image.py 61.3 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
"""
The image module supports basic image loading, rescaling and display
operations.
"""

from io import BytesIO
import math
import os
import logging
from numbers import Number
from pathlib import Path
import urllib.parse

import numpy as np

from matplotlib import rcParams
import matplotlib.artist as martist
from matplotlib.backend_bases import FigureCanvasBase
import matplotlib.colors as mcolors
import matplotlib.cm as cm
import matplotlib.cbook as cbook

# For clarity, names from _image are given explicitly in this module:
import matplotlib._image as _image

# For user convenience, the names from _image are also imported into
# the image namespace:
from matplotlib._image import *

from matplotlib.transforms import (Affine2D, BboxBase, Bbox, BboxTransform,
                                   IdentityTransform, TransformedBbox)

_log = logging.getLogger(__name__)

# map interpolation strings to module constants
_interpd_ = {
    'antialiased': _image.NEAREST,  # this will use nearest or Hanning...
    'none': _image.NEAREST,  # fall back to nearest when not supported
    'nearest': _image.NEAREST,
    'bilinear': _image.BILINEAR,
    'bicubic': _image.BICUBIC,
    'spline16': _image.SPLINE16,
    'spline36': _image.SPLINE36,
    'hanning': _image.HANNING,
    'hamming': _image.HAMMING,
    'hermite': _image.HERMITE,
    'kaiser': _image.KAISER,
    'quadric': _image.QUADRIC,
    'catrom': _image.CATROM,
    'gaussian': _image.GAUSSIAN,
    'bessel': _image.BESSEL,
    'mitchell': _image.MITCHELL,
    'sinc': _image.SINC,
    'lanczos': _image.LANCZOS,
    'blackman': _image.BLACKMAN,
}

interpolations_names = set(_interpd_)


def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image._get_scalar_alpha()))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification


def _draw_list_compositing_images(
        renderer, parent, artists, suppress_composite=None):
    """
    Draw a sorted list of artists, compositing images into a single
    image where possible.

    For internal matplotlib use only: It is here to reduce duplication
    between `Figure.draw` and `Axes.draw`, but otherwise should not be
    generally useful.
    """
    has_images = any(isinstance(x, _ImageBase) for x in artists)

    # override the renderer default if suppressComposite is not None
    not_composite = (suppress_composite if suppress_composite is not None
                     else renderer.option_image_nocomposite())

    if not_composite or not has_images:
        for a in artists:
            a.draw(renderer)
    else:
        # Composite any adjacent images together
        image_group = []
        mag = renderer.get_image_magnification()

        def flush_images():
            if len(image_group) == 1:
                image_group[0].draw(renderer)
            elif len(image_group) > 1:
                data, l, b = composite_images(image_group, renderer, mag)
                if data.size != 0:
                    gc = renderer.new_gc()
                    gc.set_clip_rectangle(parent.bbox)
                    gc.set_clip_path(parent.get_clip_path())
                    renderer.draw_image(gc, round(l), round(b), data)
                    gc.restore()
            del image_group[:]

        for a in artists:
            if isinstance(a, _ImageBase) and a.can_composite():
                image_group.append(a)
            else:
                flush_images()
                a.draw(renderer)
        flush_images()


def _resample(
        image_obj, data, out_shape, transform, *, resample=None, alpha=1):
    """
    Convenience wrapper around `._image.resample` to resample *data* to
    *out_shape* (with a third dimension if *data* is RGBA) that takes care of
    allocating the output array and fetching the relevant properties from the
    Image object *image_obj*.
    """

    # decide if we need to apply anti-aliasing if the data is upsampled:
    # compare the number of displayed pixels to the number of
    # the data pixels.
    interpolation = image_obj.get_interpolation()
    if interpolation == 'antialiased':
        # don't antialias if upsampling by an integer number or
        # if zooming in more than a factor of 3
        pos = np.array([[0, 0], [data.shape[1], data.shape[0]]])
        disp = transform.transform(pos)
        dispx = np.abs(np.diff(disp[:, 0]))
        dispy = np.abs(np.diff(disp[:, 1]))
        if ((dispx > 3 * data.shape[1] or
                dispx == data.shape[1] or
                dispx == 2 * data.shape[1]) and
            (dispy > 3 * data.shape[0] or
                dispy == data.shape[0] or
                dispy == 2 * data.shape[0])):
            interpolation = 'nearest'
        else:
            interpolation = 'hanning'
    out = np.zeros(out_shape + data.shape[2:], data.dtype)  # 2D->2D, 3D->3D.
    if resample is None:
        resample = image_obj.get_resample()
    _image.resample(data, out, transform,
                    _interpd_[interpolation],
                    resample,
                    alpha,
                    image_obj.get_filternorm(),
                    image_obj.get_filterrad())
    return out


def _rgb_to_rgba(A):
    """
    Convert an RGB image to RGBA, as required by the image resample C++
    extension.
    """
    rgba = np.zeros((A.shape[0], A.shape[1], 4), dtype=A.dtype)
    rgba[:, :, :3] = A
    if rgba.dtype == np.uint8:
        rgba[:, :, 3] = 255
    else:
        rgba[:, :, 3] = 1.0
    return rgba


class _ImageBase(martist.Artist, cm.ScalarMappable):
    """
    Base class for images.

    interpolation and cmap default to their rc settings

    cmap is a colors.Colormap instance
    norm is a colors.Normalize instance to map luminance to 0-1

    extent is data axes (left, right, bottom, top) for making image plots
    registered with data plots.  Default is to label the pixel
    centers with the zero-based row and column indices.

    Additional kwargs are matplotlib.artist properties
    """
    zorder = 0

    def __init__(self, ax,
                 cmap=None,
                 norm=None,
                 interpolation=None,
                 origin=None,
                 filternorm=True,
                 filterrad=4.0,
                 resample=False,
                 **kwargs
                 ):
        martist.Artist.__init__(self)
        cm.ScalarMappable.__init__(self, norm, cmap)
        self._mouseover = True
        if origin is None:
            origin = rcParams['image.origin']
        self.origin = origin
        self.set_filternorm(filternorm)
        self.set_filterrad(filterrad)
        self.set_interpolation(interpolation)
        self.set_resample(resample)
        self.axes = ax

        self._imcache = None

        self.update(kwargs)

    def __getstate__(self):
        state = super().__getstate__()
        # We can't pickle the C Image cached object.
        state['_imcache'] = None
        return state

    def get_size(self):
        """Return the size of the image as tuple (numrows, numcols)."""
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        return self._A.shape[:2]

    def set_alpha(self, alpha):
        """
        Set the alpha value used for blending - not supported on all backends.

