mlab.py 47.9 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
"""
Numerical python functions written for compatibility with MATLAB
commands with the same names. Most numerical python functions can be found in
the `numpy` and `scipy` libraries. What remains here is code for performing
spectral computations.

Spectral functions
-------------------

`cohere`
    Coherence (normalized cross spectral density)

`csd`
    Cross spectral density using Welch's average periodogram

`detrend`
    Remove the mean or best fit line from an array

`psd`
    Power spectral density using Welch's average periodogram

`specgram`
    Spectrogram (spectrum over segments of time)

`complex_spectrum`
    Return the complex-valued frequency spectrum of a signal

`magnitude_spectrum`
    Return the magnitude of the frequency spectrum of a signal

`angle_spectrum`
    Return the angle (wrapped phase) of the frequency spectrum of a signal

`phase_spectrum`
    Return the phase (unwrapped angle) of the frequency spectrum of a signal

`detrend_mean`
    Remove the mean from a line.

`detrend_linear`
    Remove the best fit line from a line.

`detrend_none`
    Return the original line.

`stride_windows`
    Get all windows in an array in a memory-efficient manner

`stride_repeat`
    Repeat an array in a memory-efficient manner

`apply_window`
    Apply a window along a given axis
"""

import csv
import inspect
from numbers import Number

import numpy as np

import matplotlib.cbook as cbook
from matplotlib import docstring


def window_hanning(x):
    '''
    Return x times the hanning window of len(x).

    See Also
    --------
    window_none : Another window algorithm.
    '''
    return np.hanning(len(x))*x


def window_none(x):
    '''
    No window function; simply return x.

    See Also
    --------
    window_hanning : Another window algorithm.
    '''
    return x


@cbook.deprecated("3.2")
def apply_window(x, window, axis=0, return_window=None):
    '''
    Apply the given window to the given 1D or 2D array along the given axis.

    Parameters
    ----------
    x : 1D or 2D array or sequence
        Array or sequence containing the data.

    window : function or array.
        Either a function to generate a window or an array with length
        *x*.shape[*axis*]

    axis : integer
        The axis over which to do the repetition.
        Must be 0 or 1.  The default is 0

    return_window : bool
        If true, also return the 1D values of the window that was applied
    '''
    x = np.asarray(x)

    if x.ndim < 1 or x.ndim > 2:
        raise ValueError('only 1D or 2D arrays can be used')
    if axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    xshape = list(x.shape)
    xshapetarg = xshape.pop(axis)

    if np.iterable(window):
        if len(window) != xshapetarg:
            raise ValueError('The len(window) must be the same as the shape '
                             'of x for the chosen axis')
        windowVals = window
    else:
        windowVals = window(np.ones(xshapetarg, dtype=x.dtype))

    if x.ndim == 1:
        if return_window:
            return windowVals * x, windowVals
        else:
            return windowVals * x

    xshapeother = xshape.pop()

    otheraxis = (axis+1) % 2

    windowValsRep = stride_repeat(windowVals, xshapeother, axis=otheraxis)

    if return_window:
        return windowValsRep * x, windowVals
    else:
        return windowValsRep * x


def detrend(x, key=None, axis=None):
    '''
    Return x with its trend removed.

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data.

    key : {'default', 'constant', 'mean', 'linear', 'none'} or function
        Specifies the detrend algorithm to use. 'default' is 'mean', which is
        the same as `detrend_mean`. 'constant' is the same. 'linear' is
        the same as `detrend_linear`. 'none' is the same as
        `detrend_none`. The default is 'mean'. See the corresponding
        functions for more details regarding the algorithms. Can also be a
        function that carries out the detrend operation.

    axis : integer
        The axis along which to do the detrending.

    See Also
    --------
    detrend_mean : Implementation of the 'mean' algorithm.
    detrend_linear : Implementation of the 'linear' algorithm.
    detrend_none : Implementation of the 'none' algorithm.
    '''
    if key is None or key in ['constant', 'mean', 'default']:
        return detrend(x, key=detrend_mean, axis=axis)
    elif key == 'linear':
        return detrend(x, key=detrend_linear, axis=axis)
    elif key == 'none':
        return detrend(x, key=detrend_none, axis=axis)
    elif callable(key):
        x = np.asarray(x)
        if axis is not None and axis + 1 > x.ndim:
            raise ValueError(f'axis(={axis}) out of bounds')
        if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1):
            return key(x)
        # try to use the 'axis' argument if the function supports it,
        # otherwise use apply_along_axis to do it
        try:
            return key(x, axis=axis)
        except TypeError:
            return np.apply_along_axis(key, axis=axis, arr=x)
    else:
        raise ValueError(
            f"Unknown value for key: {key!r}, must be one of: 'default', "
            f"'constant', 'mean', 'linear', or a function")


@cbook.deprecated("3.1", alternative="detrend_mean")
def demean(x, axis=0):
    '''
    Return x minus its mean along the specified axis.

