hatch.py 6.81 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
"""
Contains a classes for generating hatch patterns.
"""

import numpy as np
from matplotlib.path import Path


class HatchPatternBase:
    """
    The base class for a hatch pattern.
    """
    pass


class HorizontalHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = int((hatch.count('-') + hatch.count('+')) * density)
        self.num_vertices = self.num_lines * 2

    def set_vertices_and_codes(self, vertices, codes):
        steps, stepsize = np.linspace(0.0, 1.0, self.num_lines, False,
                                      retstep=True)
        steps += stepsize / 2.
        vertices[0::2, 0] = 0.0
        vertices[0::2, 1] = steps
        vertices[1::2, 0] = 1.0
        vertices[1::2, 1] = steps
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO


class VerticalHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = int((hatch.count('|') + hatch.count('+')) * density)
        self.num_vertices = self.num_lines * 2

    def set_vertices_and_codes(self, vertices, codes):
        steps, stepsize = np.linspace(0.0, 1.0, self.num_lines, False,
                                      retstep=True)
        steps += stepsize / 2.
        vertices[0::2, 0] = steps
        vertices[0::2, 1] = 0.0
        vertices[1::2, 0] = steps
        vertices[1::2, 1] = 1.0
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO


class NorthEastHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = int((hatch.count('/') + hatch.count('x') +
                          hatch.count('X')) * density)
        if self.num_lines:
            self.num_vertices = (self.num_lines + 1) * 2
        else:
            self.num_vertices = 0

    def set_vertices_and_codes(self, vertices, codes):
        steps = np.linspace(-0.5, 0.5, self.num_lines + 1)
        vertices[0::2, 0] = 0.0 + steps
        vertices[0::2, 1] = 0.0 - steps
        vertices[1::2, 0] = 1.0 + steps
        vertices[1::2, 1] = 1.0 - steps
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO


class SouthEastHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = int((hatch.count('\\') + hatch.count('x') +
                          hatch.count('X')) * density)
        self.num_vertices = (self.num_lines + 1) * 2
        if self.num_lines:
            self.num_vertices = (self.num_lines + 1) * 2
        else:
            self.num_vertices = 0

    def set_vertices_and_codes(self, vertices, codes):
        steps = np.linspace(-0.5, 0.5, self.num_lines + 1)
        vertices[0::2, 0] = 0.0 + steps
        vertices[0::2, 1] = 1.0 + steps
        vertices[1::2, 0] = 1.0 + steps
        vertices[1::2, 1] = 0.0 + steps
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO


class Shapes(HatchPatternBase):
    filled = False

    def __init__(self, hatch, density):
        if self.num_rows == 0:
            self.num_shapes = 0
            self.num_vertices = 0
        else:
            self.num_shapes = ((self.num_rows // 2 + 1) * (self.num_rows + 1) +
                               (self.num_rows // 2) * (self.num_rows))
            self.num_vertices = (self.num_shapes *
                                 len(self.shape_vertices) *
                                 (1 if self.filled else 2))

    def set_vertices_and_codes(self, vertices, codes):
        offset = 1.0 / self.num_rows
        shape_vertices = self.shape_vertices * offset * self.size
        if not self.filled:
            inner_vertices = shape_vertices[::-1] * 0.9
        shape_codes = self.shape_codes
        shape_size = len(shape_vertices)

        cursor = 0
        for row in range(self.num_rows + 1):
            if row % 2 == 0:
                cols = np.linspace(0, 1, self.num_rows + 1)
            else:
                cols = np.linspace(offset / 2, 1 - offset / 2, self.num_rows)
            row_pos = row * offset
            for col_pos in cols:
                vertices[cursor:cursor + shape_size] = (shape_vertices +
                                                        (col_pos, row_pos))
                codes[cursor:cursor + shape_size] = shape_codes
                cursor += shape_size
                if not self.filled:
                    vertices[cursor:cursor + shape_size] = (inner_vertices +
                                                            (col_pos, row_pos))
                    codes[cursor:cursor + shape_size] = shape_codes
                    cursor += shape_size


class Circles(Shapes):
    def __init__(self, hatch, density):
        path = Path.unit_circle()
        self.shape_vertices = path.vertices
        self.shape_codes = path.codes
        Shapes.__init__(self, hatch, density)


class SmallCircles(Circles):
    size = 0.2

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('o')) * density
        Circles.__init__(self, hatch, density)


class LargeCircles(Circles):
    size = 0.35

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('O')) * density
        Circles.__init__(self, hatch, density)


class SmallFilledCircles(SmallCircles):
    size = 0.1
    filled = True

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('.')) * density
        Circles.__init__(self, hatch, density)


class Stars(Shapes):
    size = 1.0 / 3.0
    filled = True

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('*')) * density
        path = Path.unit_regular_star(5)
        self.shape_vertices = path.vertices
        self.shape_codes = np.full(len(self.shape_vertices), Path.LINETO,
                                   dtype=Path.code_type)
        self.shape_codes[0] = Path.MOVETO
        Shapes.__init__(self, hatch, density)

_hatch_types = [
    HorizontalHatch,
    VerticalHatch,
    NorthEastHatch,
    SouthEastHatch,
    SmallCircles,
    LargeCircles,
    SmallFilledCircles,
    Stars
    ]


def get_path(hatchpattern, density=6):
    """
    Given a hatch specifier, *hatchpattern*, generates Path to render
    the hatch in a unit square.  *density* is the number of lines per
    unit square.
    """
    density = int(density)

    patterns = [hatch_type(hatchpattern, density)
                for hatch_type in _hatch_types]
    num_vertices = sum([pattern.num_vertices for pattern in patterns])

    if num_vertices == 0:
        return Path(np.empty((0, 2)))

    vertices = np.empty((num_vertices, 2))
    codes = np.empty(num_vertices, Path.code_type)

    cursor = 0
    for pattern in patterns:
        if pattern.num_vertices != 0:
            vertices_chunk = vertices[cursor:cursor + pattern.num_vertices]
            codes_chunk = codes[cursor:cursor + pattern.num_vertices]
            pattern.set_vertices_and_codes(vertices_chunk, codes_chunk)
            cursor += pattern.num_vertices

    return Path(vertices, codes)