        Parameters
        ----------
        alpha : float
        """
        if alpha is not None and not isinstance(alpha, Number):
            alpha = np.asarray(alpha)
            if alpha.ndim != 2:
                raise TypeError('alpha must be a float, two-dimensional '
                                'array, or None')
        self._alpha = alpha
        self.pchanged()
        self.stale = True
        self._imcache = None

    def _get_scalar_alpha(self):
        """
        Get a scalar alpha value to be applied to the artist as a whole.

        If the alpha value is a matrix, the method returns 1.0 because pixels
        have individual alpha values (see `~._ImageBase._make_image` for
        details). If the alpha value is a scalar, the method returns said value
        to be applied to the artist as a whole because pixels do not have
        individual alpha values.
        """
        return 1.0 if self._alpha is None or np.ndim(self._alpha) > 0 \
            else self._alpha

    def changed(self):
        """
        Call this whenever the mappable is changed so observers can
        update state
        """
        self._imcache = None
        self._rgbacache = None
        cm.ScalarMappable.changed(self)

    def _make_image(self, A, in_bbox, out_bbox, clip_bbox, magnification=1.0,
                    unsampled=False, round_to_pixel_border=True):
        """
        Normalize, rescale, and colormap the image *A* from the given *in_bbox*
        (in data space), to the given *out_bbox* (in pixel space) clipped to
        the given *clip_bbox* (also in pixel space), and magnified by the
        *magnification* factor.

        *A* may be a greyscale image (M, N) with a dtype of float32, float64,
        float128, uint16 or uint8, or an (M, N, 4) RGBA image with a dtype of
        float32, float64, float128, or uint8.

        If *unsampled* is True, the image will not be scaled, but an
        appropriate affine transformation will be returned instead.

        If *round_to_pixel_border* is True, the output image size will be
        rounded to the nearest pixel boundary.  This makes the images align
        correctly with the axes.  It should not be used if exact scaling is
        needed, such as for `FigureImage`.

        Returns
        -------
        image : (M, N, 4) uint8 array
            The RGBA image, resampled unless *unsampled* is True.
        x, y : float
            The upper left corner where the image should be drawn, in pixel
            space.
        trans : Affine2D
            The affine transformation from image to pixel space.
        """
        if A is None:
            raise RuntimeError('You must first set the image '
                               'array or the image attribute')
        if A.size == 0:
            raise RuntimeError("_make_image must get a non-empty image. "
                               "Your Artist's draw method must filter before "
                               "this method is called.")

        clipped_bbox = Bbox.intersection(out_bbox, clip_bbox)

        if clipped_bbox is None:
            return None, 0, 0, None

        out_width_base = clipped_bbox.width * magnification
        out_height_base = clipped_bbox.height * magnification

        if out_width_base == 0 or out_height_base == 0:
            return None, 0, 0, None

        if self.origin == 'upper':
            # Flip the input image using a transform.  This avoids the
            # problem with flipping the array, which results in a copy
            # when it is converted to contiguous in the C wrapper
            t0 = Affine2D().translate(0, -A.shape[0]).scale(1, -1)
        else:
            t0 = IdentityTransform()

        t0 += (
            Affine2D()
            .scale(
                in_bbox.width / A.shape[1],
                in_bbox.height / A.shape[0])
            .translate(in_bbox.x0, in_bbox.y0)
            + self.get_transform())

        t = (t0
             + (Affine2D()
                .translate(-clipped_bbox.x0, -clipped_bbox.y0)
                .scale(magnification)))

        # So that the image is aligned with the edge of the axes, we want to
        # round up the output width to the next integer.  This also means
        # scaling the transform slightly to account for the extra subpixel.
        if (t.is_affine and round_to_pixel_border and
                (out_width_base % 1.0 != 0.0 or out_height_base % 1.0 != 0.0)):
            out_width = math.ceil(out_width_base)
            out_height = math.ceil(out_height_base)
            extra_width = (out_width - out_width_base) / out_width_base
            extra_height = (out_height - out_height_base) / out_height_base
            t += Affine2D().scale(1.0 + extra_width, 1.0 + extra_height)
        else:
            out_width = int(out_width_base)
            out_height = int(out_height_base)
        out_shape = (out_height, out_width)

        if not unsampled:
            if not (A.ndim == 2 or A.ndim == 3 and A.shape[-1] in (3, 4)):
                raise ValueError(f"Invalid shape {A.shape} for image data")

            if A.ndim == 2:
                # if we are a 2D array, then we are running through the
                # norm + colormap transformation.  However, in general the
                # input data is not going to match the size on the screen so we
                # have to resample to the correct number of pixels

                # TODO slice input array first
                inp_dtype = A.dtype
                a_min = A.min()
                a_max = A.max()
                # figure out the type we should scale to.  For floats,
                # leave as is.  For integers cast to an appropriate-sized
                # float.  Small integers get smaller floats in an attempt
                # to keep the memory footprint reasonable.
                if a_min is np.ma.masked:
                    # all masked, so values don't matter
                    a_min, a_max = np.int32(0), np.int32(1)
                if inp_dtype.kind == 'f':
                    scaled_dtype = A.dtype
                    # Cast to float64
                    if A.dtype not in (np.float32, np.float16):
                        if A.dtype != np.float64:
                            cbook._warn_external(
                                f"Casting input data from '{A.dtype}' to "
                                f"'float64' for imshow")
                        scaled_dtype = np.float64
                else:
                    # probably an integer of some type.
                    da = a_max.astype(np.float64) - a_min.astype(np.float64)
                    # give more breathing room if a big dynamic range
                    scaled_dtype = np.float64 if da > 1e8 else np.float32

                # scale the input data to [.1, .9].  The Agg
                # interpolators clip to [0, 1] internally, use a
                # smaller input scale to identify which of the
                # interpolated points need to be should be flagged as
                # over / under.
                # This may introduce numeric instabilities in very broadly
                # scaled data
                # Always copy, and don't allow array subtypes.
                A_scaled = np.array(A, dtype=scaled_dtype)
                # clip scaled data around norm if necessary.
                # This is necessary for big numbers at the edge of
                # float64's ability to represent changes.  Applying
                # a norm first would be good, but ruins the interpolation
                # of over numbers.
                self.norm.autoscale_None(A)
                dv = np.float64(self.norm.vmax) - np.float64(self.norm.vmin)
                vmid = self.norm.vmin + dv / 2
                fact = 1e7 if scaled_dtype == np.float64 else 1e4
                newmin = vmid - dv * fact
                if newmin < a_min:
                    newmin = None
                else:
                    a_min = np.float64(newmin)
                newmax = vmid + dv * fact
                if newmax > a_max:
                    newmax = None
                else:
                    a_max = np.float64(newmax)
                if newmax is not None or newmin is not None:
                    np.clip(A_scaled, newmin, newmax, out=A_scaled)