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data
        Can have any dimensionality

    axis : integer
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    detrend_mean : Same as `demean` except for the default *axis*.
    '''
    return detrend_mean(x, axis=axis)


def detrend_mean(x, axis=None):
    '''
    Return x minus the mean(x).

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data
        Can have any dimensionality

    axis : integer
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    detrend_linear : Another detrend algorithm.
    detrend_none : Another detrend algorithm.
    detrend : A wrapper around all the detrend algorithms.
    '''
    x = np.asarray(x)

    if axis is not None and axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    return x - x.mean(axis, keepdims=True)


def detrend_none(x, axis=None):
    '''
    Return x: no detrending.

    Parameters
    ----------
    x : any object
        An object containing the data

    axis : integer
        This parameter is ignored.
        It is included for compatibility with detrend_mean

    See Also
    --------
    detrend_mean : Another detrend algorithm.
    detrend_linear : Another detrend algorithm.
    detrend : A wrapper around all the detrend algorithms.
    '''
    return x


def detrend_linear(y):
    '''
    Return x minus best fit line; 'linear' detrending.

    Parameters
    ----------
    y : 0-D or 1-D array or sequence
        Array or sequence containing the data

    axis : integer
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    detrend_mean : Another detrend algorithm.
    detrend_none : Another detrend algorithm.
    detrend : A wrapper around all the detrend algorithms.
    '''
    # This is faster than an algorithm based on linalg.lstsq.
    y = np.asarray(y)

    if y.ndim > 1:
        raise ValueError('y cannot have ndim > 1')

    # short-circuit 0-D array.
    if not y.ndim:
        return np.array(0., dtype=y.dtype)

    x = np.arange(y.size, dtype=float)

    C = np.cov(x, y, bias=1)
    b = C[0, 1]/C[0, 0]

    a = y.mean() - b*x.mean()
    return y - (b*x + a)


def stride_windows(x, n, noverlap=None, axis=0):
    '''
    Get all windows of x with length n as a single array,
    using strides to avoid data duplication.

    .. warning::

        It is not safe to write to the output array.  Multiple
        elements may point to the same piece of memory,
        so modifying one value may change others.

    Parameters
    ----------
    x : 1D array or sequence
        Array or sequence containing the data.

    n : integer
        The number of data points in each window.

    noverlap : integer
        The overlap between adjacent windows.
        Default is 0 (no overlap)

    axis : integer
        The axis along which the windows will run.

    References
    ----------
    `stackoverflow: Rolling window for 1D arrays in Numpy?
    <http://stackoverflow.com/a/6811241>`_
    `stackoverflow: Using strides for an efficient moving average filter
    <http://stackoverflow.com/a/4947453>`_
    '''
    if noverlap is None:
        noverlap = 0

    if noverlap >= n:
        raise ValueError('noverlap must be less than n')
    if n < 1:
        raise ValueError('n cannot be less than 1')

    x = np.asarray(x)

    if x.ndim != 1:
        raise ValueError('only 1-dimensional arrays can be used')
    if n == 1 and noverlap == 0:
        if axis == 0:
            return x[np.newaxis]
        else:
            return x[np.newaxis].transpose()
    if n > x.size:
        raise ValueError('n cannot be greater than the length of x')

    # np.lib.stride_tricks.as_strided easily leads to memory corruption for
    # non integer shape and strides, i.e. noverlap or n. See #3845.
    noverlap = int(noverlap)
    n = int(n)

    step = n - noverlap
    if axis == 0:
        shape = (n, (x.shape[-1]-noverlap)//step)
        strides = (x.strides[0], step*x.strides[0])
    else:
        shape = ((x.shape[-1]-noverlap)//step, n)
        strides = (step*x.strides[0], x.strides[0])
    return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


@cbook.deprecated("3.2")
def stride_repeat(x, n, axis=0):
    '''
    Repeat the values in an array in a memory-efficient manner.  Array x is
    stacked vertically n times.

    .. warning::

        It is not safe to write to the output array.  Multiple
        elements may point to the same piece of memory, so
        modifying one value may change others.

    Parameters
    ----------
    x : 1D array or sequence
        Array or sequence containing the data.

    n : integer
        The number of time to repeat the array.

    axis : integer
        The axis along which the data will run.

