[0, pos] = lineoffset + linelength / 2.
            segment[1, pos] = lineoffset - linelength / 2.
        self.set_segments(segments)
        self._linelength = linelength

    def get_lineoffset(self):
        '''
        get the offset of the lines used to mark each event
        '''
        return self._lineoffset

    def set_lineoffset(self, lineoffset):
        '''
        set the offset of the lines used to mark each event
        '''
        if lineoffset == self.get_lineoffset():
            return
        linelength = self.get_linelength()
        segments = self.get_segments()
        pos = 1 if self.is_horizontal() else 0
        for segment in segments:
            segment[0, pos] = lineoffset + linelength / 2.
            segment[1, pos] = lineoffset - linelength / 2.
        self.set_segments(segments)
        self._lineoffset = lineoffset

    def get_linewidth(self):
        """Get the width of the lines used to mark each event."""
        return super(EventCollection, self).get_linewidth()[0]

    def get_linewidths(self):
        return super(EventCollection, self).get_linewidth()

    def get_color(self):
        '''
        get the color of the lines used to mark each event
        '''
        return self.get_colors()[0]


class CircleCollection(_CollectionWithSizes):
    """A collection of circles, drawn using splines."""

    _factor = np.pi ** (-1/2)

    @docstring.dedent_interpd
    def __init__(self, sizes, **kwargs):
        """
        *sizes*
            Gives the area of the circle in points^2

        %(Collection)s
        """
        Collection.__init__(self, **kwargs)
        self.set_sizes(sizes)
        self.set_transform(transforms.IdentityTransform())
        self._paths = [mpath.Path.unit_circle()]


class EllipseCollection(Collection):
    """A collection of ellipses, drawn using splines."""

    @docstring.dedent_interpd
    def __init__(self, widths, heights, angles, units='points', **kwargs):
        """
        Parameters
        ----------
        widths : array-like
            The lengths of the first axes (e.g., major axis lengths).

        heights : array-like
            The lengths of second axes.

        angles : array-like
            The angles of the first axes, degrees CCW from the x-axis.

        units : {'points', 'inches', 'dots', 'width', 'height', 'x', 'y', 'xy'}

            The units in which majors and minors are given; 'width' and
            'height' refer to the dimensions of the axes, while 'x'
            and 'y' refer to the *offsets* data units. 'xy' differs
            from all others in that the angle as plotted varies with
            the aspect ratio, and equals the specified angle only when
            the aspect ratio is unity.  Hence it behaves the same as
            the :class:`~matplotlib.patches.Ellipse` with
            ``axes.transData`` as its transform.

        Other Parameters
        ----------------
        **kwargs
            Additional kwargs inherited from the base :class:`Collection`.

        %(Collection)s
        """
        Collection.__init__(self, **kwargs)
        self._widths = 0.5 * np.asarray(widths).ravel()
        self._heights = 0.5 * np.asarray(heights).ravel()
        self._angles = np.deg2rad(angles).ravel()
        self._units = units
        self.set_transform(transforms.IdentityTransform())
        self._transforms = np.empty((0, 3, 3))
        self._paths = [mpath.Path.unit_circle()]

    def _set_transforms(self):
        """Calculate transforms immediately before drawing."""

        ax = self.axes
        fig = self.figure

        if self._units == 'xy':
            sc = 1
        elif self._units == 'x':
            sc = ax.bbox.width / ax.viewLim.width
        elif self._units == 'y':
            sc = ax.bbox.height / ax.viewLim.height
        elif self._units == 'inches':
            sc = fig.dpi
        elif self._units == 'points':
            sc = fig.dpi / 72.0
        elif self._units == 'width':
            sc = ax.bbox.width
        elif self._units == 'height':
            sc = ax.bbox.height
        elif self._units == 'dots':
            sc = 1.0
        else:
            raise ValueError('unrecognized units: %s' % self._units)

        self._transforms = np.zeros((len(self._widths), 3, 3))
        widths = self._widths * sc
        heights = self._heights * sc
        sin_angle = np.sin(self._angles)
        cos_angle = np.cos(self._angles)
        self._transforms[:, 0, 0] = widths * cos_angle
        self._transforms[:, 0, 1] = heights * -sin_angle
        self._transforms[:, 1, 0] = widths * sin_angle
        self._transforms[:, 1, 1] = heights * cos_angle
        self._transforms[:, 2, 2] = 1.0

        _affine = transforms.Affine2D
        if self._units == 'xy':
            m = ax.transData.get_affine().get_matrix().copy()
            m[:2, 2:] = 0
            self.set_transform(_affine(m))

    @artist.allow_rasterization
    def draw(self, renderer):
        self._set_transforms()
        Collection.draw(self, renderer)


class PatchCollection(Collection):
    """
    A generic collection of patches.