                A_scaled -= a_min
                # a_min and a_max might be ndarray subclasses so use
                # item to avoid errors
                a_min = a_min.astype(scaled_dtype).item()
                a_max = a_max.astype(scaled_dtype).item()

                if a_min != a_max:
                    A_scaled /= ((a_max - a_min) / 0.8)
                A_scaled += 0.1
                # resample the input data to the correct resolution and shape
                A_resampled = _resample(self, A_scaled, out_shape, t)
                # done with A_scaled now, remove from namespace to be sure!
                del A_scaled
                # un-scale the resampled data to approximately the
                # original range things that interpolated to above /
                # below the original min/max will still be above /
                # below, but possibly clipped in the case of higher order
                # interpolation + drastically changing data.
                A_resampled -= 0.1
                if a_min != a_max:
                    A_resampled *= ((a_max - a_min) / 0.8)
                A_resampled += a_min
                # if using NoNorm, cast back to the original datatype
                if isinstance(self.norm, mcolors.NoNorm):
                    A_resampled = A_resampled.astype(A.dtype)

                mask = (np.where(A.mask, np.float32(np.nan), np.float32(1))
                        if A.mask.shape == A.shape  # nontrivial mask
                        else np.ones_like(A, np.float32))
                # we always have to interpolate the mask to account for
                # non-affine transformations
                out_alpha = _resample(self, mask, out_shape, t, resample=True)
                # done with the mask now, delete from namespace to be sure!
                del mask
                # Agg updates out_alpha in place.  If the pixel has no image
                # data it will not be updated (and still be 0 as we initialized
                # it), if input data that would go into that output pixel than
                # it will be `nan`, if all the input data for a pixel is good
                # it will be 1, and if there is _some_ good data in that output
                # pixel it will be between [0, 1] (such as a rotated image).
                out_mask = np.isnan(out_alpha)
                out_alpha[out_mask] = 1
                # Apply the pixel-by-pixel alpha values if present
                alpha = self.get_alpha()
                if alpha is not None and np.ndim(alpha) > 0:
                    out_alpha *= _resample(self, alpha, out_shape,
                                           t, resample=True)
                # mask and run through the norm
                output = self.norm(np.ma.masked_array(A_resampled, out_mask))
            else:
                if A.shape[2] == 3:
                    A = _rgb_to_rgba(A)
                alpha = self._get_scalar_alpha()
                output_alpha = _resample(  # resample alpha channel
                    self, A[..., 3], out_shape, t, alpha=alpha)
                output = _resample(  # resample rgb channels
                    self, _rgb_to_rgba(A[..., :3]), out_shape, t, alpha=alpha)
                output[..., 3] = output_alpha  # recombine rgb and alpha

            # at this point output is either a 2D array of normed data
            # (of int or float)
            # or an RGBA array of re-sampled input
            output = self.to_rgba(output, bytes=True, norm=False)
            # output is now a correctly sized RGBA array of uint8

            # Apply alpha *after* if the input was greyscale without a mask
            if A.ndim == 2:
                alpha = self._get_scalar_alpha()
                alpha_channel = output[:, :, 3]
                alpha_channel[:] = np.asarray(
                    np.asarray(alpha_channel, np.float32) * out_alpha * alpha,
                    np.uint8)

        else:
            if self._imcache is None:
                self._imcache = self.to_rgba(A, bytes=True, norm=(A.ndim == 2))
            output = self._imcache

            # Subset the input image to only the part that will be
            # displayed
            subset = TransformedBbox(clip_bbox, t0.inverted()).frozen()
            output = output[
                int(max(subset.ymin, 0)):
                int(min(subset.ymax + 1, output.shape[0])),
                int(max(subset.xmin, 0)):
                int(min(subset.xmax + 1, output.shape[1]))]

            t = Affine2D().translate(
                int(max(subset.xmin, 0)), int(max(subset.ymin, 0))) + t

        return output, clipped_bbox.x0, clipped_bbox.y0, t

    def make_image(self, renderer, magnification=1.0, unsampled=False):
        """
        Normalize, rescale, and colormap this image's data for rendering using
        *renderer*, with the given *magnification*.

        If *unsampled* is True, the image will not be scaled, but an
        appropriate affine transformation will be returned instead.

        Returns
        -------
        image : (M, N, 4) uint8 array
            The RGBA image, resampled unless *unsampled* is True.
        x, y : float
            The upper left corner where the image should be drawn, in pixel
            space.
        trans : Affine2D
            The affine transformation from image to pixel space.
        """
        raise NotImplementedError('The make_image method must be overridden')

    def _draw_unsampled_image(self, renderer, gc):
        """
        Draw unsampled image. The renderer should support a draw_image method
        with scale parameter.
        """
        im, l, b, trans = self.make_image(renderer, unsampled=True)

        if im is None:
            return

        trans = Affine2D().scale(im.shape[1], im.shape[0]) + trans

        renderer.draw_image(gc, l, b, im, trans)

    def _check_unsampled_image(self, renderer):
        """
        Return whether the image is better to be drawn unsampled.

        The derived class needs to override it.
        """
        return False

    @martist.allow_rasterization
    def draw(self, renderer, *args, **kwargs):
        # if not visible, declare victory and return
        if not self.get_visible():
            self.stale = False
            return

        # for empty images, there is nothing to draw!
        if self.get_array().size == 0:
            self.stale = False
            return

        # actually render the image.
        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_alpha(self._get_scalar_alpha())
        gc.set_url(self.get_url())
        gc.set_gid(self.get_gid())

        if (self._check_unsampled_image(renderer) and
                self.get_transform().is_affine):
            self._draw_unsampled_image(renderer, gc)
        else:
            im, l, b, trans = self.make_image(
                renderer, renderer.get_image_magnification())
            if im is not None:
                renderer.draw_image(gc, l, b, im)
        gc.restore()
        self.stale = False

    def contains(self, mouseevent):
        """
        Test whether the mouse event occurred within the image.
        """
        inside, info = self._default_contains(mouseevent)
        if inside is not None:
            return inside, info
        # 1) This doesn't work for figimage; but figimage also needs a fix
        #    below (as the check cannot use x/ydata and extents).
        # 2) As long as the check below uses x/ydata, we need to test axes
        #    identity instead of `self.axes.contains(event)` because even if
        #    axes overlap, x/ydata is only valid for event.inaxes anyways.
        if self.axes is not mouseevent.inaxes:
            return False, {}
        # TODO: make sure this is consistent with patch and patch
        # collection on nonlinear transformed coordinates.
        # TODO: consider returning image coordinates (shouldn't
        # be too difficult given that the image is rectilinear
        x, y = mouseevent.xdata, mouseevent.ydata
        xmin, xmax, ymin, ymax = self.get_extent()
        if xmin > xmax:
            xmin, xmax = xmax, xmin
        if ymin > ymax:
            ymin, ymax = ymax, ymin