    References
    ----------
    `stackoverflow: Repeat NumPy array without replicating data?
    <http://stackoverflow.com/a/5568169>`_
    '''
    if axis not in [0, 1]:
        raise ValueError('axis must be 0 or 1')
    x = np.asarray(x)
    if x.ndim != 1:
        raise ValueError('only 1-dimensional arrays can be used')

    if n == 1:
        if axis == 0:
            return np.atleast_2d(x)
        else:
            return np.atleast_2d(x).T
    if n < 1:
        raise ValueError('n cannot be less than 1')

    # np.lib.stride_tricks.as_strided easily leads to memory corruption for
    # non integer shape and strides, i.e. n. See #3845.
    n = int(n)

    if axis == 0:
        shape = (n, x.size)
        strides = (0, x.strides[0])
    else:
        shape = (x.size, n)
        strides = (x.strides[0], 0)

    return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None,
                     window=None, noverlap=None, pad_to=None,
                     sides=None, scale_by_freq=None, mode=None):
    '''
    This is a helper function that implements the commonality between the
    psd, csd, spectrogram and complex, magnitude, angle, and phase spectrums.
    It is *NOT* meant to be used outside of mlab and may change at any time.
    '''
    if y is None:
        # if y is None use x for y
        same_data = True
    else:
        # The checks for if y is x are so that we can use the same function to
        # implement the core of psd(), csd(), and spectrogram() without doing
        # extra calculations.  We return the unaveraged Pxy, freqs, and t.
        same_data = y is x

    if Fs is None:
        Fs = 2
    if noverlap is None:
        noverlap = 0
    if detrend_func is None:
        detrend_func = detrend_none
    if window is None:
        window = window_hanning

    # if NFFT is set to None use the whole signal
    if NFFT is None:
        NFFT = 256

    if mode is None or mode == 'default':
        mode = 'psd'
    cbook._check_in_list(
        ['default', 'psd', 'complex', 'magnitude', 'angle', 'phase'],
        mode=mode)

    if not same_data and mode != 'psd':
        raise ValueError("x and y must be equal if mode is not 'psd'")

    # Make sure we're dealing with a numpy array. If y and x were the same
    # object to start with, keep them that way
    x = np.asarray(x)
    if not same_data:
        y = np.asarray(y)

    if sides is None or sides == 'default':
        if np.iscomplexobj(x):
            sides = 'twosided'
        else:
            sides = 'onesided'
    cbook._check_in_list(['default', 'onesided', 'twosided'], sides=sides)

    # zero pad x and y up to NFFT if they are shorter than NFFT
    if len(x) < NFFT:
        n = len(x)
        x = np.resize(x, NFFT)
        x[n:] = 0

    if not same_data and len(y) < NFFT:
        n = len(y)
        y = np.resize(y, NFFT)
        y[n:] = 0

    if pad_to is None:
        pad_to = NFFT

    if mode != 'psd':
        scale_by_freq = False
    elif scale_by_freq is None:
        scale_by_freq = True

    # For real x, ignore the negative frequencies unless told otherwise
    if sides == 'twosided':
        numFreqs = pad_to
        if pad_to % 2:
            freqcenter = (pad_to - 1)//2 + 1
        else:
            freqcenter = pad_to//2
        scaling_factor = 1.
    elif sides == 'onesided':
        if pad_to % 2:
            numFreqs = (pad_to + 1)//2
        else:
            numFreqs = pad_to//2 + 1
        scaling_factor = 2.

    if not np.iterable(window):
        window = window(np.ones(NFFT, x.dtype))
    if len(window) != NFFT:
        raise ValueError(
            "The window length must match the data's first dimension")

    result = stride_windows(x, NFFT, noverlap, axis=0)
    result = detrend(result, detrend_func, axis=0)
    result = result * window.reshape((-1, 1))
    result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :]
    freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs]

    if not same_data:
        # if same_data is False, mode must be 'psd'
        resultY = stride_windows(y, NFFT, noverlap)
        resultY = detrend(resultY, detrend_func, axis=0)
        resultY = resultY * window.reshape((-1, 1))
        resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :]
        result = np.conj(result) * resultY
    elif mode == 'psd':
        result = np.conj(result) * result
    elif mode == 'magnitude':
        result = np.abs(result) / np.abs(window).sum()
    elif mode == 'angle' or mode == 'phase':
        # we unwrap the phase later to handle the onesided vs. twosided case
        result = np.angle(result)
    elif mode == 'complex':
        result /= np.abs(window).sum()

    if mode == 'psd':

        # Also include scaling factors for one-sided densities and dividing by
        # the sampling frequency, if desired. Scale everything, except the DC
        # component and the NFFT/2 component:

        # if we have a even number of frequencies, don't scale NFFT/2
        if not NFFT % 2:
            slc = slice(1, -1, None)
        # if we have an odd number, just don't scale DC
        else:
            slc = slice(1, None, None)

        result[slc] *= scaling_factor

        # MATLAB divides by the sampling frequency so that density function
        # has units of dB/Hz and can be integrated by the plotted frequency
        # values. Perform the same scaling here.
        if scale_by_freq:
            result /= Fs
            # Scale the spectrum by the norm of the window to compensate for
            # windowing loss; see Bendat & Piersol Sec 11.5.2.
            result /= (np.abs(window)**2).sum()
        else:
            # In this case, preserve power in the segment, not amplitude
            result /= np.abs(window).sum()**2

    t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs

    if sides == 'twosided':
        # center the frequency range at zero
        freqs = np.concatenate((freqs[freqcenter:], freqs[:freqcenter]))
        result = np.concatenate((result[freqcenter:, :],
                                 result[:freqcenter, :]), 0)
    elif not pad_to % 2:
        # get the last value correctly, it is negative otherwise
        freqs[-1] *= -1

