patches.py 148 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
import contextlib
import functools
import inspect
import math
from numbers import Number
import textwrap

import numpy as np

import matplotlib as mpl
from . import artist, cbook, colors, docstring, lines as mlines, transforms
from .bezier import (
    NonIntersectingPathException, concatenate_paths, get_cos_sin,
    get_intersection, get_parallels, inside_circle, make_path_regular,
    make_wedged_bezier2, split_bezier_intersecting_with_closedpath,
    split_path_inout)
from .path import Path


@cbook._define_aliases({
    "antialiased": ["aa"],
    "edgecolor": ["ec"],
    "facecolor": ["fc"],
    "linestyle": ["ls"],
    "linewidth": ["lw"],
})
class Patch(artist.Artist):
    """
    A patch is a 2D artist with a face color and an edge color.

    If any of *edgecolor*, *facecolor*, *linewidth*, or *antialiased*
    are *None*, they default to their rc params setting.
    """
    zorder = 1
    validCap = ('butt', 'round', 'projecting')
    validJoin = ('miter', 'round', 'bevel')

    # Whether to draw an edge by default.  Set on a
    # subclass-by-subclass basis.
    _edge_default = False

    def __init__(self,
                 edgecolor=None,
                 facecolor=None,
                 color=None,
                 linewidth=None,
                 linestyle=None,
                 antialiased=None,
                 hatch=None,
                 fill=True,
                 capstyle=None,
                 joinstyle=None,
                 **kwargs):
        """
        The following kwarg properties are supported

        %(Patch)s
        """
        artist.Artist.__init__(self)

        if linewidth is None:
            linewidth = mpl.rcParams['patch.linewidth']
        if linestyle is None:
            linestyle = "solid"
        if capstyle is None:
            capstyle = 'butt'
        if joinstyle is None:
            joinstyle = 'miter'
        if antialiased is None:
            antialiased = mpl.rcParams['patch.antialiased']

        self._hatch_color = colors.to_rgba(mpl.rcParams['hatch.color'])
        self._fill = True  # needed for set_facecolor call
        if color is not None:
            if edgecolor is not None or facecolor is not None:
                cbook._warn_external(
                    "Setting the 'color' property will override "
                    "the edgecolor or facecolor properties.")
            self.set_color(color)
        else:
            self.set_edgecolor(edgecolor)
            self.set_facecolor(facecolor)
        # unscaled dashes.  Needed to scale dash patterns by lw
        self._us_dashes = None
        self._linewidth = 0

        self.set_fill(fill)
        self.set_linestyle(linestyle)
        self.set_linewidth(linewidth)
        self.set_antialiased(antialiased)
        self.set_hatch(hatch)
        self.set_capstyle(capstyle)
        self.set_joinstyle(joinstyle)

        if len(kwargs):
            self.update(kwargs)

    def get_verts(self):
        """
        Return a copy of the vertices used in this patch.

        If the patch contains Bezier curves, the curves will be
        interpolated by line segments.  To access the curves as
        curves, use :meth:`get_path`.
        """
        trans = self.get_transform()
        path = self.get_path()
        polygons = path.to_polygons(trans)
        if len(polygons):
            return polygons[0]
        return []

    def _process_radius(self, radius):
        if radius is not None:
            return radius
        if isinstance(self._picker, Number):
            _radius = self._picker
        else:
            if self.get_edgecolor()[3] == 0:
                _radius = 0
            else:
                _radius = self.get_linewidth()
        return _radius

    def contains(self, mouseevent, radius=None):
        """
        Test whether the mouse event occurred in the patch.

        Returns
        -------
        (bool, empty dict)
        """
        inside, info = self._default_contains(mouseevent)
        if inside is not None:
            return inside, info
        radius = self._process_radius(radius)
        codes = self.get_path().codes
        if codes is not None:
            vertices = self.get_path().vertices
            # if the current path is concatenated by multiple sub paths.
            # get the indexes of the starting code(MOVETO) of all sub paths
            idxs, = np.where(codes == Path.MOVETO)
            # Don't split before the first MOVETO.
            idxs = idxs[1:]
            subpaths = map(
                Path, np.split(vertices, idxs), np.split(codes, idxs))
        else:
            subpaths = [self.get_path()]
        inside = any(
            subpath.contains_point(
                (mouseevent.x, mouseevent.y), self.get_transform(), radius)
            for subpath in subpaths)
        return inside, {}

    def contains_point(self, point, radius=None):
        """
        Return whether the given point is inside the patch.

        Parameters
        ----------
        point : (float, float)
            The point (x, y) to check, in target coordinates of
            ``self.get_transform()``. These are display coordinates for patches
            that are added to a figure or axes.
        radius : float, optional
            Add an additional margin on the patch in target coordinates of
            ``self.get_transform()``. See `.Path.contains_point` for further
            details.

        Returns
        -------
        bool

        Notes
        -----
        The proper use of this method depends on the transform of the patch.
        Isolated patches do not have a transform. In this case, the patch
        creation coordinates and the point coordinates match. The following
        example checks that the center of a circle is within the circle

        >>> center = 0, 0
        >>> c = Circle(center, radius=1)
        >>> c.contains_point(center)
        True

        The convention of checking against the transformed patch stems from
        the fact that this method is predominantly used to check if display
        coordinates (e.g. from mouse events) are within the patch. If you want
        to do the above check with data coordinates, you have to properly
        transform them first:

        >>> center = 0, 0
        >>> c = Circle(center, radius=1)
        >>> plt.gca().add_patch(c)
        >>> transformed_center = c.get_transform().transform(center)
        >>> c.contains_point(transformed_center)
        True

        """
        radius = self._process_radius(radius)
        return self.get_path().contains_point(point,
                                              self.get_transform(),
                                              radius)

    def contains_points(self, points, radius=None):
        """
        Return whether the given points are inside the patch.

        Parameters
        ----------
        points : (N, 2) array
            The points to check, in target coordinates of
            ``self.get_transform()``. These are display coordinates for patches
            that are added to a figure or axes. Columns contain x and y values.
        radius : float, optional
            Add an additional margin on the patch in target coordinates of
            ``self.get_transform()``. See `.Path.contains_point` for further
            details.

        Returns
        -------
        length-N bool array

        Notes
        -----
        The proper use of this method depends on the transform of the patch.
        See the notes on `.Patch.contains_point`.
        """
        radius = self._process_radius(radius)
        return self.get_path().contains_points(points,
                                               self.get_transform(),
                                               radius)

    def update_from(self, other):
        """Updates this `.Patch` from the properties of *other*."""
        artist.Artist.update_from(self, other)
        # For some properties we don't need or don't want to go through the
        # getters/setters, so we just copy them directly.
        self._edgecolor = other._edgecolor
        self._facecolor = other._facecolor
        self._original_edgecolor = other._original_edgecolor
        self._original_facecolor = other._original_facecolor
        self._fill = other._fill
        self._hatch = other._hatch
        self._hatch_color = other._hatch_color
        # copy the unscaled dash pattern
        self._us_dashes = other._us_dashes
        self.set_linewidth(other._linewidth)  # also sets dash properties
        self.set_transform(other.get_data_transform())
        # If the transform of other needs further initialization, then it will
        # be the case for this artist too.
        self._transformSet = other.is_transform_set()

    def get_extents(self):
        """
        Return the `Patch`'s axis-aligned extents as a `~.transforms.Bbox`.
        """
        return self.get_path().get_extents(self.get_transform())

    def get_transform(self):
        """Return the `~.transforms.Transform` applied to the `Patch`."""
        return self.get_patch_transform() + artist.Artist.get_transform(self)

    def get_data_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform` instance which
        maps data coordinates to physical coordinates.
        """
        return artist.Artist.get_transform(self)

    def get_patch_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform` instance which
        takes patch coordinates to data coordinates.

        For example, one may define a patch of a circle which represents a
        radius of 5 by providing coordinates for a unit circle, and a
        transform which scales the coordinates (the patch coordinate) by 5.
        """
        return transforms.IdentityTransform()

    def get_antialiased(self):
        """Return whether antialiasing is used for drawing."""
        return self._antialiased

    def get_edgecolor(self):
        """Return the edge color."""
        return self._edgecolor

    def get_facecolor(self):
        """Return the face color."""
        return self._facecolor

    def get_linewidth(self):
        """Return the line width in points."""
        return self._linewidth

    def get_linestyle(self):
        """Return the linestyle."""
        return self._linestyle

    def set_antialiased(self, aa):
        """
        Set whether to use antialiased rendering.

        Parameters
        ----------
        b : bool or None
        """
        if aa is None:
            aa = mpl.rcParams['patch.antialiased']
        self._antialiased = aa
        self.stale = True

    def _set_edgecolor(self, color):
        set_hatch_color = True
        if color is None:
            if (mpl.rcParams['patch.force_edgecolor'] or
                    not self._fill or self._edge_default):
                color = mpl.rcParams['patch.edgecolor']
            else:
                color = 'none'
                set_hatch_color = False

        self._edgecolor = colors.to_rgba(color, self._alpha)
        if set_hatch_color:
            self._hatch_color = self._edgecolor
        self.stale = True

    def set_edgecolor(self, color):
        """
        Set the patch edge color.

        Parameters
        ----------
        color : color or None or 'auto'
        """
        self._original_edgecolor = color
        self._set_edgecolor(color)

    def _set_facecolor(self, color):
        if color is None:
            color = mpl.rcParams['patch.facecolor']
        alpha = self._alpha if self._fill else 0
        self._facecolor = colors.to_rgba(color, alpha)
        self.stale = True

    def set_facecolor(self, color):
        """
        Set the patch face color.

        Parameters
        ----------
        color : color or None
        """
        self._original_facecolor = color
        self._set_facecolor(color)

    def set_color(self, c):
        """
        Set both the edgecolor and the facecolor.

        Parameters
        ----------
        c : color

        See Also
        --------
        Patch.set_facecolor, Patch.set_edgecolor
            For setting the edge or face color individually.
        """
        self.set_facecolor(c)
        self.set_edgecolor(c)

    def set_alpha(self, alpha):
        # docstring inherited
        super().set_alpha(alpha)
        self._set_facecolor(self._original_facecolor)
        self._set_edgecolor(self._original_edgecolor)
        # stale is already True

    def set_linewidth(self, w):
        """
        Set the patch linewidth in points.