        if x is not None and y is not None:
            inside = (xmin <= x <= xmax) and (ymin <= y <= ymax)
        else:
            inside = False

        return inside, {}

    def write_png(self, fname):
        """Write the image to png file with fname"""
        from matplotlib import _png
        im = self.to_rgba(self._A[::-1] if self.origin == 'lower' else self._A,
                          bytes=True, norm=True)
        with cbook.open_file_cm(fname, "wb") as file:
            _png.write_png(im, file)

    def set_data(self, A):
        """
        Set the image array.

        Note that this function does *not* update the normalization used.

        Parameters
        ----------
        A : array-like or `PIL.Image.Image`
        """
        try:
            from PIL import Image
        except ImportError:
            pass
        else:
            if isinstance(A, Image.Image):
                A = pil_to_array(A)  # Needed e.g. to apply png palette.
        self._A = cbook.safe_masked_invalid(A, copy=True)

        if (self._A.dtype != np.uint8 and
                not np.can_cast(self._A.dtype, float, "same_kind")):
            raise TypeError("Image data of dtype {} cannot be converted to "
                            "float".format(self._A.dtype))

        if not (self._A.ndim == 2
                or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]):
            raise TypeError("Invalid shape {} for image data"
                            .format(self._A.shape))

        if self._A.ndim == 3:
            # If the input data has values outside the valid range (after
            # normalisation), we issue a warning and then clip X to the bounds
            # - otherwise casting wraps extreme values, hiding outliers and
            # making reliable interpretation impossible.
            high = 255 if np.issubdtype(self._A.dtype, np.integer) else 1
            if self._A.min() < 0 or high < self._A.max():
                _log.warning(
                    'Clipping input data to the valid range for imshow with '
                    'RGB data ([0..1] for floats or [0..255] for integers).'
                )
                self._A = np.clip(self._A, 0, high)
            # Cast unsupported integer types to uint8
            if self._A.dtype != np.uint8 and np.issubdtype(self._A.dtype,
                                                           np.integer):
                self._A = self._A.astype(np.uint8)

        self._imcache = None
        self._rgbacache = None
        self.stale = True

    def set_array(self, A):
        """
        Retained for backwards compatibility - use set_data instead.

        Parameters
        ----------
        A : array-like
        """
        # This also needs to be here to override the inherited
        # cm.ScalarMappable.set_array method so it is not invoked by mistake.
        self.set_data(A)

    def get_interpolation(self):
        """
        Return the interpolation method the image uses when resizing.

        One of 'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16',
        'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
        'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos',
        or 'none'.

        """
        return self._interpolation

    def set_interpolation(self, s):
        """
        Set the interpolation method the image uses when resizing.

        if None, use a value from rc setting. If 'none', the image is
        shown as is without interpolating. 'none' is only supported in
        agg, ps and pdf backends and will fall back to 'nearest' mode
        for other backends.

        Parameters
        ----------
        s : {'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16',
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', \
'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', 'none'}

        """
        if s is None:
            s = rcParams['image.interpolation']
        s = s.lower()
        cbook._check_in_list(_interpd_, interpolation=s)
        self._interpolation = s
        self.stale = True

    def can_composite(self):
        """Return whether the image can be composited with its neighbors."""
        trans = self.get_transform()
        return (
            self._interpolation != 'none' and
            trans.is_affine and
            trans.is_separable)

    def set_resample(self, v):
        """
        Set whether image resampling is used.

        Parameters
        ----------
        v : bool or None
            If None, use :rc:`image.resample` = True.
        """
        if v is None:
            v = rcParams['image.resample']
        self._resample = v
        self.stale = True

    def get_resample(self):
        """Return whether image resampling is used."""
        return self._resample

    def set_filternorm(self, filternorm):
        """
        Set whether the resize filter normalizes the weights.

        See help for `~.Axes.imshow`.

        Parameters
        ----------
        filternorm : bool
        """
        self._filternorm = bool(filternorm)
        self.stale = True

    def get_filternorm(self):
        """Return whether the resize filter normalizes the weights."""
        return self._filternorm

    def set_filterrad(self, filterrad):
        """
        Set the resize filter radius only applicable to some
        interpolation schemes -- see help for imshow

        Parameters
        ----------
        filterrad : positive float
        """
        r = float(filterrad)
        if r <= 0:
            raise ValueError("The filter radius must be a positive number")
        self._filterrad = r
        self.stale = True

    def get_filterrad(self):
        """Return the filterrad setting."""
        return self._filterrad


class AxesImage(_ImageBase):
    """
    Parameters
    ----------
    ax : `~.axes.Axes`
        The axes the image will belong to.
    cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
        The Colormap instance or registered colormap name used to map scalar
        data to colors.
    norm : `~matplotlib.colors.Normalize`
        Maps luminance to 0-1.
    interpolation : str, default: :rc:`image.interpolation`
        Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
        'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
        'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
        'sinc', 'lanczos'.
    origin : {'upper', 'lower'}, default: :rc:`image.origin`
        Place the [0, 0] index of the array in the upper left or lower left
        corner of the axes. The convention 'upper' is typically used for
        matrices and images.
    extent : tuple, optional
        The data axes (left, right, bottom, top) for making image plots
        registered with data plots.  Default is to label the pixel
        centers with the zero-based row and column indices.
    filternorm : bool, default: True
        A parameter for the antigrain image resize filter
        (see the antigrain documentation).
        If filternorm is set, the filter normalizes integer values and corrects
        the rounding errors. It doesn't do anything with the source floating
        point values, it corrects only integers according to the rule of 1.0
        which means that any sum of pixel weights must be equal to 1.0. So,
        the filter function must produce a graph of the proper shape.
    filterrad : float > 0, default: 4
        The filter radius for filters that have a radius parameter, i.e. when
        interpolation is one of: 'sinc', 'lanczos' or 'blackman'.
    resample : bool, default: False
        When True, use a full resampling method. When False, only resample when
        the output image is larger than the input image.
    **kwargs : `.Artist` properties