    # we unwrap the phase here to handle the onesided vs. twosided case
    if mode == 'phase':
        result = np.unwrap(result, axis=0)

    return result, freqs, t


def _single_spectrum_helper(x, mode, Fs=None, window=None, pad_to=None,
                            sides=None):
    '''
    This is a helper function that implements the commonality between the
    complex, magnitude, angle, and phase spectrums.
    It is *NOT* meant to be used outside of mlab and may change at any time.
    '''
    cbook._check_in_list(['complex', 'magnitude', 'angle', 'phase'], mode=mode)

    if pad_to is None:
        pad_to = len(x)

    spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs,
                                      detrend_func=detrend_none, window=window,
                                      noverlap=0, pad_to=pad_to,
                                      sides=sides,
                                      scale_by_freq=False,
                                      mode=mode)
    if mode != 'complex':
        spec = spec.real

    if spec.ndim == 2 and spec.shape[1] == 1:
        spec = spec[:, 0]

    return spec, freqs


# Split out these keyword docs so that they can be used elsewhere
docstring.interpd.update(Spectral=inspect.cleandoc("""
    Fs : scalar
        The sampling frequency (samples per time unit).  It is used
        to calculate the Fourier frequencies, freqs, in cycles per time
        unit. The default value is 2.

    window : callable or ndarray
        A function or a vector of length *NFFT*.  To create window vectors see
        `window_hanning`, `window_none`, `numpy.blackman`, `numpy.hamming`,
        `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  The
        default is `window_hanning`.  If a function is passed as the argument,
        it must take a data segment as an argument and return the windowed
        version of the segment.

    sides : {'default', 'onesided', 'twosided'}
        Specifies which sides of the spectrum to return.  Default gives the
        default behavior, which returns one-sided for real data and both
        for complex data.  'onesided' forces the return of a one-sided
        spectrum, while 'twosided' forces two-sided.
"""))


docstring.interpd.update(Single_Spectrum=inspect.cleandoc("""
    pad_to : int
        The number of points to which the data segment is padded when
        performing the FFT.  While not increasing the actual resolution of
        the spectrum (the minimum distance between resolvable peaks),
        this can give more points in the plot, allowing for more
        detail. This corresponds to the *n* parameter in the call to fft().
        The default is None, which sets *pad_to* equal to the length of the
        input signal (i.e. no padding).
"""))


docstring.interpd.update(PSD=inspect.cleandoc("""
    pad_to : int
        The number of points to which the data segment is padded when
        performing the FFT.  This can be different from *NFFT*, which
        specifies the number of data points used.  While not increasing
        the actual resolution of the spectrum (the minimum distance between
        resolvable peaks), this can give more points in the plot,
        allowing for more detail. This corresponds to the *n* parameter
        in the call to fft(). The default is None, which sets *pad_to*
        equal to *NFFT*

    NFFT : int
        The number of data points used in each block for the FFT.
        A power 2 is most efficient.  The default value is 256.
        This should *NOT* be used to get zero padding, or the scaling of the
        result will be incorrect. Use *pad_to* for this instead.

    detrend : {'none', 'mean', 'linear'} or callable, default 'none'
        The function applied to each segment before fft-ing, designed to
        remove the mean or linear trend.  Unlike in MATLAB, where the
        *detrend* parameter is a vector, in Matplotlib is it a function.
        The :mod:`~matplotlib.mlab` module defines `.detrend_none`,
        `.detrend_mean`, and `.detrend_linear`, but you can use a custom
        function as well.  You can also use a string to choose one of the
        functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`.
        'linear' calls `.detrend_linear`.

    scale_by_freq : bool, optional
        Specifies whether the resulting density values should be scaled
        by the scaling frequency, which gives density in units of Hz^-1.
        This allows for integration over the returned frequency values.
        The default is True for MATLAB compatibility.
"""))


@docstring.dedent_interpd
def psd(x, NFFT=None, Fs=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None):
    r"""
    Compute the power spectral density.

    The power spectral density :math:`P_{xx}` by Welch's average
    periodogram method.  The vector *x* is divided into *NFFT* length
    segments.  Each segment is detrended by function *detrend* and
    windowed by function *window*.  *noverlap* gives the length of
    the overlap between segments.  The :math:`|\mathrm{fft}(i)|^2`
    of each segment :math:`i` are averaged to compute :math:`P_{xx}`.

    If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : integer
        The number of points of overlap between segments.
        The default value is 0 (no overlap).