        Parameters
        ----------
        w : float or None
        """
        if w is None:
            w = mpl.rcParams['patch.linewidth']
            if w is None:
                w = mpl.rcParams['axes.linewidth']

        self._linewidth = float(w)
        # scale the dash pattern by the linewidth
        offset, ls = self._us_dashes
        self._dashoffset, self._dashes = mlines._scale_dashes(
            offset, ls, self._linewidth)
        self.stale = True

    def set_linestyle(self, ls):
        """
        Set the patch linestyle.

        ===========================   =================
        linestyle                     description
        ===========================   =================
        ``'-'`` or ``'solid'``        solid line
        ``'--'`` or  ``'dashed'``     dashed line
        ``'-.'`` or  ``'dashdot'``    dash-dotted line
        ``':'`` or ``'dotted'``       dotted line
        ===========================   =================

        Alternatively a dash tuple of the following form can be provided::

            (offset, onoffseq)

        where ``onoffseq`` is an even length tuple of on and off ink in points.

        Parameters
        ----------
        ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
            The line style.
        """
        if ls is None:
            ls = "solid"
        self._linestyle = ls
        # get the unscaled dash pattern
        offset, ls = self._us_dashes = mlines._get_dash_pattern(ls)
        # scale the dash pattern by the linewidth
        self._dashoffset, self._dashes = mlines._scale_dashes(
            offset, ls, self._linewidth)
        self.stale = True

    def set_fill(self, b):
        """
        Set whether to fill the patch.

        Parameters
        ----------
        b : bool
        """
        self._fill = bool(b)
        self._set_facecolor(self._original_facecolor)
        self._set_edgecolor(self._original_edgecolor)
        self.stale = True

    def get_fill(self):
        """Return whether the patch is filled."""
        return self._fill

    # Make fill a property so as to preserve the long-standing
    # but somewhat inconsistent behavior in which fill was an
    # attribute.
    fill = property(get_fill, set_fill)

    def set_capstyle(self, s):
        """
        Set the capstyle.

        Parameters
        ----------
        s : {'butt', 'round', 'projecting'}
        """
        s = s.lower()
        cbook._check_in_list(self.validCap, capstyle=s)
        self._capstyle = s
        self.stale = True

    def get_capstyle(self):
        """Return the capstyle."""
        return self._capstyle

    def set_joinstyle(self, s):
        """Set the joinstyle.

        Parameters
        ----------
        s : {'miter', 'round', 'bevel'}
        """
        s = s.lower()
        cbook._check_in_list(self.validJoin, joinstyle=s)
        self._joinstyle = s
        self.stale = True

    def get_joinstyle(self):
        """Return the joinstyle."""
        return self._joinstyle

    def set_hatch(self, hatch):
        r"""
        Set the hatching pattern.

        *hatch* can be one of::

          /   - diagonal hatching
          \   - back diagonal
          |   - vertical
          -   - horizontal
          +   - crossed
          x   - crossed diagonal
          o   - small circle
          O   - large circle
          .   - dots
          *   - stars

        Letters can be combined, in which case all the specified
        hatchings are done.  If same letter repeats, it increases the
        density of hatching of that pattern.

        Hatching is supported in the PostScript, PDF, SVG and Agg
        backends only.

        Parameters
        ----------
        hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
        """
        self._hatch = hatch
        self.stale = True

    def get_hatch(self):
        """Return the hatching pattern."""
        return self._hatch

    @contextlib.contextmanager
    def _bind_draw_path_function(self, renderer):
        """
        ``draw()`` helper factored out for sharing with `FancyArrowPatch`.

        Yields a callable ``dp`` such that calling ``dp(*args, **kwargs)`` is
        equivalent to calling ``renderer1.draw_path(gc, *args, **kwargs)``
        where ``renderer1`` and ``gc`` have been suitably set from ``renderer``
        and the artist's properties.
        """

        renderer.open_group('patch', self.get_gid())
        gc = renderer.new_gc()

        gc.set_foreground(self._edgecolor, isRGBA=True)

        lw = self._linewidth
        if self._edgecolor[3] == 0:
            lw = 0
        gc.set_linewidth(lw)
        gc.set_dashes(self._dashoffset, self._dashes)
        gc.set_capstyle(self._capstyle)
        gc.set_joinstyle(self._joinstyle)

        gc.set_antialiased(self._antialiased)
        self._set_gc_clip(gc)
        gc.set_url(self._url)
        gc.set_snap(self.get_snap())

        gc.set_alpha(self._alpha)

        if self._hatch:
            gc.set_hatch(self._hatch)
            try:
                gc.set_hatch_color(self._hatch_color)
            except AttributeError:
                # if we end up with a GC that does not have this method
                cbook.warn_deprecated(
                    "3.1", message="Your backend does not support setting the "
                    "hatch color; such backends will become unsupported in "
                    "Matplotlib 3.3.")

        if self.get_sketch_params() is not None:
            gc.set_sketch_params(*self.get_sketch_params())

        if self.get_path_effects():
            from matplotlib.patheffects import PathEffectRenderer
            renderer = PathEffectRenderer(self.get_path_effects(), renderer)

        # In `with _bind_draw_path_function(renderer) as draw_path: ...`
        # (in the implementations of `draw()` below), calls to `draw_path(...)`
        # will occur as if they took place here with `gc` inserted as
        # additional first argument.
        yield functools.partial(renderer.draw_path, gc)

        gc.restore()
        renderer.close_group('patch')
        self.stale = False

    @artist.allow_rasterization
    def draw(self, renderer):
        """Draw to the given *renderer*."""
        if not self.get_visible():
            return

        # Patch has traditionally ignored the dashoffset.
        with cbook._setattr_cm(self, _dashoffset=0), \
                self._bind_draw_path_function(renderer) as draw_path:
            path = self.get_path()
            transform = self.get_transform()
            tpath = transform.transform_path_non_affine(path)
            affine = transform.get_affine()
            draw_path(tpath, affine,
                      # Work around a bug in the PDF and SVG renderers, which
                      # do not draw the hatches if the facecolor is fully
                      # transparent, but do if it is None.
                      self._facecolor if self._facecolor[3] else None)

    def get_path(self):
        """Return the path of this patch."""
        raise NotImplementedError('Derived must override')

    def get_window_extent(self, renderer=None):
        return self.get_path().get_extents(self.get_transform())

    def _convert_xy_units(self, xy):
        """Convert x and y units for a tuple (x, y)."""
        x = self.convert_xunits(xy[0])
        y = self.convert_yunits(xy[1])
        return x, y


patchdoc = artist.kwdoc(Patch)
for k in ['Rectangle', 'Circle', 'RegularPolygon', 'Polygon', 'Wedge', 'Arrow',
          'FancyArrow', 'CirclePolygon', 'Ellipse', 'Arc', 'FancyBboxPatch',
          'Patch']:
    docstring.interpd.update({k: patchdoc})

# define Patch.__init__ docstring after the class has been added to interpd
docstring.dedent_interpd(Patch.__init__)


class Shadow(Patch):
    def __str__(self):
        return "Shadow(%s)" % (str(self.patch))

    @docstring.dedent_interpd
    def __init__(self, patch, ox, oy, props=None, **kwargs):
        """
        Create a shadow of the given *patch* offset by *ox*, *oy*.
        *props*, if not *None*, is a patch property update dictionary.
        If *None*, the shadow will have have the same color as the face,
        but darkened.

        Valid keyword arguments are:

        %(Patch)s
        """
        Patch.__init__(self)
        self.patch = patch
        self.props = props
        self._ox, self._oy = ox, oy
        self._shadow_transform = transforms.Affine2D()
        self._update()

    def _update(self):
        self.update_from(self.patch)

        # Place the shadow patch directly behind the inherited patch.
        self.set_zorder(np.nextafter(self.patch.zorder, -np.inf))

        if self.props is not None:
            self.update(self.props)
        else:
            color = .3 * np.asarray(colors.to_rgb(self.patch.get_facecolor()))
            self.set_facecolor(color)
            self.set_edgecolor(color)
            self.set_alpha(0.5)

    def _update_transform(self, renderer):
        ox = renderer.points_to_pixels(self._ox)
        oy = renderer.points_to_pixels(self._oy)
        self._shadow_transform.clear().translate(ox, oy)

    def _get_ox(self):
        return self._ox

    def _set_ox(self, ox):
        self._ox = ox

    def _get_oy(self):
        return self._oy

    def _set_oy(self, oy):
        self._oy = oy

    def get_path(self):
        return self.patch.get_path()

    def get_patch_transform(self):
        return self.patch.get_patch_transform() + self._shadow_transform

    def draw(self, renderer):
        self._update_transform(renderer)
        Patch.draw(self, renderer)


class Rectangle(Patch):
    """
    A rectangle with lower left at *xy* = (*x*, *y*) with
    specified *width*, *height* and rotation *angle*.
    """

    def __str__(self):
        pars = self._x0, self._y0, self._width, self._height, self.angle
        fmt = "Rectangle(xy=(%g, %g), width=%g, height=%g, angle=%g)"
        return fmt % pars

    @docstring.dedent_interpd
    def __init__(self, xy, width, height, angle=0.0, **kwargs):
        """
        Parameters
        ----------
        xy : (float, float)
            The bottom and left rectangle coordinates
        width : float
            Rectangle width
        height : float
            Rectangle height
        angle : float, optional
          rotation in degrees anti-clockwise about *xy* (default is 0.0)
        fill : bool, optional
            Whether to fill the rectangle (default is ``True``)

        Notes
        -----
        Valid keyword arguments are:

        %(Patch)s
        """