    """
    def __str__(self):
        return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds)

    def __init__(self, ax,
                 cmap=None,
                 norm=None,
                 interpolation=None,
                 origin=None,
                 extent=None,
                 filternorm=1,
                 filterrad=4.0,
                 resample=False,
                 **kwargs
                 ):

        self._extent = extent

        super().__init__(
            ax,
            cmap=cmap,
            norm=norm,
            interpolation=interpolation,
            origin=origin,
            filternorm=filternorm,
            filterrad=filterrad,
            resample=resample,
            **kwargs
        )

    def get_window_extent(self, renderer=None):
        x0, x1, y0, y1 = self._extent
        bbox = Bbox.from_extents([x0, y0, x1, y1])
        return bbox.transformed(self.axes.transData)

    def make_image(self, renderer, magnification=1.0, unsampled=False):
        # docstring inherited
        trans = self.get_transform()
        # image is created in the canvas coordinate.
        x1, x2, y1, y2 = self.get_extent()
        bbox = Bbox(np.array([[x1, y1], [x2, y2]]))
        transformed_bbox = TransformedBbox(bbox, trans)
        return self._make_image(
            self._A, bbox, transformed_bbox,
            self.get_clip_box() or self.axes.bbox,
            magnification, unsampled=unsampled)

    def _check_unsampled_image(self, renderer):
        """
        Return whether the image would be better drawn unsampled.
        """
        return (self.get_interpolation() == "none"
                and renderer.option_scale_image())

    def set_extent(self, extent):
        """
        Set the image extent.

        Parameters
        ----------
        extent : 4-tuple of float
            The position and size of the image as tuple
            ``(left, right, bottom, top)`` in data coordinates.

        Notes
        -----
        This updates ``ax.dataLim``, and, if autoscaling, sets ``ax.viewLim``
        to tightly fit the image, regardless of ``dataLim``.  Autoscaling
        state is not changed, so following this with ``ax.autoscale_view()``
        will redo the autoscaling in accord with ``dataLim``.
        """
        self._extent = xmin, xmax, ymin, ymax = extent
        corners = (xmin, ymin), (xmax, ymax)
        self.axes.update_datalim(corners)
        self.sticky_edges.x[:] = [xmin, xmax]
        self.sticky_edges.y[:] = [ymin, ymax]
        if self.axes._autoscaleXon:
            self.axes.set_xlim((xmin, xmax), auto=None)
        if self.axes._autoscaleYon:
            self.axes.set_ylim((ymin, ymax), auto=None)
        self.stale = True

    def get_extent(self):
        """Return the image extent as tuple (left, right, bottom, top)."""
        if self._extent is not None:
            return self._extent
        else:
            sz = self.get_size()
            numrows, numcols = sz
            if self.origin == 'upper':
                return (-0.5, numcols-0.5, numrows-0.5, -0.5)
            else:
                return (-0.5, numcols-0.5, -0.5, numrows-0.5)

    def get_cursor_data(self, event):
        """
        Return the image value at the event position or *None* if the event is
        outside the image.

        See Also
        --------
        matplotlib.artist.Artist.get_cursor_data
        """
        xmin, xmax, ymin, ymax = self.get_extent()
        if self.origin == 'upper':
            ymin, ymax = ymax, ymin
        arr = self.get_array()
        data_extent = Bbox([[ymin, xmin], [ymax, xmax]])
        array_extent = Bbox([[0, 0], arr.shape[:2]])
        trans = BboxTransform(boxin=data_extent, boxout=array_extent)
        point = trans.transform([event.ydata, event.xdata])
        if any(np.isnan(point)):
            return None
        i, j = point.astype(int)
        # Clip the coordinates at array bounds
        if not (0 <= i < arr.shape[0]) or not (0 <= j < arr.shape[1]):
            return None
        else:
            return arr[i, j]

    def format_cursor_data(self, data):
        if np.ndim(data) == 0 and self.colorbar:
            return (
                "["
                + cbook.strip_math(
                    self.colorbar.formatter.format_data_short(data)).strip()
                + "]")
        else:
            return super().format_cursor_data(data)


class NonUniformImage(AxesImage):
    def __init__(self, ax, *, interpolation='nearest', **kwargs):
        """
        Parameters
        ----------
        interpolation : {'nearest', 'bilinear'}

        **kwargs
            All other keyword arguments are identical to those of `.AxesImage`.
        """
        super().__init__(ax, **kwargs)
        self.set_interpolation(interpolation)

    def _check_unsampled_image(self, renderer):
        """Return False. Do not use unsampled image."""
        return False

    def make_image(self, renderer, magnification=1.0, unsampled=False):
        # docstring inherited
        if self._A is None:
            raise RuntimeError('You must first set the image array')
        if unsampled:
            raise ValueError('unsampled not supported on NonUniformImage')
        A = self._A
        if A.ndim == 2:
            if A.dtype != np.uint8:
                A = self.to_rgba(A, bytes=True)
                self.is_grayscale = self.cmap.is_gray()
            else:
                A = np.repeat(A[:, :, np.newaxis], 4, 2)
                A[:, :, 3] = 255
                self.is_grayscale = True
        else:
            if A.dtype != np.uint8:
                A = (255*A).astype(np.uint8)
            if A.shape[2] == 3:
                B = np.zeros(tuple([*A.shape[0:2], 4]), np.uint8)
                B[:, :, 0:3] = A
                B[:, :, 3] = 255
                A = B
            self.is_grayscale = False
        x0, y0, v_width, v_height = self.axes.viewLim.bounds
        l, b, r, t = self.axes.bbox.extents
        width = (round(r) + 0.5) - (round(l) - 0.5)
        height = (round(t) + 0.5) - (round(b) - 0.5)
        width *= magnification
        height *= magnification
        im = _image.pcolor(self._Ax, self._Ay, A,
                           int(height), int(width),
                           (x0, x0+v_width, y0, y0+v_height),
                           _interpd_[self._interpolation])
        return im, l, b, IdentityTransform()

    def set_data(self, x, y, A):
        """
        Set the grid for the pixel centers, and the pixel values.