    Returns
    -------
    Pxx : 1-D array
        The values for the power spectrum `P_{xx}` (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *Pxx*

    References
    ----------
    Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John
    Wiley & Sons (1986)

    See Also
    --------
    specgram
        `specgram` differs in the default overlap; in not returning the mean of
        the segment periodograms; and in returning the times of the segments.

    magnitude_spectrum : returns the magnitude spectrum.

    csd : returns the spectral density between two signals.
    """
    Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend,
                     window=window, noverlap=noverlap, pad_to=pad_to,
                     sides=sides, scale_by_freq=scale_by_freq)
    return Pxx.real, freqs


@docstring.dedent_interpd
def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None):
    """
    Compute the cross-spectral density.

    The cross spectral density :math:`P_{xy}` by Welch's average
    periodogram method.  The vectors *x* and *y* are divided into
    *NFFT* length segments.  Each segment is detrended by function
    *detrend* and windowed by function *window*.  *noverlap* gives
    the length of the overlap between segments.  The product of
    the direct FFTs of *x* and *y* are averaged over each segment
    to compute :math:`P_{xy}`, with a scaling to correct for power
    loss due to windowing.

    If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
    padded to *NFFT*.

    Parameters
    ----------
    x, y : 1-D arrays or sequences
        Arrays or sequences containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : integer
        The number of points of overlap between segments.
        The default value is 0 (no overlap).

    Returns
    -------
    Pxy : 1-D array
        The values for the cross spectrum `P_{xy}` before scaling (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *Pxy*

    References
    ----------
    Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John
    Wiley & Sons (1986)

    See Also
    --------
    psd : equivalent to setting ``y = x``.
    """
    if NFFT is None:
        NFFT = 256
    Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs,
                                     detrend_func=detrend, window=window,
                                     noverlap=noverlap, pad_to=pad_to,
                                     sides=sides, scale_by_freq=scale_by_freq,
                                     mode='psd')

    if Pxy.ndim == 2:
        if Pxy.shape[1] > 1:
            Pxy = Pxy.mean(axis=1)
        else:
            Pxy = Pxy[:, 0]
    return Pxy, freqs


@docstring.dedent_interpd
def complex_spectrum(x, Fs=None, window=None, pad_to=None,
                     sides=None):
    """
    Compute the complex-valued frequency spectrum of *x*.  Data is padded to a
    length of *pad_to* and the windowing function *window* is applied to the
    signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the complex spectrum (complex valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    magnitude_spectrum
        Returns the absolute value of this function.
    angle_spectrum
        Returns the angle of this function.
    phase_spectrum
        Returns the phase (unwrapped angle) of this function.
    specgram
        Can return the complex spectrum of segments within the signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='complex')


@docstring.dedent_interpd
def magnitude_spectrum(x, Fs=None, window=None, pad_to=None,
                       sides=None):
    """
    Compute the magnitude (absolute value) of the frequency spectrum of
    *x*.  Data is padded to a length of *pad_to* and the windowing function
    *window* is applied to the signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the magnitude spectrum (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    psd
        Returns the power spectral density.
    complex_spectrum
        This function returns the absolute value of `complex_spectrum`.
    angle_spectrum
        Returns the angles of the corresponding frequencies.
    phase_spectrum
        Returns the phase (unwrapped angle) of the corresponding frequencies.
    specgram
        Can return the complex spectrum of segments within the signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='magnitude')


@docstring.dedent_interpd
def angle_spectrum(x, Fs=None, window=None, pad_to=None,
                   sides=None):
    """
    Compute the angle of the frequency spectrum (wrapped phase spectrum) of
    *x*.  Data is padded to a length of *pad_to* and the windowing function
    *window* is applied to the signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the angle spectrum in radians (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    complex_spectrum
        This function returns the angle value of `complex_spectrum`.
    magnitude_spectrum
        Returns the magnitudes of the corresponding frequencies.
    phase_spectrum
        Returns the phase (unwrapped angle) of the corresponding frequencies.
    specgram
        Can return the complex spectrum of segments within the signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='angle')


@docstring.dedent_interpd
def phase_spectrum(x, Fs=None, window=None, pad_to=None,
                   sides=None):
    """
    Compute the phase of the frequency spectrum (unwrapped angle spectrum) of
    *x*.  Data is padded to a length of *pad_to* and the windowing function
    *window* is applied to the signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the phase spectrum in radians (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    complex_spectrum
        This function returns the phase value of `complex_spectrum`.
    magnitude_spectrum
        Returns the magnitudes of the corresponding frequencies.
    angle_spectrum
        Returns the angle (wrapped phase) of the corresponding frequencies.
    specgram
        Can return the complex spectrum of segments within the signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='phase')


@docstring.dedent_interpd
def specgram(x, NFFT=None, Fs=None, detrend=None, window=None,
             noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
             mode=None):
    """
    Compute a spectrogram.

    Compute and plot a spectrogram of data in x.  Data are split into
    NFFT length segments and the spectrum of each section is
    computed.  The windowing function window is applied to each
    segment, and the amount of overlap of each segment is
    specified with noverlap.

    Parameters
    ----------
    x : array-like
        1-D array or sequence.