        Patch.__init__(self, **kwargs)

        self._x0 = xy[0]
        self._y0 = xy[1]

        self._width = width
        self._height = height

        self._x1 = self._x0 + self._width
        self._y1 = self._y0 + self._height

        self.angle = float(angle)
        # Note: This cannot be calculated until this is added to an Axes
        self._rect_transform = transforms.IdentityTransform()

    def get_path(self):
        """Return the vertices of the rectangle."""
        return Path.unit_rectangle()

    def _update_patch_transform(self):
        """
        Notes
        -----
        This cannot be called until after this has been added to an Axes,
        otherwise unit conversion will fail. This makes it very important to
        call the accessor method and not directly access the transformation
        member variable.
        """
        x0, y0, x1, y1 = self._convert_units()
        bbox = transforms.Bbox.from_extents(x0, y0, x1, y1)
        rot_trans = transforms.Affine2D()
        rot_trans.rotate_deg_around(x0, y0, self.angle)
        self._rect_transform = transforms.BboxTransformTo(bbox)
        self._rect_transform += rot_trans

    def _update_x1(self):
        self._x1 = self._x0 + self._width

    def _update_y1(self):
        self._y1 = self._y0 + self._height

    def _convert_units(self):
        """Convert bounds of the rectangle."""
        x0 = self.convert_xunits(self._x0)
        y0 = self.convert_yunits(self._y0)
        x1 = self.convert_xunits(self._x1)
        y1 = self.convert_yunits(self._y1)
        return x0, y0, x1, y1

    def get_patch_transform(self):
        self._update_patch_transform()
        return self._rect_transform

    def get_x(self):
        """Return the left coordinate of the rectangle."""
        return self._x0

    def get_y(self):
        """Return the bottom coordinate of the rectangle."""
        return self._y0

    def get_xy(self):
        """Return the left and bottom coords of the rectangle as a tuple."""
        return self._x0, self._y0

    def get_width(self):
        """Return the width of the rectangle."""
        return self._width

    def get_height(self):
        """Return the height of the rectangle."""
        return self._height

    def set_x(self, x):
        """Set the left coordinate of the rectangle."""
        self._x0 = x
        self._update_x1()
        self.stale = True

    def set_y(self, y):
        """Set the bottom coordinate of the rectangle."""
        self._y0 = y
        self._update_y1()
        self.stale = True

    def set_xy(self, xy):
        """
        Set the left and bottom coordinates of the rectangle.

        Parameters
        ----------
        xy : (float, float)
        """
        self._x0, self._y0 = xy
        self._update_x1()
        self._update_y1()
        self.stale = True

    def set_width(self, w):
        """Set the width of the rectangle."""
        self._width = w
        self._update_x1()
        self.stale = True

    def set_height(self, h):
        """Set the height of the rectangle."""
        self._height = h
        self._update_y1()
        self.stale = True

    def set_bounds(self, *args):
        """
        Set the bounds of the rectangle as *left*, *bottom*, *width*, *height*.

        The values may be passed as separate parameters or as a tuple::

            set_bounds(left, bottom, width, height)
            set_bounds((left, bottom, width, height))

        .. ACCEPTS: (left, bottom, width, height)
        """
        if len(args) == 1:
            l, b, w, h = args[0]
        else:
            l, b, w, h = args
        self._x0 = l
        self._y0 = b
        self._width = w
        self._height = h
        self._update_x1()
        self._update_y1()
        self.stale = True

    def get_bbox(self):
        """Return the `.Bbox`."""
        x0, y0, x1, y1 = self._convert_units()
        return transforms.Bbox.from_extents(x0, y0, x1, y1)

    xy = property(get_xy, set_xy)


class RegularPolygon(Patch):
    """
    A regular polygon patch.
    """
    def __str__(self):
        s = "RegularPolygon((%g, %g), %d, radius=%g, orientation=%g)"
        return s % (self._xy[0], self._xy[1], self._numVertices, self._radius,
                    self._orientation)

    @docstring.dedent_interpd
    def __init__(self, xy, numVertices, radius=5, orientation=0,
                 **kwargs):
        """
        Constructor arguments:

        *xy*
          A length 2 tuple (*x*, *y*) of the center.

        *numVertices*
          the number of vertices.

        *radius*
          The distance from the center to each of the vertices.

        *orientation*
          rotates the polygon (in radians).

        Valid keyword arguments are:

        %(Patch)s
        """
        self._xy = xy
        self._numVertices = numVertices
        self._orientation = orientation
        self._radius = radius
        self._path = Path.unit_regular_polygon(numVertices)
        self._poly_transform = transforms.Affine2D()
        self._update_transform()

        Patch.__init__(self, **kwargs)

    def _update_transform(self):
        self._poly_transform.clear() \
            .scale(self.radius) \
            .rotate(self.orientation) \
            .translate(*self.xy)

    @property
    def xy(self):
        return self._xy

    @xy.setter
    def xy(self, xy):
        self._xy = xy
        self._update_transform()

    @property
    def orientation(self):
        return self._orientation

    @orientation.setter
    def orientation(self, orientation):
        self._orientation = orientation
        self._update_transform()

    @property
    def radius(self):
        return self._radius

    @radius.setter
    def radius(self, radius):
        self._radius = radius
        self._update_transform()

    @property
    def numvertices(self):
        return self._numVertices

    @numvertices.setter
    def numvertices(self, numVertices):
        self._numVertices = numVertices

    def get_path(self):
        return self._path

    def get_patch_transform(self):
        self._update_transform()
        return self._poly_transform


class PathPatch(Patch):
    """
    A general polycurve path patch.
    """
    _edge_default = True

    def __str__(self):
        s = "PathPatch%d((%g, %g) ...)"
        return s % (len(self._path.vertices), *tuple(self._path.vertices[0]))

    @docstring.dedent_interpd
    def __init__(self, path, **kwargs):
        """
        *path* is a :class:`matplotlib.path.Path` object.

        Valid keyword arguments are:

        %(Patch)s
        """
        Patch.__init__(self, **kwargs)
        self._path = path

    def get_path(self):
        return self._path

    def set_path(self, path):
        self._path = path


class Polygon(Patch):
    """
    A general polygon patch.
    """
    def __str__(self):
        s = "Polygon%d((%g, %g) ...)"
        return s % (len(self._path.vertices), *tuple(self._path.vertices[0]))

    @docstring.dedent_interpd
    def __init__(self, xy, closed=True, **kwargs):
        """
        *xy* is a numpy array with shape Nx2.

        If *closed* is *True*, the polygon will be closed so the
        starting and ending points are the same.

        Valid keyword arguments are:

        %(Patch)s
        """
        Patch.__init__(self, **kwargs)
        self._closed = closed
        self.set_xy(xy)

    def get_path(self):
        """
        Get the path of the polygon

        Returns
        -------
        path : Path
           The `~.path.Path` object for the polygon.
        """
        return self._path

    def get_closed(self):
        """
        Returns if the polygon is closed

        Returns
        -------
        closed : bool
            If the path is closed
        """
        return self._closed

    def set_closed(self, closed):
        """
        Set if the polygon is closed

        Parameters
        ----------
        closed : bool
           True if the polygon is closed
        """
        if self._closed == bool(closed):
            return
        self._closed = bool(closed)
        self.set_xy(self.get_xy())
        self.stale = True

    def get_xy(self):
        """
        Get the vertices of the path.

        Returns
        -------
        vertices : (N, 2) numpy array
            The coordinates of the vertices.
        """
        return self._path.vertices

    def set_xy(self, xy):
        """
        Set the vertices of the polygon.

        Parameters
        ----------
        xy : (N, 2) array-like
            The coordinates of the vertices.
        """
        xy = np.asarray(xy)
        if self._closed:
            if len(xy) and (xy[0] != xy[-1]).any():
                xy = np.concatenate([xy, [xy[0]]])
        else:
            if len(xy) > 2 and (xy[0] == xy[-1]).all():
                xy = xy[:-1]
        self._path = Path(xy, closed=self._closed)
        self.stale = True

    _get_xy = get_xy
    _set_xy = set_xy
    xy = property(get_xy, set_xy,
                  doc='The vertices of the path as (N, 2) numpy array.')


class Wedge(Patch):
    """
    Wedge shaped patch.
    """
    def __str__(self):
        pars = (self.center[0], self.center[1], self.r,
                self.theta1, self.theta2, self.width)
        fmt = "Wedge(center=(%g, %g), r=%g, theta1=%g, theta2=%g, width=%s)"
        return fmt % pars

    @docstring.dedent_interpd
    def __init__(self, center, r, theta1, theta2, width=None, **kwargs):
        """
        A wedge centered at *x*, *y* center with radius *r* that
        sweeps *theta1* to *theta2* (in degrees).  If *width* is given,
        then a partial wedge is drawn from inner radius *r* - *width*
        to outer radius *r*.

        Valid keyword arguments are:

        %(Patch)s
        """
        Patch.__init__(self, **kwargs)
        self.center = center
        self.r, self.width = r, width
        self.theta1, self.theta2 = theta1, theta2
        self._patch_transform = transforms.IdentityTransform()
        self._recompute_path()

    def _recompute_path(self):
        # Inner and outer rings are connected unless the annulus is complete
        if abs((self.theta2 - self.theta1) - 360) <= 1e-12:
            theta1, theta2 = 0, 360
            connector = Path.MOVETO
        else:
            theta1, theta2 = self.theta1, self.theta2
            connector = Path.LINETO

        # Form the outer ring
        arc = Path.arc(theta1, theta2)

        if self.width is not None:
            # Partial annulus needs to draw the outer ring
            # followed by a reversed and scaled inner ring
            v1 = arc.vertices
            v2 = arc.vertices[::-1] * (self.r - self.width) / self.r
            v = np.vstack([v1, v2, v1[0, :], (0, 0)])
            c = np.hstack([arc.codes, arc.codes, connector, Path.CLOSEPOLY])
            c[len(arc.codes)] = connector
        else:
            # Wedge doesn't need an inner ring
            v = np.vstack([arc.vertices, [(0, 0), arc.vertices[0, :], (0, 0)]])
            c = np.hstack([arc.codes, [connector, connector, Path.CLOSEPOLY]])

        # Shift and scale the wedge to the final location.
        v *= self.r
        v += np.asarray(self.center)
        self._path = Path(v, c)

    def set_center(self, center):
        self._path = None
        self.center = center
        self.stale = True

    def set_radius(self, radius):
        self._path = None
        self.r = radius
        self.stale = True

    def set_theta1(self, theta1):
        self._path = None
        self.theta1 = theta1
        self.stale = True

    def set_theta2(self, theta2):
        self._path = None
        self.theta2 = theta2
        self.stale = True

    def set_width(self, width):
        self._path = None
        self.width = width
        self.stale = True

    def get_path(self):
        if self._path is None:
            self._recompute_path()
        return self._path


# COVERAGE NOTE: Not used internally or from examples
class Arrow(Patch):
    """
    An arrow patch.
    """
    def __str__(self):
        return "Arrow()"

    _path = Path([[0.0, 0.1], [0.0, -0.1],
                  [0.8, -0.1], [0.8, -0.3],
                  [1.0, 0.0], [0.8, 0.3],
                  [0.8, 0.1], [0.0, 0.1]],
                 closed=True)

    @docstring.dedent_interpd
    def __init__(self, x, y, dx, dy, width=1.0, **kwargs):
        """
        Draws an arrow from (*x*, *y*) to (*x* + *dx*, *y* + *dy*).
        The width of the arrow is scaled by *width*.