        Parameters
        ----------
        x, y : 1D array-likes
            Monotonic arrays of shapes (N,) and (M,), respectively, specifying
            pixel centers.
        A : array-like
            (M, N) ndarray or masked array of values to be colormapped, or
            (M, N, 3) RGB array, or (M, N, 4) RGBA array.
        """
        x = np.array(x, np.float32)
        y = np.array(y, np.float32)
        A = cbook.safe_masked_invalid(A, copy=True)
        if not (x.ndim == y.ndim == 1 and A.shape[0:2] == y.shape + x.shape):
            raise TypeError("Axes don't match array shape")
        if A.ndim not in [2, 3]:
            raise TypeError("Can only plot 2D or 3D data")
        if A.ndim == 3 and A.shape[2] not in [1, 3, 4]:
            raise TypeError("3D arrays must have three (RGB) "
                            "or four (RGBA) color components")
        if A.ndim == 3 and A.shape[2] == 1:
            A.shape = A.shape[0:2]
        self._A = A
        self._Ax = x
        self._Ay = y
        self._imcache = None

        self.stale = True

    def set_array(self, *args):
        raise NotImplementedError('Method not supported')

    def set_interpolation(self, s):
        """
        Parameters
        ----------
        s : str, None
            Either 'nearest', 'bilinear', or ``None``.
        """
        if s is not None and s not in ('nearest', 'bilinear'):
            raise NotImplementedError('Only nearest neighbor and '
                                      'bilinear interpolations are supported')
        AxesImage.set_interpolation(self, s)

    def get_extent(self):
        if self._A is None:
            raise RuntimeError('Must set data first')
        return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1]

    def set_filternorm(self, s):
        pass

    def set_filterrad(self, s):
        pass

    def set_norm(self, norm):
        if self._A is not None:
            raise RuntimeError('Cannot change colors after loading data')
        super().set_norm(norm)

    def set_cmap(self, cmap):
        if self._A is not None:
            raise RuntimeError('Cannot change colors after loading data')
        super().set_cmap(cmap)


class PcolorImage(AxesImage):
    """
    Make a pcolor-style plot with an irregular rectangular grid.

    This uses a variation of the original irregular image code,
    and it is used by pcolorfast for the corresponding grid type.
    """
    def __init__(self, ax,
                 x=None,
                 y=None,
                 A=None,
                 cmap=None,
                 norm=None,
                 **kwargs
                 ):
        """
        cmap defaults to its rc setting

        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        Additional kwargs are matplotlib.artist properties
        """
        super().__init__(ax, norm=norm, cmap=cmap)
        self.update(kwargs)
        if A is not None:
            self.set_data(x, y, A)

    def make_image(self, renderer, magnification=1.0, unsampled=False):
        # docstring inherited
        if self._A is None:
            raise RuntimeError('You must first set the image array')
        if unsampled:
            raise ValueError('unsampled not supported on PColorImage')
        fc = self.axes.patch.get_facecolor()
        bg = mcolors.to_rgba(fc, 0)
        bg = (np.array(bg)*255).astype(np.uint8)
        l, b, r, t = self.axes.bbox.extents
        width = (round(r) + 0.5) - (round(l) - 0.5)
        height = (round(t) + 0.5) - (round(b) - 0.5)
        # The extra cast-to-int is only needed for python2
        width = int(round(width * magnification))
        height = int(round(height * magnification))
        if self._rgbacache is None:
            A = self.to_rgba(self._A, bytes=True)
            self._rgbacache = A
            if self._A.ndim == 2:
                self.is_grayscale = self.cmap.is_gray()
        else:
            A = self._rgbacache
        vl = self.axes.viewLim
        im = _image.pcolor2(self._Ax, self._Ay, A,
                            height,
                            width,
                            (vl.x0, vl.x1, vl.y0, vl.y1),
                            bg)
        return im, l, b, IdentityTransform()

    def _check_unsampled_image(self, renderer):
        return False

    def set_data(self, x, y, A):
        """
        Set the grid for the rectangle boundaries, and the data values.

        Parameters
        ----------
        x, y : 1D array-likes or None
            Monotonic arrays of shapes (N + 1,) and (M + 1,), respectively,
            specifying rectangle boundaries.  If None, will default to
            ``range(N + 1)`` and ``range(M + 1)``, respectively.
        A : array-like
            (M, N) ndarray or masked array of values to be colormapped, or
            (M, N, 3) RGB array, or (M, N, 4) RGBA array.
        """
        A = cbook.safe_masked_invalid(A, copy=True)
        if x is None:
            x = np.arange(0, A.shape[1]+1, dtype=np.float64)
        else:
            x = np.array(x, np.float64).ravel()
        if y is None:
            y = np.arange(0, A.shape[0]+1, dtype=np.float64)
        else:
            y = np.array(y, np.float64).ravel()

        if A.shape[:2] != (y.size-1, x.size-1):
            raise ValueError(
                "Axes don't match array shape. Got %s, expected %s." %
                (A.shape[:2], (y.size - 1, x.size - 1)))
        if A.ndim not in [2, 3]:
            raise ValueError("A must be 2D or 3D")
        if A.ndim == 3 and A.shape[2] == 1:
            A.shape = A.shape[:2]
        self.is_grayscale = False
        if A.ndim == 3:
            if A.shape[2] in [3, 4]:
                if ((A[:, :, 0] == A[:, :, 1]).all() and
                        (A[:, :, 0] == A[:, :, 2]).all()):
                    self.is_grayscale = True
            else:
                raise ValueError("3D arrays must have RGB or RGBA as last dim")

        # For efficient cursor readout, ensure x and y are increasing.
        if x[-1] < x[0]:
            x = x[::-1]
            A = A[:, ::-1]
        if y[-1] < y[0]:
            y = y[::-1]
            A = A[::-1]

        self._A = A
        self._Ax = x
        self._Ay = y
        self._rgbacache = None
        self.stale = True

    def set_array(self, *args):
        raise NotImplementedError('Method not supported')

    def get_cursor_data(self, event):
        # docstring inherited
        x, y = event.xdata, event.ydata
        if (x < self._Ax[0] or x > self._Ax[-1] or
                y < self._Ay[0] or y > self._Ay[-1]):
            return None
        j = np.searchsorted(self._Ax, x) - 1
        i = np.searchsorted(self._Ay, y) - 1
        try:
            return self._A[i, j]
        except IndexError:
            return None


class FigureImage(_ImageBase):
    zorder = 0

    _interpolation = 'nearest'

    def __init__(self, fig,
                 cmap=None,
                 norm=None,
                 offsetx=0,
                 offsety=0,
                 origin=None,
                 **kwargs
                 ):
        """
        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        kwargs are an optional list of Artist keyword args
        """
        super().__init__(
            None,
            norm=norm,
            cmap=cmap,
            origin=origin
        )
        self.figure = fig
        self.ox = offsetx
        self.oy = offsety
        self.update(kwargs)
        self.magnification = 1.0

    def get_extent(self):
        """Return the image extent as tuple (left, right, bottom, top)."""
        numrows, numcols = self.get_size()
        return (-0.5 + self.ox, numcols-0.5 + self.ox,
                -0.5 + self.oy, numrows-0.5 + self.oy)