    %(Spectral)s

    %(PSD)s

    noverlap : int, optional
        The number of points of overlap between blocks.  The default
        value is 128.
    mode : str, optional
        What sort of spectrum to use, default is 'psd'.
            'psd'
                Returns the power spectral density.

            'complex'
                Returns the complex-valued frequency spectrum.

            'magnitude'
                Returns the magnitude spectrum.

            'angle'
                Returns the phase spectrum without unwrapping.

            'phase'
                Returns the phase spectrum with unwrapping.

    Returns
    -------
    spectrum : array-like
        2-D array, columns are the periodograms of successive segments.

    freqs : array-like
        1-D array, frequencies corresponding to the rows in *spectrum*.

    t : array-like
        1-D array, the times corresponding to midpoints of segments
        (i.e the columns in *spectrum*).

    See Also
    --------
    psd : differs in the overlap and in the return values.
    complex_spectrum : similar, but with complex valued frequencies.
    magnitude_spectrum : similar single segment when mode is 'magnitude'.
    angle_spectrum : similar to single segment when mode is 'angle'.
    phase_spectrum : similar to single segment when mode is 'phase'.

    Notes
    -----
    detrend and scale_by_freq only apply when *mode* is set to 'psd'.

    """
    if noverlap is None:
        noverlap = 128  # default in _spectral_helper() is noverlap = 0
    if NFFT is None:
        NFFT = 256  # same default as in _spectral_helper()
    if len(x) <= NFFT:
        cbook._warn_external("Only one segment is calculated since parameter "
                             "NFFT (=%d) >= signal length (=%d)." %
                             (NFFT, len(x)))

    spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs,
                                      detrend_func=detrend, window=window,
                                      noverlap=noverlap, pad_to=pad_to,
                                      sides=sides,
                                      scale_by_freq=scale_by_freq,
                                      mode=mode)

    if mode != 'complex':
        spec = spec.real  # Needed since helper implements generically

    return spec, freqs, t


@docstring.dedent_interpd
def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
           noverlap=0, pad_to=None, sides='default', scale_by_freq=None):
    r"""
    The coherence between *x* and *y*.  Coherence is the normalized
    cross spectral density:

    .. math::

        C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}

    Parameters
    ----------
    x, y
        Array or sequence containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : integer
        The number of points of overlap between blocks.  The default value
        is 0 (no overlap).

    Returns
    -------
    The return value is the tuple (*Cxy*, *f*), where *f* are the
    frequencies of the coherence vector. For cohere, scaling the
    individual densities by the sampling frequency has no effect,
    since the factors cancel out.

    See Also
    --------
    :func:`psd`, :func:`csd` :
        For information about the methods used to compute :math:`P_{xy}`,
        :math:`P_{xx}` and :math:`P_{yy}`.
    """
    if len(x) < 2 * NFFT:
        raise ValueError(
            "Coherence is calculated by averaging over *NFFT* length "
            "segments.  Your signal is too short for your choice of *NFFT*.")
    Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Cxy = np.abs(Pxy) ** 2 / (Pxx * Pyy)
    return Cxy, f


def _csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',',
             converterd=None, names=None, missing='', missingd=None,
             use_mrecords=False, dayfirst=False, yearfirst=False):
    """
    Load data from comma/space/tab delimited file in *fname* into a
    numpy record array and return the record array.

    If *names* is *None*, a header row is required to automatically
    assign the recarray names.  The headers will be lower cased,
    spaces will be converted to underscores, and illegal attribute
    name characters removed.  If *names* is not *None*, it is a
    sequence of names to use for the column names.  In this case, it
    is assumed there is no header row.


    - *fname*: can be a filename or a file handle.  Support for gzipped
      files is automatic, if the filename ends in '.gz'

    - *comments*: the character used to indicate the start of a comment
      in the file, or *None* to switch off the removal of comments

    - *skiprows*: is the number of rows from the top to skip

    - *checkrows*: is the number of rows to check to validate the column
      data type.  When set to zero all rows are validated.

    - *converterd*: if not *None*, is a dictionary mapping column number or
      munged column name to a converter function.

    - *names*: if not None, is a list of header names.  In this case, no
      header will be read from the file

    - *missingd* is a dictionary mapping munged column names to field values
      which signify that the field does not contain actual data and should
      be masked, e.g., '0000-00-00' or 'unused'

    - *missing*: a string whose value signals a missing field regardless of
      the column it appears in

    - *use_mrecords*: if True, return an mrecords.fromrecords record array if
      any of the data are missing

    - *dayfirst*: default is False so that MM-DD-YY has precedence over
      DD-MM-YY.  See
      http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47
      for further information.

    - *yearfirst*: default is False so that MM-DD-YY has precedence over
      YY-MM-DD. See
      http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47
      for further information.