        Parameters
        ----------
        x : scalar
            x coordinate of the arrow tail
        y : scalar
            y coordinate of the arrow tail
        dx : scalar
            Arrow length in the x direction
        dy : scalar
            Arrow length in the y direction
        width : scalar, optional (default: 1)
            Scale factor for the width of the arrow. With a default value of
            1, the tail width is 0.2 and head width is 0.6.
        **kwargs
            Keyword arguments control the `Patch` properties:

            %(Patch)s

        See Also
        --------
        :class:`FancyArrow` :
            Patch that allows independent control of the head and tail
            properties
        """
        super().__init__(**kwargs)
        self._patch_transform = (
            transforms.Affine2D()
            .scale(np.hypot(dx, dy), width)
            .rotate(np.arctan2(dy, dx))
            .translate(x, y)
            .frozen())

    def get_path(self):
        return self._path

    def get_patch_transform(self):
        return self._patch_transform


class FancyArrow(Polygon):
    """
    Like Arrow, but lets you set head width and head height independently.
    """

    _edge_default = True

    def __str__(self):
        return "FancyArrow()"

    @docstring.dedent_interpd
    def __init__(self, x, y, dx, dy, width=0.001, length_includes_head=False,
                 head_width=None, head_length=None, shape='full', overhang=0,
                 head_starts_at_zero=False, **kwargs):
        """
        Constructor arguments
          *width*: float (default: 0.001)
            width of full arrow tail

          *length_includes_head*: bool (default: False)
            True if head is to be counted in calculating the length.

          *head_width*: float or None (default: 3*width)
            total width of the full arrow head

          *head_length*: float or None (default: 1.5 * head_width)
            length of arrow head

          *shape*: ['full', 'left', 'right'] (default: 'full')
            draw the left-half, right-half, or full arrow

          *overhang*: float (default: 0)
            fraction that the arrow is swept back (0 overhang means
            triangular shape). Can be negative or greater than one.

          *head_starts_at_zero*: bool (default: False)
            if True, the head starts being drawn at coordinate 0
            instead of ending at coordinate 0.

        Other valid kwargs (inherited from :class:`Patch`) are:

        %(Patch)s
        """
        if head_width is None:
            head_width = 3 * width
        if head_length is None:
            head_length = 1.5 * head_width

        distance = np.hypot(dx, dy)

        if length_includes_head:
            length = distance
        else:
            length = distance + head_length
        if not length:
            verts = np.empty([0, 2])  # display nothing if empty
        else:
            # start by drawing horizontal arrow, point at (0, 0)
            hw, hl, hs, lw = head_width, head_length, overhang, width
            left_half_arrow = np.array([
                [0.0, 0.0],                 # tip
                [-hl, -hw / 2],             # leftmost
                [-hl * (1 - hs), -lw / 2],  # meets stem
                [-length, -lw / 2],         # bottom left
                [-length, 0],
            ])
            # if we're not including the head, shift up by head length
            if not length_includes_head:
                left_half_arrow += [head_length, 0]
            # if the head starts at 0, shift up by another head length
            if head_starts_at_zero:
                left_half_arrow += [head_length / 2, 0]
            # figure out the shape, and complete accordingly
            if shape == 'left':
                coords = left_half_arrow
            else:
                right_half_arrow = left_half_arrow * [1, -1]
                if shape == 'right':
                    coords = right_half_arrow
                elif shape == 'full':
                    # The half-arrows contain the midpoint of the stem,
                    # which we can omit from the full arrow. Including it
                    # twice caused a problem with xpdf.
                    coords = np.concatenate([left_half_arrow[:-1],
                                             right_half_arrow[-2::-1]])
                else:
                    raise ValueError("Got unknown shape: %s" % shape)
            if distance != 0:
                cx = dx / distance
                sx = dy / distance
            else:
                # Account for division by zero
                cx, sx = 0, 1
            M = [[cx, sx], [-sx, cx]]
            verts = np.dot(coords, M) + (x + dx, y + dy)

        super().__init__(verts, closed=True, **kwargs)


docstring.interpd.update({"FancyArrow": FancyArrow.__init__.__doc__})


class CirclePolygon(RegularPolygon):
    """
    A polygon-approximation of a circle patch.
    """
    def __str__(self):
        s = "CirclePolygon((%g, %g), radius=%g, resolution=%d)"
        return s % (self._xy[0], self._xy[1], self._radius, self._numVertices)

    @docstring.dedent_interpd
    def __init__(self, xy, radius=5,
                 resolution=20,  # the number of vertices
                 ** kwargs):
        """
        Create a circle at *xy* = (*x*, *y*) with given *radius*.
        This circle is approximated by a regular polygon with
        *resolution* sides.  For a smoother circle drawn with splines,
        see :class:`~matplotlib.patches.Circle`.

        Valid keyword arguments are:

        %(Patch)s
        """
        RegularPolygon.__init__(self, xy,
                                resolution,
                                radius,
                                orientation=0,
                                **kwargs)


class Ellipse(Patch):
    """
    A scale-free ellipse.
    """
    def __str__(self):
        pars = (self._center[0], self._center[1],
                self.width, self.height, self.angle)
        fmt = "Ellipse(xy=(%s, %s), width=%s, height=%s, angle=%s)"
        return fmt % pars

    @docstring.dedent_interpd
    def __init__(self, xy, width, height, angle=0, **kwargs):
        """
        Parameters
        ----------
        xy : (float, float)
            xy coordinates of ellipse centre.
        width : float
            Total length (diameter) of horizontal axis.
        height : float
            Total length (diameter) of vertical axis.
        angle : scalar, optional
            Rotation in degrees anti-clockwise.

        Notes
        -----
        Valid keyword arguments are:

        %(Patch)s
        """
        Patch.__init__(self, **kwargs)

        self._center = xy
        self.width, self.height = width, height
        self.angle = angle
        self._path = Path.unit_circle()
        # Note: This cannot be calculated until this is added to an Axes
        self._patch_transform = transforms.IdentityTransform()

    def _recompute_transform(self):
        """
        Notes
        -----
        This cannot be called until after this has been added to an Axes,
        otherwise unit conversion will fail. This makes it very important to
        call the accessor method and not directly access the transformation
        member variable.
        """
        center = (self.convert_xunits(self._center[0]),
                  self.convert_yunits(self._center[1]))
        width = self.convert_xunits(self.width)
        height = self.convert_yunits(self.height)
        self._patch_transform = transforms.Affine2D() \
            .scale(width * 0.5, height * 0.5) \
            .rotate_deg(self.angle) \
            .translate(*center)

    def get_path(self):
        """
        Return the path of the ellipse
        """
        return self._path

    def get_patch_transform(self):
        self._recompute_transform()
        return self._patch_transform

    def set_center(self, xy):
        """
        Set the center of the ellipse.

        Parameters
        ----------
        xy : (float, float)
        """
        self._center = xy
        self.stale = True

    def get_center(self):
        """
        Return the center of the ellipse
        """
        return self._center

    center = property(get_center, set_center)


class Circle(Ellipse):
    """
    A circle patch.
    """
    def __str__(self):
        pars = self.center[0], self.center[1], self.radius
        fmt = "Circle(xy=(%g, %g), radius=%g)"
        return fmt % pars

    @docstring.dedent_interpd
    def __init__(self, xy, radius=5, **kwargs):
        """
        Create true circle at center *xy* = (*x*, *y*) with given
        *radius*.  Unlike :class:`~matplotlib.patches.CirclePolygon`
        which is a polygonal approximation, this uses Bezier splines
        and is much closer to a scale-free circle.

        Valid keyword arguments are:

        %(Patch)s
        """
        Ellipse.__init__(self, xy, radius * 2, radius * 2, **kwargs)
        self.radius = radius

    def set_radius(self, radius):
        """
        Set the radius of the circle

        Parameters
        ----------
        radius : float
        """
        self.width = self.height = 2 * radius
        self.stale = True

    def get_radius(self):
        """
        Return the radius of the circle
        """
        return self.width / 2.

    radius = property(get_radius, set_radius)


class Arc(Ellipse):
    """
    An elliptical arc, i.e. a segment of an ellipse.

    Due to internal optimizations, there are certain restrictions on using Arc:

    - The arc cannot be filled.