    def make_image(self, renderer, magnification=1.0, unsampled=False):
        # docstring inherited
        fac = renderer.dpi/self.figure.dpi
        # fac here is to account for pdf, eps, svg backends where
        # figure.dpi is set to 72.  This means we need to scale the
        # image (using magnification) and offset it appropriately.
        bbox = Bbox([[self.ox/fac, self.oy/fac],
                     [(self.ox/fac + self._A.shape[1]),
                     (self.oy/fac + self._A.shape[0])]])
        width, height = self.figure.get_size_inches()
        width *= renderer.dpi
        height *= renderer.dpi
        clip = Bbox([[0, 0], [width, height]])
        return self._make_image(
            self._A, bbox, bbox, clip, magnification=magnification / fac,
            unsampled=unsampled, round_to_pixel_border=False)

    def set_data(self, A):
        """Set the image array."""
        cm.ScalarMappable.set_array(self,
                                    cbook.safe_masked_invalid(A, copy=True))
        self.stale = True


class BboxImage(_ImageBase):
    """The Image class whose size is determined by the given bbox."""

    @cbook._delete_parameter("3.1", "interp_at_native")
    def __init__(self, bbox,
                 cmap=None,
                 norm=None,
                 interpolation=None,
                 origin=None,
                 filternorm=1,
                 filterrad=4.0,
                 resample=False,
                 interp_at_native=True,
                 **kwargs
                 ):
        """
        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        kwargs are an optional list of Artist keyword args
        """
        super().__init__(
            None,
            cmap=cmap,
            norm=norm,
            interpolation=interpolation,
            origin=origin,
            filternorm=filternorm,
            filterrad=filterrad,
            resample=resample,
            **kwargs
        )

        self.bbox = bbox
        self._interp_at_native = interp_at_native
        self._transform = IdentityTransform()

    @cbook.deprecated("3.1")
    @property
    def interp_at_native(self):
        return self._interp_at_native

    def get_transform(self):
        return self._transform

    def get_window_extent(self, renderer=None):
        if renderer is None:
            renderer = self.get_figure()._cachedRenderer

        if isinstance(self.bbox, BboxBase):
            return self.bbox
        elif callable(self.bbox):
            return self.bbox(renderer)
        else:
            raise ValueError("unknown type of bbox")

    def contains(self, mouseevent):
        """Test whether the mouse event occurred within the image."""
        inside, info = self._default_contains(mouseevent)
        if inside is not None:
            return inside, info

        if not self.get_visible():  # or self.get_figure()._renderer is None:
            return False, {}

        x, y = mouseevent.x, mouseevent.y
        inside = self.get_window_extent().contains(x, y)

        return inside, {}

    def make_image(self, renderer, magnification=1.0, unsampled=False):
        # docstring inherited
        width, height = renderer.get_canvas_width_height()
        bbox_in = self.get_window_extent(renderer).frozen()
        bbox_in._points /= [width, height]
        bbox_out = self.get_window_extent(renderer)
        clip = Bbox([[0, 0], [width, height]])
        self._transform = BboxTransform(Bbox([[0, 0], [1, 1]]), clip)
        return self._make_image(
            self._A,
            bbox_in, bbox_out, clip, magnification, unsampled=unsampled)


def imread(fname, format=None):
    """
    Read an image from a file into an array.

    Parameters
    ----------
    fname : str or file-like
        The image file to read: a filename, a URL or a file-like object opened
        in read-binary mode.
    format : str, optional
        The image file format assumed for reading the data. If not
        given, the format is deduced from the filename.  If nothing can
        be deduced, PNG is tried.

    Returns
    -------
    imagedata : :class:`numpy.array`
        The image data. The returned array has shape

        - (M, N) for grayscale images.
        - (M, N, 3) for RGB images.
        - (M, N, 4) for RGBA images.

    Notes
    -----
    Matplotlib can only read PNGs natively. Further image formats are
    supported via the optional dependency on Pillow. Note, URL strings
    are not compatible with Pillow. Check the `Pillow documentation`_
    for more information.

    .. _Pillow documentation: http://pillow.readthedocs.io/en/latest/
    """
    if format is None:
        if isinstance(fname, str):
            parsed = urllib.parse.urlparse(fname)
            # If the string is a URL (Windows paths appear as if they have a
            # length-1 scheme), assume png.
            if len(parsed.scheme) > 1:
                ext = 'png'
            else:
                basename, ext = os.path.splitext(fname)
                ext = ext.lower()[1:]
        elif hasattr(fname, 'geturl'):  # Returned by urlopen().
            # We could try to parse the url's path and use the extension, but
            # returning png is consistent with the block above.  Note that this
            # if clause has to come before checking for fname.name as
            # urlopen("file:///...") also has a name attribute (with the fixed
            # value "<urllib response>").
            ext = 'png'
        elif hasattr(fname, 'name'):
            basename, ext = os.path.splitext(fname.name)
            ext = ext.lower()[1:]
        else:
            ext = 'png'
    else:
        ext = format
    if ext != 'png':
        try:  # Try to load the image with PIL.
            from PIL import Image
        except ImportError:
            raise ValueError('Only know how to handle PNG; with Pillow '
                             'installed, Matplotlib can handle more images')
        with Image.open(fname) as image:
            return pil_to_array(image)
    from matplotlib import _png
    if isinstance(fname, str):
        parsed = urllib.parse.urlparse(fname)
        # If fname is a URL, download the data
        if len(parsed.scheme) > 1:
            from urllib import request
            fd = BytesIO(request.urlopen(fname).read())
            return _png.read_png(fd)
    with cbook.open_file_cm(fname, "rb") as file:
        return _png.read_png(file)


def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None,
           origin=None, dpi=100, *, metadata=None, pil_kwargs=None):
    """
    Save an array as an image file.

    Parameters
    ----------
    fname : str or PathLike or file-like
        A path or a file-like object to store the image in.
        If *format* is not set, then the output format is inferred from the
        extension of *fname*, if any, and from :rc:`savefig.format` otherwise.
        If *format* is set, it determines the output format.
    arr : array-like
        The image data. The shape can be one of
        MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA).
    vmin, vmax : scalar, optional
        *vmin* and *vmax* set the color scaling for the image by fixing the
        values that map to the colormap color limits. If either *vmin*
        or *vmax* is None, that limit is determined from the *arr*
        min/max value.
    cmap : str or `~matplotlib.colors.Colormap`, optional
        A Colormap instance or registered colormap name. The colormap
        maps scalar data to colors. It is ignored for RGB(A) data.
        Defaults to :rc:`image.cmap` ('viridis').
    format : str, optional
        The file format, e.g. 'png', 'pdf', 'svg', ...  The behavior when this
        is unset is documented under *fname*.
    origin : {'upper', 'lower'}, optional
        Indicates whether the ``(0, 0)`` index of the array is in the upper
        left or lower left corner of the axes.  Defaults to :rc:`image.origin`
        ('upper').
    dpi : int
        The DPI to store in the metadata of the file.  This does not affect the
        resolution of the output image.
    metadata : dict, optional
        Metadata in the image file.  The supported keys depend on the output
        format, see the documentation of the respective backends for more
        information.
    pil_kwargs : dict, optional
        If set to a non-None value, always use Pillow to save the figure
        (regardless of the output format), and pass these keyword arguments to
        `PIL.Image.save`.