      If no rows are found, *None* is returned
    """

    if converterd is None:
        converterd = dict()

    if missingd is None:
        missingd = {}

    import dateutil.parser
    import datetime

    fh = cbook.to_filehandle(fname)

    delimiter = str(delimiter)

    class FH:
        """
        For space-delimited files, we want different behavior than
        comma or tab.  Generally, we want multiple spaces to be
        treated as a single separator, whereas with comma and tab we
        want multiple commas to return multiple (empty) fields.  The
        join/strip trick below effects this.
        """
        def __init__(self, fh):
            self.fh = fh

        def close(self):
            self.fh.close()

        def seek(self, arg):
            self.fh.seek(arg)

        def fix(self, s):
            return ' '.join(s.split())

        def __next__(self):
            return self.fix(next(self.fh))

        def __iter__(self):
            for line in self.fh:
                yield self.fix(line)

    if delimiter == ' ':
        fh = FH(fh)

    reader = csv.reader(fh, delimiter=delimiter)

    def process_skiprows(reader):
        if skiprows:
            for i, row in enumerate(reader):
                if i >= (skiprows-1):
                    break

        return fh, reader

    process_skiprows(reader)

    def ismissing(name, val):
        "Should the value val in column name be masked?"
        return val == missing or val == missingd.get(name) or val == ''

    def with_default_value(func, default):
        def newfunc(name, val):
            if ismissing(name, val):
                return default
            else:
                return func(val)
        return newfunc

    def mybool(x):
        if x == 'True':
            return True
        elif x == 'False':
            return False
        else:
            raise ValueError('invalid bool')

    dateparser = dateutil.parser.parse

    def mydateparser(x):
        # try and return a datetime object
        d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst)
        return d

    mydateparser = with_default_value(mydateparser, datetime.datetime(1, 1, 1))

    myfloat = with_default_value(float, np.nan)
    myint = with_default_value(int, -1)
    mystr = with_default_value(str, '')
    mybool = with_default_value(mybool, None)

    def mydate(x):
        # try and return a date object
        d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst)

        if d.hour > 0 or d.minute > 0 or d.second > 0:
            raise ValueError('not a date')
        return d.date()
    mydate = with_default_value(mydate, datetime.date(1, 1, 1))

    def get_func(name, item, func):
        # promote functions in this order
        funcs = [mybool, myint, myfloat, mydate, mydateparser, mystr]
        for func in funcs[funcs.index(func):]:
            try:
                func(name, item)
            except Exception:
                continue
            return func
        raise ValueError('Could not find a working conversion function')

    # map column names that clash with builtins -- TODO - extend this list
    itemd = {
        'return': 'return_',
        'file':   'file_',
        'print':  'print_',
        }

    def get_converters(reader, comments):

        converters = None
        i = 0
        for row in reader:
            if (len(row) and comments is not None and
                    row[0].startswith(comments)):
                continue
            if i == 0:
                converters = [mybool]*len(row)
            if checkrows and i > checkrows:
                break
            i += 1

            for j, (name, item) in enumerate(zip(names, row)):
                func = converterd.get(j)
                if func is None:
                    func = converterd.get(name)
                if func is None:
                    func = converters[j]
                    if len(item.strip()):
                        func = get_func(name, item, func)
                else:
                    # how should we handle custom converters and defaults?
                    func = with_default_value(func, None)
                converters[j] = func
        return converters

    # Get header and remove invalid characters
    needheader = names is None

    if needheader:
        for row in reader:
            if (len(row) and comments is not None and
                    row[0].startswith(comments)):
                continue
            headers = row
            break

        # remove these chars
        delete = set(r"""~!@#$%^&*()-=+~\|}[]{';: /?.>,<""")
        delete.add('"')

        names = []
        seen = dict()
        for i, item in enumerate(headers):
            item = item.strip().lower().replace(' ', '_')
            item = ''.join([c for c in item if c not in delete])
            if not len(item):
                item = 'column%d' % i

            item = itemd.get(item, item)
            cnt = seen.get(item, 0)
            if cnt > 0:
                names.append(item + '_%d' % cnt)
            else:
                names.append(item)
            seen[item] = cnt+1

    else:
        if isinstance(names, str):
            names = [n.strip() for n in names.split(',')]

    # get the converter functions by inspecting checkrows
    converters = get_converters(reader, comments)
    if converters is None:
        raise ValueError('Could not find any valid data in CSV file')

    # reset the reader and start over
    fh.seek(0)
    reader = csv.reader(fh, delimiter=delimiter)
    process_skiprows(reader)

    if needheader:
        while True:
            # skip past any comments and consume one line of column header
            row = next(reader)
            if (len(row) and comments is not None and
                    row[0].startswith(comments)):
                continue
            break

    # iterate over the remaining rows and convert the data to date
    # objects, ints, or floats as appropriate
    rows = []
    rowmasks = []
    for i, row in enumerate(reader):
        if not len(row):
            continue
        if comments is not None and row[0].startswith(comments):
            continue
        # Ensure that the row returned always has the same nr of elements
        row.extend([''] * (len(converters) - len(row)))
        rows.append([func(name, val)
                     for func, name, val in zip(converters, names, row)])
        rowmasks.append([ismissing(name, val)
                         for name, val in zip(names, row)])
    fh.close()

    if not len(rows):
        return None

    if use_mrecords and np.any(rowmasks):
        r = np.ma.mrecords.fromrecords(rows, names=names, mask=rowmasks)
    else:
        r = np.rec.fromrecords(rows, names=names)
    return r


class GaussianKDE:
    """
    Representation of a kernel-density estimate using Gaussian kernels.