    This makes it easier to assign a color map to a heterogeneous
    collection of patches.

    This also may improve plotting speed, since PatchCollection will
    draw faster than a large number of patches.
    """

    def __init__(self, patches, match_original=False, **kwargs):
        """
        *patches*
            a sequence of Patch objects.  This list may include
            a heterogeneous assortment of different patch types.

        *match_original*
            If True, use the colors and linewidths of the original
            patches.  If False, new colors may be assigned by
            providing the standard collection arguments, facecolor,
            edgecolor, linewidths, norm or cmap.

        If any of *edgecolors*, *facecolors*, *linewidths*,
        *antialiaseds* are None, they default to their
        :data:`matplotlib.rcParams` patch setting, in sequence form.

        The use of :class:`~matplotlib.cm.ScalarMappable` is optional.
        If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not
        None (i.e., a call to set_array has been made), at draw time a
        call to scalar mappable will be made to set the face colors.
        """

        if match_original:
            def determine_facecolor(patch):
                if patch.get_fill():
                    return patch.get_facecolor()
                return [0, 0, 0, 0]

            kwargs['facecolors'] = [determine_facecolor(p) for p in patches]
            kwargs['edgecolors'] = [p.get_edgecolor() for p in patches]
            kwargs['linewidths'] = [p.get_linewidth() for p in patches]
            kwargs['linestyles'] = [p.get_linestyle() for p in patches]
            kwargs['antialiaseds'] = [p.get_antialiased() for p in patches]

        Collection.__init__(self, **kwargs)

        self.set_paths(patches)

    def set_paths(self, patches):
        paths = [p.get_transform().transform_path(p.get_path())
                 for p in patches]
        self._paths = paths


class TriMesh(Collection):
    """
    Class for the efficient drawing of a triangular mesh using Gouraud shading.

    A triangular mesh is a `~matplotlib.tri.Triangulation` object.
    """
    def __init__(self, triangulation, **kwargs):
        Collection.__init__(self, **kwargs)
        self._triangulation = triangulation
        self._shading = 'gouraud'
        self._is_filled = True

        self._bbox = transforms.Bbox.unit()

        # Unfortunately this requires a copy, unless Triangulation
        # was rewritten.
        xy = np.hstack((triangulation.x.reshape(-1, 1),
                        triangulation.y.reshape(-1, 1)))
        self._bbox.update_from_data_xy(xy)

    def get_paths(self):
        if self._paths is None:
            self.set_paths()
        return self._paths

    def set_paths(self):
        self._paths = self.convert_mesh_to_paths(self._triangulation)

    @staticmethod
    def convert_mesh_to_paths(tri):
        """
        Converts a given mesh into a sequence of `~.Path` objects.

        This function is primarily of use to implementers of backends that do
        not directly support meshes.
        """
        triangles = tri.get_masked_triangles()
        verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1)
        return [mpath.Path(x) for x in verts]

    @artist.allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        renderer.open_group(self.__class__.__name__, gid=self.get_gid())
        transform = self.get_transform()

        # Get a list of triangles and the color at each vertex.
        tri = self._triangulation
        triangles = tri.get_masked_triangles()

        verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1)

        self.update_scalarmappable()
        colors = self._facecolors[triangles]

        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_linewidth(self.get_linewidth()[0])
        renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen())
        gc.restore()
        renderer.close_group(self.__class__.__name__)


class QuadMesh(Collection):
    """
    Class for the efficient drawing of a quadrilateral mesh.

    A quadrilateral mesh consists of a grid of vertices. The
    dimensions of this array are (*meshWidth* + 1, *meshHeight* +
    1). Each vertex in the mesh has a different set of "mesh
    coordinates" representing its position in the topology of the
    mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth*
    and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates
    (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*)
    form one of the quadrilaterals in the mesh. There are thus
    (*meshWidth* * *meshHeight*) quadrilaterals in the mesh.  The mesh
    need not be regular and the polygons need not be convex.

    A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) *
    (*meshHeight* + 1))) numpy array *coordinates*, where each row is
    the *x* and *y* coordinates of one of the vertices.  To define the
    function that maps from a data point to its corresponding color,
    use the :meth:`set_cmap` method.  Each of these arrays is indexed in
    row-major order by the mesh coordinates of the vertex (or the mesh
    coordinates of the lower left vertex, in the case of the
    colors).

    For example, the first entry in *coordinates* is the
    coordinates of the vertex at mesh coordinates (0, 0), then the one
    at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and
    so on.