    - The arc must be used in an :class:`~.axes.Axes` instance---it can not be
      added directly to a `.Figure`---because it is optimized to only render
      the segments that are inside the axes bounding box with high resolution.
    """
    def __str__(self):
        pars = (self.center[0], self.center[1], self.width,
                self.height, self.angle, self.theta1, self.theta2)
        fmt = ("Arc(xy=(%g, %g), width=%g, "
               "height=%g, angle=%g, theta1=%g, theta2=%g)")
        return fmt % pars

    @docstring.dedent_interpd
    def __init__(self, xy, width, height, angle=0.0,
                 theta1=0.0, theta2=360.0, **kwargs):
        """
        Parameters
        ----------
        xy : (float, float)
            The center of the ellipse.

        width : float
            The length of the horizontal axis.

        height : float
            The length of the vertical axis.

        angle : float
            Rotation of the ellipse in degrees (counterclockwise).

        theta1, theta2 : float, optional
            Starting and ending angles of the arc in degrees. These values
            are relative to *angle*, e.g. if *angle* = 45 and *theta1* = 90
            the absolute starting angle is 135.
            Default *theta1* = 0, *theta2* = 360, i.e. a complete ellipse.
            The arc is drawn in the counterclockwise direction.
            Angles greater than or equal to 360, or smaller than 0, are
            represented by an equivalent angle in the range [0, 360), by
            taking the input value mod 360.

        Other Parameters
        ----------------
        **kwargs : `.Patch` properties
            Most `.Patch` properties are supported as keyword arguments,
            with the exception of *fill* and *facecolor* because filling is
            not supported.

        %(Patch)s
        """
        fill = kwargs.setdefault('fill', False)
        if fill:
            raise ValueError("Arc objects can not be filled")

        Ellipse.__init__(self, xy, width, height, angle, **kwargs)

        self.theta1 = theta1
        self.theta2 = theta2

    @artist.allow_rasterization
    def draw(self, renderer):
        """
        Draw the arc to the given *renderer*.

        Notes
        -----
        Ellipses are normally drawn using an approximation that uses
        eight cubic Bezier splines.  The error of this approximation
        is 1.89818e-6, according to this unverified source:

          Lancaster, Don.  *Approximating a Circle or an Ellipse Using
          Four Bezier Cubic Splines.*

          http://www.tinaja.com/glib/ellipse4.pdf

        There is a use case where very large ellipses must be drawn
        with very high accuracy, and it is too expensive to render the
        entire ellipse with enough segments (either splines or line
        segments).  Therefore, in the case where either radius of the
        ellipse is large enough that the error of the spline
        approximation will be visible (greater than one pixel offset
        from the ideal), a different technique is used.

        In that case, only the visible parts of the ellipse are drawn,
        with each visible arc using a fixed number of spline segments
        (8).  The algorithm proceeds as follows:

        1. The points where the ellipse intersects the axes bounding
           box are located.  (This is done be performing an inverse
           transformation on the axes bbox such that it is relative
           to the unit circle -- this makes the intersection
           calculation much easier than doing rotated ellipse
           intersection directly).

           This uses the "line intersecting a circle" algorithm
           from:

               Vince, John.  *Geometry for Computer Graphics: Formulae,
               Examples & Proofs.*  London: Springer-Verlag, 2005.

        2. The angles of each of the intersection points are
           calculated.

        3. Proceeding counterclockwise starting in the positive
           x-direction, each of the visible arc-segments between the
           pairs of vertices are drawn using the Bezier arc
           approximation technique implemented in
           :meth:`matplotlib.path.Path.arc`.
        """
        if not hasattr(self, 'axes'):
            raise RuntimeError('Arcs can only be used in Axes instances')

        self._recompute_transform()

        width = self.convert_xunits(self.width)
        height = self.convert_yunits(self.height)

        # If the width and height of ellipse are not equal, take into account
        # stretching when calculating angles to draw between
        def theta_stretch(theta, scale):
            theta = np.deg2rad(theta)
            x = np.cos(theta)
            y = np.sin(theta)
            return np.rad2deg(np.arctan2(scale * y, x))
        theta1 = theta_stretch(self.theta1, width / height)
        theta2 = theta_stretch(self.theta2, width / height)

        # Get width and height in pixels
        width, height = self.get_transform().transform((width, height))
        inv_error = (1.0 / 1.89818e-6) * 0.5
        if width < inv_error and height < inv_error:
            self._path = Path.arc(theta1, theta2)
            return Patch.draw(self, renderer)

        def iter_circle_intersect_on_line(x0, y0, x1, y1):
            dx = x1 - x0
            dy = y1 - y0
            dr2 = dx * dx + dy * dy
            D = x0 * y1 - x1 * y0
            D2 = D * D
            discrim = dr2 - D2

            # Single (tangential) intersection
            if discrim == 0.0:
                x = (D * dy) / dr2
                y = (-D * dx) / dr2
                yield x, y
            elif discrim > 0.0:
                # The definition of "sign" here is different from
                # np.sign: we never want to get 0.0
                if dy < 0.0:
                    sign_dy = -1.0
                else:
                    sign_dy = 1.0
                sqrt_discrim = np.sqrt(discrim)
                for sign in (1., -1.):
                    x = (D * dy + sign * sign_dy * dx * sqrt_discrim) / dr2
                    y = (-D * dx + sign * np.abs(dy) * sqrt_discrim) / dr2
                    yield x, y

        def iter_circle_intersect_on_line_seg(x0, y0, x1, y1):
            epsilon = 1e-9
            if x1 < x0:
                x0e, x1e = x1, x0
            else:
                x0e, x1e = x0, x1
            if y1 < y0:
                y0e, y1e = y1, y0
            else:
                y0e, y1e = y0, y1
            x0e -= epsilon
            y0e -= epsilon
            x1e += epsilon
            y1e += epsilon
            for x, y in iter_circle_intersect_on_line(x0, y0, x1, y1):
                if x0e <= x <= x1e and y0e <= y <= y1e:
                    yield x, y

        # Transforms the axes box_path so that it is relative to the unit
        # circle in the same way that it is relative to the desired ellipse.
        box_path = Path.unit_rectangle()
        box_path_transform = (transforms.BboxTransformTo(self.axes.bbox)
                              - self.get_transform())
        box_path = box_path.transformed(box_path_transform)

        thetas = set()
        # For each of the point pairs, there is a line segment
        for p0, p1 in zip(box_path.vertices[:-1], box_path.vertices[1:]):
            x0, y0 = p0
            x1, y1 = p1
            for x, y in iter_circle_intersect_on_line_seg(x0, y0, x1, y1):
                theta = np.arccos(x)
                if y < 0:
                    theta = 2 * np.pi - theta
                # Convert radians to angles
                theta = np.rad2deg(theta)
                if theta1 < theta < theta2:
                    thetas.add(theta)
        thetas = sorted(thetas) + [theta2]

        last_theta = theta1
        theta1_rad = np.deg2rad(theta1)
        inside = box_path.contains_point((np.cos(theta1_rad),
                                          np.sin(theta1_rad)))

        # save original path
        path_original = self._path
        for theta in thetas:
            if inside:
                self._path = Path.arc(last_theta, theta, 8)
                Patch.draw(self, renderer)
                inside = False
            else:
                inside = True
            last_theta = theta

        # restore original path
        self._path = path_original


def bbox_artist(artist, renderer, props=None, fill=True):
    """
    This is a debug function to draw a rectangle around the bounding
    box returned by
    :meth:`~matplotlib.artist.Artist.get_window_extent` of an artist,
    to test whether the artist is returning the correct bbox.

    *props* is a dict of rectangle props with the additional property
    'pad' that sets the padding around the bbox in points.
    """
    if props is None:
        props = {}
    props = props.copy()  # don't want to alter the pad externally
    pad = props.pop('pad', 4)
    pad = renderer.points_to_pixels(pad)
    bbox = artist.get_window_extent(renderer)
    l, b, w, h = bbox.bounds
    l -= pad / 2.
    b -= pad / 2.
    w += pad
    h += pad
    r = Rectangle(xy=(l, b),
                  width=w,
                  height=h,
                  fill=fill,
                  )
    r.set_transform(transforms.IdentityTransform())
    r.set_clip_on(False)
    r.update(props)
    r.draw(renderer)


def draw_bbox(bbox, renderer, color='k', trans=None):
    """
    This is a debug function to draw a rectangle around the bounding
    box returned by
    :meth:`~matplotlib.artist.Artist.get_window_extent` of an artist,
    to test whether the artist is returning the correct bbox.
    """

    l, b, w, h = bbox.bounds
    r = Rectangle(xy=(l, b),
                  width=w,
                  height=h,
                  edgecolor=color,
                  fill=False,
                  )
    if trans is not None:
        r.set_transform(trans)
    r.set_clip_on(False)
    r.draw(renderer)


def _pprint_styles(_styles):
    """
    A helper function for the _Style class.  Given the dictionary of
    {stylename: styleclass}, return a formatted string listing all the
    styles. Used to update the documentation.
    """
    table = [('Class', 'Name', 'Attrs'),
             *[(cls.__name__,
                # adding backquotes since - and | have special meaning in reST
                f'``{name}``',
                # [1:-1] drops the surrounding parentheses.
                str(inspect.signature(cls))[1:-1] or 'None')
               for name, cls in sorted(_styles.items())]]
    # Convert to rst table.
    col_len = [max(len(cell) for cell in column) for column in zip(*table)]
    table_formatstr = '  '.join('=' * cl for cl in col_len)
    rst_table = '\n'.join([
        '',
        table_formatstr,
        '  '.join(cell.ljust(cl) for cell, cl in zip(table[0], col_len)),
        table_formatstr,
        *['  '.join(cell.ljust(cl) for cell, cl in zip(row, col_len))
          for row in table[1:]],
        table_formatstr,
        '',
    ])
    return textwrap.indent(rst_table, prefix=' ' * 2)


def _simpleprint_styles(_styles):
    """
    A helper function for the _Style class.  Given the dictionary of
    {stylename: styleclass}, return a string rep of the list of keys.
    Used to update the documentation.
    """
    return "[{}]".format("|".join(map(" '{}' ".format, sorted(_styles))))


class _Style:
    """
    A base class for the Styles. It is meant to be a container class,
    where actual styles are declared as subclass of it, and it
    provides some helper functions.
    """
    def __new__(cls, stylename, **kw):
        """Return the instance of the subclass with the given style name."""