    Parameters
    ----------
    dataset : array-like
        Datapoints to estimate from. In case of univariate data this is a 1-D
        array, otherwise a 2-D array with shape (# of dims, # of data).

    bw_method : str, scalar or callable, optional
        The method used to calculate the estimator bandwidth.  This can be
        'scott', 'silverman', a scalar constant or a callable.  If a
        scalar, this will be used directly as `kde.factor`.  If a
        callable, it should take a `GaussianKDE` instance as only
        parameter and return a scalar. If None (default), 'scott' is used.

    Attributes
    ----------
    dataset : ndarray
        The dataset with which `gaussian_kde` was initialized.

    dim : int
        Number of dimensions.

    num_dp : int
        Number of datapoints.

    factor : float
        The bandwidth factor, obtained from `kde.covariance_factor`, with which
        the covariance matrix is multiplied.

    covariance : ndarray
        The covariance matrix of *dataset*, scaled by the calculated bandwidth
        (`kde.factor`).

    inv_cov : ndarray
        The inverse of *covariance*.

    Methods
    -------
    kde.evaluate(points) : ndarray
        Evaluate the estimated pdf on a provided set of points.

    kde(points) : ndarray
        Same as kde.evaluate(points)

    """

    # This implementation with minor modification was too good to pass up.
    # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py

    def __init__(self, dataset, bw_method=None):
        self.dataset = np.atleast_2d(dataset)
        if not np.array(self.dataset).size > 1:
            raise ValueError("`dataset` input should have multiple elements.")

        self.dim, self.num_dp = np.array(self.dataset).shape

        if bw_method is None:
            pass
        elif cbook._str_equal(bw_method, 'scott'):
            self.covariance_factor = self.scotts_factor
        elif cbook._str_equal(bw_method, 'silverman'):
            self.covariance_factor = self.silverman_factor
        elif isinstance(bw_method, Number):
            self._bw_method = 'use constant'
            self.covariance_factor = lambda: bw_method
        elif callable(bw_method):
            self._bw_method = bw_method
            self.covariance_factor = lambda: self._bw_method(self)
        else:
            raise ValueError("`bw_method` should be 'scott', 'silverman', a "
                             "scalar or a callable")

        # Computes the covariance matrix for each Gaussian kernel using
        # covariance_factor().

        self.factor = self.covariance_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self.data_covariance = np.atleast_2d(
                np.cov(
                    self.dataset,
                    rowvar=1,
                    bias=False))
            self.data_inv_cov = np.linalg.inv(self.data_covariance)

        self.covariance = self.data_covariance * self.factor ** 2
        self.inv_cov = self.data_inv_cov / self.factor ** 2
        self.norm_factor = (np.sqrt(np.linalg.det(2 * np.pi * self.covariance))
                            * self.num_dp)

    def scotts_factor(self):
        return np.power(self.num_dp, -1. / (self.dim + 4))

    def silverman_factor(self):
        return np.power(
            self.num_dp * (self.dim + 2.0) / 4.0, -1. / (self.dim + 4))

    #  Default method to calculate bandwidth, can be overwritten by subclass
    covariance_factor = scotts_factor

    def evaluate(self, points):
        """Evaluate the estimated pdf on a set of points.

        Parameters
        ----------
        points : (# of dimensions, # of points)-array
            Alternatively, a (# of dimensions,) vector can be passed in and
            treated as a single point.

        Returns
        -------
        values : (# of points,)-array
            The values at each point.

        Raises
        ------
        ValueError : if the dimensionality of the input points is different
                     than the dimensionality of the KDE.

        """
        points = np.atleast_2d(points)

        dim, num_m = np.array(points).shape
        if dim != self.dim:
            raise ValueError("points have dimension {}, dataset has dimension "
                             "{}".format(dim, self.dim))

        result = np.zeros(num_m)

        if num_m >= self.num_dp:
            # there are more points than data, so loop over data
            for i in range(self.num_dp):
                diff = self.dataset[:, i, np.newaxis] - points
                tdiff = np.dot(self.inv_cov, diff)
                energy = np.sum(diff * tdiff, axis=0) / 2.0
                result = result + np.exp(-energy)
        else:
            # loop over points
            for i in range(num_m):
                diff = self.dataset - points[:, i, np.newaxis]
                tdiff = np.dot(self.inv_cov, diff)
                energy = np.sum(diff * tdiff, axis=0) / 2.0
                result[i] = np.sum(np.exp(-energy), axis=0)

        result = result / self.norm_factor

        return result

    __call__ = evaluate