    *shading* may be 'flat', or 'gouraud'
    """
    def __init__(self, meshWidth, meshHeight, coordinates,
                 antialiased=True, shading='flat', **kwargs):
        Collection.__init__(self, **kwargs)
        self._meshWidth = meshWidth
        self._meshHeight = meshHeight
        # By converting to floats now, we can avoid that on every draw.
        self._coordinates = np.asarray(coordinates, float).reshape(
            (meshHeight + 1, meshWidth + 1, 2))
        self._antialiased = antialiased
        self._shading = shading

        self._bbox = transforms.Bbox.unit()
        self._bbox.update_from_data_xy(coordinates.reshape(
            ((meshWidth + 1) * (meshHeight + 1), 2)))

    def get_paths(self):
        if self._paths is None:
            self.set_paths()
        return self._paths

    def set_paths(self):
        self._paths = self.convert_mesh_to_paths(
            self._meshWidth, self._meshHeight, self._coordinates)
        self.stale = True

    def get_datalim(self, transData):
        return (self.get_transform() - transData).transform_bbox(self._bbox)

    @staticmethod
    def convert_mesh_to_paths(meshWidth, meshHeight, coordinates):
        """
        Converts a given mesh into a sequence of `~.Path` objects.

        This function is primarily of use to implementers of backends that do
        not directly support quadmeshes.
        """
        if isinstance(coordinates, np.ma.MaskedArray):
            c = coordinates.data
        else:
            c = coordinates
        points = np.concatenate((
                    c[:-1, :-1],
                    c[:-1, 1:],
                    c[1:, 1:],
                    c[1:, :-1],
                    c[:-1, :-1]
                ), axis=2)
        points = points.reshape((meshWidth * meshHeight, 5, 2))
        return [mpath.Path(x) for x in points]

    def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates):
        """
        Converts a given mesh into a sequence of triangles, each point
        with its own color.  This is useful for experiments using
        `draw_gouraud_triangle`.
        """
        if isinstance(coordinates, np.ma.MaskedArray):
            p = coordinates.data
        else:
            p = coordinates

        p_a = p[:-1, :-1]
        p_b = p[:-1, 1:]
        p_c = p[1:, 1:]
        p_d = p[1:, :-1]
        p_center = (p_a + p_b + p_c + p_d) / 4.0

        triangles = np.concatenate((
                p_a, p_b, p_center,
                p_b, p_c, p_center,
                p_c, p_d, p_center,
                p_d, p_a, p_center,
            ), axis=2)
        triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2))

        c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4))
        c_a = c[:-1, :-1]
        c_b = c[:-1, 1:]
        c_c = c[1:, 1:]
        c_d = c[1:, :-1]
        c_center = (c_a + c_b + c_c + c_d) / 4.0

        colors = np.concatenate((
                        c_a, c_b, c_center,
                        c_b, c_c, c_center,
                        c_c, c_d, c_center,
                        c_d, c_a, c_center,
                    ), axis=2)
        colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4))

        return triangles, colors

    @artist.allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        renderer.open_group(self.__class__.__name__, self.get_gid())
        transform = self.get_transform()
        transOffset = self.get_offset_transform()
        offsets = self._offsets

        if self.have_units():
            if len(self._offsets):
                xs = self.convert_xunits(self._offsets[:, 0])
                ys = self.convert_yunits(self._offsets[:, 1])
                offsets = np.column_stack([xs, ys])

        self.update_scalarmappable()

        if not transform.is_affine:
            coordinates = self._coordinates.reshape((-1, 2))
            coordinates = transform.transform(coordinates)
            coordinates = coordinates.reshape(self._coordinates.shape)
            transform = transforms.IdentityTransform()
        else:
            coordinates = self._coordinates

        if not transOffset.is_affine:
            offsets = transOffset.transform_non_affine(offsets)
            transOffset = transOffset.get_affine()

        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_linewidth(self.get_linewidth()[0])

        if self._shading == 'gouraud':
            triangles, colors = self.convert_mesh_to_triangles(
                self._meshWidth, self._meshHeight, coordinates)
            renderer.draw_gouraud_triangles(
                gc, triangles, colors, transform.frozen())
        else:
            renderer.draw_quad_mesh(
                gc, transform.frozen(), self._meshWidth, self._meshHeight,
                coordinates, offsets, transOffset, self.get_facecolor(),
                self._antialiased, self.get_edgecolors())
        gc.restore()
        renderer.close_group(self.__class__.__name__)
        self.stale = False


patchstr = artist.kwdoc(Collection)
for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection',
          'RegularPolyCollection', 'PathCollection',
          'StarPolygonCollection', 'PatchCollection',
          'CircleCollection', 'Collection',):
    docstring.interpd.update({k: patchstr})
docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))