        # The "class" should have the _style_list attribute, which is a mapping
        # of style names to style classes.

        _list = stylename.replace(" ", "").split(",")
        _name = _list[0].lower()
        try:
            _cls = cls._style_list[_name]
        except KeyError:
            raise ValueError("Unknown style : %s" % stylename)

        try:
            _args_pair = [cs.split("=") for cs in _list[1:]]
            _args = {k: float(v) for k, v in _args_pair}
        except ValueError:
            raise ValueError("Incorrect style argument : %s" % stylename)
        _args.update(kw)

        return _cls(**_args)

    @classmethod
    def get_styles(cls):
        """
        A class method which returns a dictionary of available styles.
        """
        return cls._style_list

    @classmethod
    def pprint_styles(cls):
        """
        A class method which returns a string of the available styles.
        """
        return _pprint_styles(cls._style_list)

    @classmethod
    def register(cls, name, style):
        """
        Register a new style.
        """

        if not issubclass(style, cls._Base):
            raise ValueError("%s must be a subclass of %s" % (style,
                                                              cls._Base))
        cls._style_list[name] = style


def _register_style(style_list, cls=None, *, name=None):
    """Class decorator that stashes a class in a (style) dictionary."""
    if cls is None:
        return functools.partial(_register_style, style_list, name=name)
    style_list[name or cls.__name__.lower()] = cls
    return cls


class BoxStyle(_Style):
    """
    :class:`BoxStyle` is a container class which defines several
    boxstyle classes, which are used for :class:`FancyBboxPatch`.

    A style object can be created as::

           BoxStyle.Round(pad=0.2)

    or::

           BoxStyle("Round", pad=0.2)

    or::

           BoxStyle("Round, pad=0.2")

    Following boxstyle classes are defined.

    %(AvailableBoxstyles)s

    An instance of any boxstyle class is an callable object,
    whose call signature is::

       __call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.)

    and returns a :class:`Path` instance. *x0*, *y0*, *width* and
    *height* specify the location and size of the box to be
    drawn. *mutation_scale* determines the overall size of the
    mutation (by which I mean the transformation of the rectangle to
    the fancy box).  *mutation_aspect* determines the aspect-ratio of
    the mutation.
    """

    _style_list = {}

    class _Base:
        """
        Abstract base class for styling of `.FancyBboxPatch`.

        This class is not an artist itself.  The `__call__` method returns the
        `~matplotlib.path.Path` for outlining the fancy box. The actual drawing
        is handled in `.FancyBboxPatch`.

        Subclasses may only use parameters with default values in their
        ``__init__`` method because they must be able to be initialized
        without arguments.

        Subclasses must implement the `transmute` method. It receives the
        enclosing rectangle *x0, y0, width, height* as well as the
        *mutation_size*, which scales the outline properties such as padding.
        It returns the outline of the fancy box as `.path.Path`.
        """

        def transmute(self, x0, y0, width, height, mutation_size):
            """Return the `~.path.Path` outlining the given rectangle."""
            raise NotImplementedError('Derived must override')

        def __call__(self, x0, y0, width, height, mutation_size,
                     aspect_ratio=1.):
            """
            Given the location and size of the box, return the path of
            the box around it.

            Parameters
            ----------
            x0, y0, width, height : float
                Location and size of the box.
            mutation_size : float
                A reference scale for the mutation.
            aspect_ratio : float, default: 1
                Aspect-ratio for the mutation.

            Returns
            -------
            path : `~matplotlib.path.Path`
            """
            # The __call__ method is a thin wrapper around the transmute method
            # and takes care of the aspect.

            if aspect_ratio is not None:
                # Squeeze the given height by the aspect_ratio
                y0, height = y0 / aspect_ratio, height / aspect_ratio
                # call transmute method with squeezed height.
                path = self.transmute(x0, y0, width, height, mutation_size)
                vertices, codes = path.vertices, path.codes
                # Restore the height
                vertices[:, 1] = vertices[:, 1] * aspect_ratio
                return Path(vertices, codes)
            else:
                return self.transmute(x0, y0, width, height, mutation_size)

    @_register_style(_style_list)
    class Square(_Base):
        """
        A square box.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        """
        def __init__(self, pad=0.3):
            self.pad = pad
            super().__init__()

        def transmute(self, x0, y0, width, height, mutation_size):
            pad = mutation_size * self.pad

            # width and height with padding added.
            width, height = width + 2*pad, height + 2*pad

            # boundary of the padded box
            x0, y0 = x0 - pad, y0 - pad,
            x1, y1 = x0 + width, y0 + height

            vertices = [(x0, y0), (x1, y0), (x1, y1), (x0, y1), (x0, y0)]
            codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY]
            return Path(vertices, codes)

    @_register_style(_style_list)
    class Circle(_Base):
        """
        A circular box.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        """
        def __init__(self, pad=0.3):
            self.pad = pad
            super().__init__()

        def transmute(self, x0, y0, width, height, mutation_size):
            pad = mutation_size * self.pad
            width, height = width + 2 * pad, height + 2 * pad

            # boundary of the padded box
            x0, y0 = x0 - pad, y0 - pad,
            return Path.circle((x0 + width / 2, y0 + height / 2),
                               max(width, height) / 2)

    @_register_style(_style_list)
    class LArrow(_Base):
        """
        A box in the shape of a left-pointing arrow.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        """
        def __init__(self, pad=0.3):
            self.pad = pad
            super().__init__()

        def transmute(self, x0, y0, width, height, mutation_size):
            # padding
            pad = mutation_size * self.pad

            # width and height with padding added.
            width, height = width + 2. * pad, height + 2. * pad

            # boundary of the padded box
            x0, y0 = x0 - pad, y0 - pad,
            x1, y1 = x0 + width, y0 + height

            dx = (y1 - y0) / 2.
            dxx = dx * .5
            # adjust x0.  1.4 <- sqrt(2)
            x0 = x0 + pad / 1.4

            cp = [(x0 + dxx, y0), (x1, y0), (x1, y1), (x0 + dxx, y1),
                  (x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx),
                  (x0 + dxx, y0 - dxx),  # arrow
                  (x0 + dxx, y0), (x0 + dxx, y0)]

            com = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO,
                   Path.LINETO, Path.LINETO, Path.LINETO,
                   Path.LINETO, Path.CLOSEPOLY]

            path = Path(cp, com)

            return path

    @_register_style(_style_list)
    class RArrow(LArrow):
        """
        A box in the shape of a right-pointing arrow.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        """
        def __init__(self, pad=0.3):
            super().__init__(pad)

        def transmute(self, x0, y0, width, height, mutation_size):
            p = BoxStyle.LArrow.transmute(self, x0, y0,
                                          width, height, mutation_size)
            p.vertices[:, 0] = 2 * x0 + width - p.vertices[:, 0]
            return p

    @_register_style(_style_list)
    class DArrow(_Base):
        """
        A box in the shape of a two-way arrow.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        """
        # This source is copied from LArrow,
        # modified to add a right arrow to the bbox.

        def __init__(self, pad=0.3):
            self.pad = pad
            super().__init__()

        def transmute(self, x0, y0, width, height, mutation_size):

            # padding
            pad = mutation_size * self.pad

            # width and height with padding added.
            # The width is padded by the arrows, so we don't need to pad it.
            height = height + 2. * pad

            # boundary of the padded box
            x0, y0 = x0 - pad, y0 - pad
            x1, y1 = x0 + width, y0 + height

            dx = (y1 - y0) / 2
            dxx = dx * .5
            # adjust x0.  1.4 <- sqrt(2)
            x0 = x0 + pad / 1.4

            cp = [(x0 + dxx, y0), (x1, y0),  # bot-segment
                  (x1, y0 - dxx), (x1 + dx + dxx, y0 + dx),
                  (x1, y1 + dxx),  # right-arrow
                  (x1, y1), (x0 + dxx, y1),  # top-segment
                  (x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx),
                  (x0 + dxx, y0 - dxx),  # left-arrow
                  (x0 + dxx, y0), (x0 + dxx, y0)]  # close-poly

            com = [Path.MOVETO, Path.LINETO,
                   Path.LINETO, Path.LINETO,
                   Path.LINETO,
                   Path.LINETO, Path.LINETO,
                   Path.LINETO, Path.LINETO,
                   Path.LINETO,
                   Path.LINETO, Path.CLOSEPOLY]

            path = Path(cp, com)

            return path

    @_register_style(_style_list)
    class Round(_Base):
        """
        A box with round corners.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        rounding_size : float, default: *pad*
            Radius of the corners.
        """
        def __init__(self, pad=0.3, rounding_size=None):
            self.pad = pad
            self.rounding_size = rounding_size
            super().__init__()

        def transmute(self, x0, y0, width, height, mutation_size):

            # padding
            pad = mutation_size * self.pad

            # size of the rounding corner
            if self.rounding_size:
                dr = mutation_size * self.rounding_size
            else:
                dr = pad

            width, height = width + 2. * pad, height + 2. * pad

            x0, y0 = x0 - pad, y0 - pad,
            x1, y1 = x0 + width, y0 + height

            # Round corners are implemented as quadratic Bezier, e.g.,
            # [(x0, y0-dr), (x0, y0), (x0+dr, y0)] for lower left corner.
            cp = [(x0 + dr, y0),
                  (x1 - dr, y0),
                  (x1, y0), (x1, y0 + dr),
                  (x1, y1 - dr),
                  (x1, y1), (x1 - dr, y1),
                  (x0 + dr, y1),
                  (x0, y1), (x0, y1 - dr),
                  (x0, y0 + dr),
                  (x0, y0), (x0 + dr, y0),
                  (x0 + dr, y0)]

            com = [Path.MOVETO,
                   Path.LINETO,
                   Path.CURVE3, Path.CURVE3,
                   Path.LINETO,
                   Path.CURVE3, Path.CURVE3,
                   Path.LINETO,
                   Path.CURVE3, Path.CURVE3,
                   Path.LINETO,
                   Path.CURVE3, Path.CURVE3,
                   Path.CLOSEPOLY]

            path = Path(cp, com)

            return path

    @_register_style(_style_list)
    class Round4(_Base):
        """
        A box with rounded edges.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        rounding_size : float, default: *pad*/2
             Rounding of edges.
        """
        def __init__(self, pad=0.3, rounding_size=None):
            self.pad = pad
            self.rounding_size = rounding_size
            super().__init__()

        def transmute(self, x0, y0, width, height, mutation_size):