        If the 'pnginfo' key is present, it completely overrides
        *metadata*, including the default 'Software' key.
    """
    from matplotlib.figure import Figure
    from matplotlib import _png
    if isinstance(fname, os.PathLike):
        fname = os.fspath(fname)
    if format is None:
        format = (Path(fname).suffix[1:] if isinstance(fname, str)
                  else rcParams["savefig.format"]).lower()
    if format in ["pdf", "ps", "eps", "svg"]:
        # Vector formats that are not handled by PIL.
        if pil_kwargs is not None:
            raise ValueError(
                f"Cannot use 'pil_kwargs' when saving to {format}")
        fig = Figure(dpi=dpi, frameon=False)
        fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin,
                     resize=True)
        fig.savefig(fname, dpi=dpi, format=format, transparent=True,
                    metadata=metadata)
    else:
        # Don't bother creating an image; this avoids rounding errors on the
        # size when dividing and then multiplying by dpi.
        sm = cm.ScalarMappable(cmap=cmap)
        sm.set_clim(vmin, vmax)
        if origin is None:
            origin = rcParams["image.origin"]
        if origin == "lower":
            arr = arr[::-1]
        rgba = sm.to_rgba(arr, bytes=True)
        if format == "png" and pil_kwargs is None:
            with cbook.open_file_cm(fname, "wb") as file:
                _png.write_png(rgba, file, dpi=dpi, metadata=metadata)
        else:
            try:
                from PIL import Image
                from PIL.PngImagePlugin import PngInfo
            except ImportError as exc:
                if pil_kwargs is not None:
                    raise ImportError("Setting 'pil_kwargs' requires Pillow")
                else:
                    raise ImportError(f"Saving to {format} requires Pillow")
            if pil_kwargs is None:
                pil_kwargs = {}
            pil_shape = (rgba.shape[1], rgba.shape[0])
            image = Image.frombuffer(
                "RGBA", pil_shape, rgba, "raw", "RGBA", 0, 1)
            if format == "png" and metadata:
                # cf. backend_agg's print_png.
                if "pnginfo" in pil_kwargs:
                    cbook._warn_external("'metadata' is overridden by the "
                                         "'pnginfo' entry in 'pil_kwargs'.")
                else:
                    pnginfo = PngInfo()
                    for k, v in metadata.items():
                        pnginfo.add_text(k, v)
                    pil_kwargs["pnginfo"] = pnginfo
            if format in ["jpg", "jpeg"]:
                format = "jpeg"  # Pillow doesn't recognize "jpg".
                color = tuple(
                    int(x * 255)
                    for x in mcolors.to_rgb(rcParams["savefig.facecolor"]))
                background = Image.new("RGB", pil_shape, color)
                background.paste(image, image)
                image = background
            pil_kwargs.setdefault("format", format)
            pil_kwargs.setdefault("dpi", (dpi, dpi))
            image.save(fname, **pil_kwargs)


def pil_to_array(pilImage):
    """Load a `PIL image`_ and return it as a numpy array.

    .. _PIL image: https://pillow.readthedocs.io/en/latest/reference/Image.html

    Returns
    -------
    numpy.array

        The array shape depends on the image type:

        - (M, N) for grayscale images.
        - (M, N, 3) for RGB images.
        - (M, N, 4) for RGBA images.

    """
    if pilImage.mode in ['RGBA', 'RGBX', 'RGB', 'L']:
        # return MxNx4 RGBA, MxNx3 RBA, or MxN luminance array
        return np.asarray(pilImage)
    elif pilImage.mode.startswith('I;16'):
        # return MxN luminance array of uint16
        raw = pilImage.tobytes('raw', pilImage.mode)
        if pilImage.mode.endswith('B'):
            x = np.frombuffer(raw, '>u2')
        else:
            x = np.frombuffer(raw, '<u2')
        return x.reshape(pilImage.size[::-1]).astype('=u2')
    else:  # try to convert to an rgba image
        try:
            pilImage = pilImage.convert('RGBA')
        except ValueError:
            raise RuntimeError('Unknown image mode')
        return np.asarray(pilImage)  # return MxNx4 RGBA array


def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear',
              preview=False):
    """
    Make a thumbnail of image in *infile* with output filename *thumbfile*.

    See :doc:`/gallery/misc/image_thumbnail_sgskip`.

    Parameters
    ----------
    infile : str or file-like
        The image file -- must be PNG, or Pillow-readable if you have Pillow_
        installed.

        .. _Pillow: http://python-pillow.org/

    thumbfile : str or file-like
        The thumbnail filename.

    scale : float, optional
        The scale factor for the thumbnail.

    interpolation : str, optional
        The interpolation scheme used in the resampling. See the
        *interpolation* parameter of `~.Axes.imshow` for possible values.

    preview : bool, optional
        If True, the default backend (presumably a user interface
        backend) will be used which will cause a figure to be raised if
        `~matplotlib.pyplot.show` is called.  If it is False, the figure is
        created using `FigureCanvasBase` and the drawing backend is selected
        as `~matplotlib.figure.savefig` would normally do.

    Returns
    -------
    figure : `~.figure.Figure`
        The figure instance containing the thumbnail.
    """

    im = imread(infile)
    rows, cols, depth = im.shape

    # This doesn't really matter (it cancels in the end) but the API needs it.
    dpi = 100

    height = rows / dpi * scale
    width = cols / dpi * scale

    if preview:
        # Let the UI backend do everything.
        import matplotlib.pyplot as plt
        fig = plt.figure(figsize=(width, height), dpi=dpi)
    else:
        from matplotlib.figure import Figure
        fig = Figure(figsize=(width, height), dpi=dpi)
        FigureCanvasBase(fig)

    ax = fig.add_axes([0, 0, 1, 1], aspect='auto',
                      frameon=False, xticks=[], yticks=[])
    ax.imshow(im, aspect='auto', resample=True, interpolation=interpolation)
    fig.savefig(thumbfile, dpi=dpi)
    return fig