            # padding
            pad = mutation_size * self.pad

            # Rounding size; defaults to half of the padding.
            if self.rounding_size:
                dr = mutation_size * self.rounding_size
            else:
                dr = pad / 2.

            width, height = (width + 2. * pad - 2 * dr,
                             height + 2. * pad - 2 * dr)

            x0, y0 = x0 - pad + dr, y0 - pad + dr,
            x1, y1 = x0 + width, y0 + height

            cp = [(x0, y0),
                  (x0 + dr, y0 - dr), (x1 - dr, y0 - dr), (x1, y0),
                  (x1 + dr, y0 + dr), (x1 + dr, y1 - dr), (x1, y1),
                  (x1 - dr, y1 + dr), (x0 + dr, y1 + dr), (x0, y1),
                  (x0 - dr, y1 - dr), (x0 - dr, y0 + dr), (x0, y0),
                  (x0, y0)]

            com = [Path.MOVETO,
                   Path.CURVE4, Path.CURVE4, Path.CURVE4,
                   Path.CURVE4, Path.CURVE4, Path.CURVE4,
                   Path.CURVE4, Path.CURVE4, Path.CURVE4,
                   Path.CURVE4, Path.CURVE4, Path.CURVE4,
                   Path.CLOSEPOLY]

            path = Path(cp, com)

            return path

    @_register_style(_style_list)
    class Sawtooth(_Base):
        """
        A box with a sawtooth outline.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        tooth_size : float, default: *pad*/2
             Size of the sawtooth.
        """
        def __init__(self, pad=0.3, tooth_size=None):
            self.pad = pad
            self.tooth_size = tooth_size
            super().__init__()

        def _get_sawtooth_vertices(self, x0, y0, width, height, mutation_size):

            # padding
            pad = mutation_size * self.pad

            # size of sawtooth
            if self.tooth_size is None:
                tooth_size = self.pad * .5 * mutation_size
            else:
                tooth_size = self.tooth_size * mutation_size

            tooth_size2 = tooth_size / 2.
            width, height = (width + 2. * pad - tooth_size,
                            height + 2. * pad - tooth_size)

            # the sizes of the vertical and horizontal sawtooth are
            # separately adjusted to fit the given box size.
            dsx_n = int(round((width - tooth_size) / (tooth_size * 2))) * 2
            dsx = (width - tooth_size) / dsx_n
            dsy_n = int(round((height - tooth_size) / (tooth_size * 2))) * 2
            dsy = (height - tooth_size) / dsy_n

            x0, y0 = x0 - pad + tooth_size2, y0 - pad + tooth_size2
            x1, y1 = x0 + width, y0 + height

            bottom_saw_x = [
                x0,
                *(x0 + tooth_size2 + dsx * .5 * np.arange(dsx_n * 2)),
                x1 - tooth_size2,
            ]
            bottom_saw_y = [
                y0,
                *([y0 - tooth_size2, y0, y0 + tooth_size2, y0] * dsx_n),
                y0 - tooth_size2,
            ]
            right_saw_x = [
                x1,
                *([x1 + tooth_size2, x1, x1 - tooth_size2, x1] * dsx_n),
                x1 + tooth_size2,
            ]
            right_saw_y = [
                y0,
                *(y0 + tooth_size2 + dsy * .5 * np.arange(dsy_n * 2)),
                y1 - tooth_size2,
            ]
            top_saw_x = [
                x1,
                *(x1 - tooth_size2 - dsx * .5 * np.arange(dsx_n * 2)),
                x0 + tooth_size2,
            ]
            top_saw_y = [
                y1,
                *([y1 + tooth_size2, y1, y1 - tooth_size2, y1] * dsx_n),
                y1 + tooth_size2,
            ]
            left_saw_x = [
                x0,
                *([x0 - tooth_size2, x0, x0 + tooth_size2, x0] * dsy_n),
                x0 - tooth_size2,
            ]
            left_saw_y = [
                y1,
                *(y1 - tooth_size2 - dsy * .5 * np.arange(dsy_n * 2)),
                y0 + tooth_size2,
            ]

            saw_vertices = [*zip(bottom_saw_x, bottom_saw_y),
                            *zip(right_saw_x, right_saw_y),
                            *zip(top_saw_x, top_saw_y),
                            *zip(left_saw_x, left_saw_y),
                            (bottom_saw_x[0], bottom_saw_y[0])]

            return saw_vertices

        def transmute(self, x0, y0, width, height, mutation_size):
            saw_vertices = self._get_sawtooth_vertices(x0, y0, width,
                                                       height, mutation_size)
            path = Path(saw_vertices, closed=True)
            return path

    @_register_style(_style_list)
    class Roundtooth(Sawtooth):
        """
        A box with a rounded sawtooth outline.

        Parameters
        ----------
        pad : float, default: 0.3
            The amount of padding around the original box.
        tooth_size : float, default: *pad*/2
             Size of the sawtooth.
        """
        def __init__(self, pad=0.3, tooth_size=None):
            super().__init__(pad, tooth_size)

        def transmute(self, x0, y0, width, height, mutation_size):
            saw_vertices = self._get_sawtooth_vertices(x0, y0,
                                                       width, height,
                                                       mutation_size)
            # Add a trailing vertex to allow us to close the polygon correctly
            saw_vertices = np.concatenate([np.array(saw_vertices),
                                           [saw_vertices[0]]], axis=0)
            codes = ([Path.MOVETO] +
                     [Path.CURVE3, Path.CURVE3] * ((len(saw_vertices)-1)//2) +
                     [Path.CLOSEPOLY])
            return Path(saw_vertices, codes)

    if __doc__:  # __doc__ could be None if -OO optimization is enabled
        __doc__ = inspect.cleandoc(__doc__) % {
            "AvailableBoxstyles": _pprint_styles(_style_list)}

docstring.interpd.update(
    AvailableBoxstyles=_pprint_styles(BoxStyle._style_list),
    ListBoxstyles=_simpleprint_styles(BoxStyle._style_list))


class FancyBboxPatch(Patch):
    """
    A fancy box around a rectangle with lower left at *xy* = (*x*, *y*)
    with specified width and height.

    `.FancyBboxPatch` is similar to `.Rectangle`, but it draws a fancy box
    around the rectangle. The transformation of the rectangle box to the
    fancy box is delegated to the style classes defined in `.BoxStyle`.
    """

    _edge_default = True

    def __str__(self):
        s = self.__class__.__name__ + "((%g, %g), width=%g, height=%g)"
        return s % (self._x, self._y, self._width, self._height)

    @docstring.dedent_interpd
    def __init__(self, xy, width, height,
                 boxstyle="round",
                 bbox_transmuter=None,
                 mutation_scale=1.,
                 mutation_aspect=None,
                 **kwargs):
        """
        Parameters
        ----------
        xy : float, float
          The lower left corner of the box.

        width : float
            The width of the box.

        height : float
            The height of the box.

        boxstyle : str or `matplotlib.patches.BoxStyle`
            The style of the fancy box. This can either be a `.BoxStyle`
            instance or a string of the style name and optionally comma
            seprarated attributes (e.g. "Round, pad=0.2"). This string is
            passed to `.BoxStyle` to construct a `.BoxStyle` object. See
            there for a full documentation.

            The following box styles are available:

            %(AvailableBoxstyles)s

        mutation_scale : float, optional, default: 1
            Scaling factor applied to the attributes of the box style
            (e.g. pad or rounding_size).

        mutation_aspect : float, optional
            The height of the rectangle will be squeezed by this value before
            the mutation and the mutated box will be stretched by the inverse
            of it. For example, this allows different horizontal and vertical
            padding.

        Other Parameters
        ----------------
        **kwargs : `.Patch` properties

        %(Patch)s
        """

        Patch.__init__(self, **kwargs)

        self._x = xy[0]
        self._y = xy[1]
        self._width = width
        self._height = height

        if boxstyle == "custom":
            if bbox_transmuter is None:
                raise ValueError("bbox_transmuter argument is needed with "
                                 "custom boxstyle")
            self._bbox_transmuter = bbox_transmuter
        else:
            self.set_boxstyle(boxstyle)

        self._mutation_scale = mutation_scale
        self._mutation_aspect = mutation_aspect

        self.stale = True

    @docstring.dedent_interpd
    def set_boxstyle(self, boxstyle=None, **kwargs):
        """
        Set the box style.

        Most box styles can be further configured using attributes.
        Attributes from the previous box style are not reused.

        Without argument (or with ``boxstyle=None``), the available box styles
        are returned as a human-readable string.

        Parameters
        ----------
        boxstyle : str
            The name of the box style. Optionally, followed by a comma and a
            comma-separated list of attributes. The attributes may
            alternatively be passed separately as keyword arguments.

            The following box styles are available:

            %(AvailableBoxstyles)s

            .. ACCEPTS: %(ListBoxstyles)s

        **kwargs
            Additional attributes for the box style. See the table above for
            supported parameters.

        Examples
        --------
        ::

            set_boxstyle("round,pad=0.2")
            set_boxstyle("round", pad=0.2)

        """
        if boxstyle is None:
            return BoxStyle.pprint_styles()

        if isinstance(boxstyle, BoxStyle._Base) or callable(boxstyle):
            self._bbox_transmuter = boxstyle
        else:
            self._bbox_transmuter = BoxStyle(boxstyle, **kwargs)
        self.stale = True

    def set_mutation_scale(self, scale):
        """
        Set the mutation scale.

        Parameters
        ----------
        scale : float
        """
        self._mutation_scale = scale
        self.stale = True

    def get_mutation_scale(self):
        """Return the mutation scale."""
        return self._mutation_scale

    def set_mutation_aspect(self, aspect):
        """
        Set the aspect ratio of the bbox mutation.

        Parameters
        ----------
        aspect : float
        """
        self._mutation_aspect = aspect
        self.stale = True

    def get_mutation_aspect(self):
        """Return the aspect ratio of the bbox mutation."""
        return self._mutation_aspect

    def get_boxstyle(self):
        """Return the boxstyle object."""
        return self._bbox_transmuter

    def get_path(self):
        """Return the mutated path of the rectangle."""
        _path = self.get_boxstyle()(self._x, self._y,
                                    self._width, self._height,
                                    self.get_mutation_scale(),
                                    self.get_mutation_aspect())
        return _path

    # Following methods are borrowed from the Rectangle class.

    def get_x(self):
        """Return the left coord of the rectangle."""
        return self._x

    def get_y(self):
        """Return the bottom coord of the rectangle."""
        return self._y

    def get_width(self):
        """Return the width of the rectangle."""
        return self._width

    def get_height(self):
        """Return the height of the rectangle."""
        return self._height

    def set_x(self, x):
        """
        Set the left coord of the rectangle.

        Parameters
        ----------
        x : float
        """
        self._x = x
        self.stale = True

    def set_y(self, y):
        """
        Set the bottom coord of the rectangle.

        Parameters
        ----------
        y : float
        """
        self._y = y
        self.stale = True

    def set_width(self, w):
        """
        Set the rectangle width.

        Parameters
        ----------
        w : float
        """
        self._width = w
        self.stale = True

    def set_height(self, h):
        """
        Set the rectangle height.

        Parameters
        ----------
        h : float
        """
        self._height = h
        self.stale = True

    def set_bounds(self, *args):
        """
        Set the bounds of the rectangle.

        Call signatures::

            set_bounds(left, bottom, width, height)
            set_bounds((left, bottom, width, height))

        Parameters
        ----------
        left, bottom : float
            The coordinates of the bottom left corner of the rectangle.
        width, height : float
            The width/height of the rectangle.
        """
        if len(args) == 1:
            l, b, w, h = args[0]
        else:
            l, b, w, h = args
        self._x = l
        self._y = b
        self._width = w
        self._height = h
        self.stale = True

    def get_bbox(self):
        """Return the `.Bbox`."""
        return transforms.Bbox.from_bounds(self._x, self._y,
                                           self._width, self._height)


class ConnectionStyle(_Style):
    """
    :class:`ConnectionStyle` is a container class which defines
    several connectionstyle classes, which is used to create a path
    between two points. These are mainly used with
    :class:`FancyArrowPatch`.

    A connectionstyle object can be either created as::

           ConnectionStyle.Arc3(rad=0.2)

    or::

           ConnectionStyle("Arc3", rad=0.2)

    or::

           ConnectionStyle("Arc3, rad=0.2")

    The following classes are defined

    %(AvailableConnectorstyles)s

    An instance of any connection style class is an callable object,
    whose call signature is::

        __call__(self, posA, posB,
                 patchA=None, patchB=None,
                 shrinkA=2., shrinkB=2.)

    and it returns a :class:`Path` instance. *posA* and *posB* are
    tuples of (x, y) coordinates of the two points to be
    connected. *patchA* (or *patchB*) is given, the returned path is
    clipped so that it start (or end) from the boundary of the
    patch. The path is further shrunk by *shrinkA* (or *shrinkB*)
    which is given in points.
    """

    _style_list = {}

    class _Base:
        """
        A base class for connectionstyle classes. The subclass needs
        to implement a *connect* method whose call signature is::

          connect(posA, posB)

        where posA and posB are tuples of x, y coordinates to be
        connected.  The method needs to return a path connecting two
        points. This base class defines a __call__ method, and a few
        helper methods.
        """

        class SimpleEvent:
            def __init__(self, xy):
                self.x, self.y = xy

        def _clip(self, path, patchA, patchB):
            """
            Clip the path to the boundary of the patchA and patchB.
            The starting point of the path needed to be inside of the
            patchA and the end point inside the patch B. The *contains*
            methods of each patch object is utilized to test if the point
            is inside the path.
            """

            if patchA:
                def insideA(xy_display):
                    xy_event = ConnectionStyle._Base.SimpleEvent(xy_display)
                    return patchA.contains(xy_event)[0]

                try:
                    left, right = split_path_inout(path, insideA)
                except ValueError:
                    right = path

                path = right

            if patchB:
                def insideB(xy_display):
                    xy_event = ConnectionStyle._Base.SimpleEvent(xy_display)
                    return patchB.contains(xy_event)[0]

                try:
                    left, right = split_path_inout(path, insideB)
                except ValueError:
                    left = path

                path = left

            return path

        def _shrink(self, path, shrinkA, shrinkB):
            """
            Shrink the path by fixed size (in points) with shrinkA and shrinkB.
            """
            if shrinkA:
                insideA = inside_circle(*path.vertices[0], shrinkA)
                try:
                    left, path = split_path_inout(path, insideA)
                except ValueError:
                    pass
            if shrinkB:
                insideB = inside_circle(*path.vertices[-1], shrinkB)
                try:
                    path, right = split_path_inout(path, insideB)
                except ValueError:
                    pass
            return path

        def __call__(self, posA, posB,
                     shrinkA=2., shrinkB=2., patchA=None, patchB=None):
            """
            Calls the *connect* method to create a path between *posA*
             and *posB*. The path is clipped and shrunken.
            """

            path = self.connect(posA, posB)

            clipped_path = self._clip(path, patchA, patchB)
            shrunk_path = self._shrink(clipped_path, shrinkA, shrinkB)

            return shrunk_path

    @_register_style(_style_list)
    class Arc3(_Base):
        """
        Creates a simple quadratic Bezier curve between two
        points. The curve is created so that the middle control point
        (C1) is located at the same distance from the start (C0) and
        end points(C2) and the distance of the C1 to the line
        connecting C0-C2 is *rad* times the distance of C0-C2.
        """

        def __init__(self, rad=0.):
            """
            *rad*
              curvature of the curve.
            """
            self.rad = rad

        def connect(self, posA, posB):
            x1, y1 = posA
            x2, y2 = posB
            x12, y12 = (x1 + x2) / 2., (y1 + y2) / 2.
            dx, dy = x2 - x1, y2 - y1

            f = self.rad

            cx, cy = x12 + f * dy, y12 - f * dx

            vertices = [(x1, y1),
                        (cx, cy),
                        (x2, y2)]
            codes = [Path.MOVETO,
                     Path.CURVE3,
                     Path.CURVE3]

            return Path(vertices, codes)

    @_register_style(_style_list)
    class Angle3(_Base):
        """
        Creates a simple quadratic Bezier curve between two
        points. The middle control points is placed at the
        intersecting point of two lines which cross the start and
        end point, and have a slope of angleA and angleB, respectively.
        """

        def __init__(self, angleA=90, angleB=0):
            """
            *angleA*
              starting angle of the path

            *angleB*
              ending angle of the path
            """

            self.angleA = angleA
            self.angleB = angleB

        def connect(self, posA, posB):
            x1, y1 = posA
            x2, y2 = posB

            cosA = math.cos(math.radians(self.angleA))
            sinA = math.sin(math.radians(self.angleA))
            cosB = math.cos(math.radians(self.angleB))
            sinB = math.sin(math.radians(self.angleB))

            cx, cy = get_intersection(x1, y1, cosA, sinA,
                                      x2, y2, cosB, sinB)

            vertices = [(x1, y1), (cx, cy), (x2, y2)]
            codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3]

            return Path(vertices, codes)

    @_register_style(_style_list)
    class Angle(_Base):
        """
        Creates a piecewise continuous quadratic Bezier path between
        two points. The path has a one passing-through point placed at
        the intersecting point of two lines which cross the start
        and end point, and have a slope of angleA and angleB, respectively.
        The connecting edges are rounded with *rad*.
        """

        def __init__(self, angleA=90, angleB=0, rad=0.):
            """
            *angleA*
              starting angle of the path

            *angleB*
              ending angle of the path

            *rad*
              rounding radius of the edge
            """

            self.angleA = angleA
            self.angleB = angleB

            self.rad = rad

        def connect(self, posA, posB):
            x1, y1 = posA
            x2, y2 = posB

            cosA = math.cos(math.radians(self.angleA))
            sinA = math.sin(math.radians(self.angleA))
            cosB = math.cos(math.radians(self.angleB))
            sinB = math.sin(math.radians(self.angleB))

            cx, cy = get_intersection(x1, y1, cosA, sinA,
                                      x2, y2, cosB, sinB)

            vertices = [(x1, y1)]
            codes = [Path.MOVETO]

            if self.rad == 0.:
                vertices.append((cx, cy))
                codes.append(Path.LINETO)
            else:
                dx1, dy1 = x1 - cx, y1 - cy
                d1 = np.hypot(dx1, dy1)
                f1 = self.rad / d1
                dx2, dy2 = x2 - cx, y2 - cy
                d2 = np.hypot(dx2, dy2)
                f2 = self.rad / d2
                vertices.extend([(cx + dx1 * f1, cy + dy1 * f1),
                                 (cx, cy),
                                 (cx + dx2 * f2, cy + dy2 * f2)])
                codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3])

            vertices.append((x2, y2))
            codes.append(Path.LINETO)

            return Path(vertices, codes)

    @_register_style(_style_list)
    class Arc(_Base):
        """
        Creates a piecewise continuous quadratic Bezier path between
        two points. The path can have two passing-through points, a
        point placed at the distance of armA and angle of angleA from
        point A, another point with respect to point B. The edges are
        rounded with *rad*.
        """

        def __init__(self, angleA=0, angleB=0, armA=None, armB=None, rad=0.):
            """
            *angleA* :
              starting angle of the path

            *angleB* :
              ending angle of the path

            *armA* :
              length of the starting arm

            *armB* :
              length of the ending arm

            *rad* :
              rounding radius of the edges
            """

            self.angleA = angleA
            self.angleB = angleB
            self.armA = armA
            self.armB = armB

            self.rad = rad

        def connect(self, posA, posB):
            x1, y1 = posA
            x2, y2 = posB

            vertices = [(x1, y1)]
            rounded = []
            codes = [Path.MOVETO]

            if self.armA:
                cosA = math.cos(math.radians(self.angleA))
                sinA = math.sin(math.radians(self.angleA))
                # x_armA, y_armB
                d = self.armA - self.rad
                rounded.append((x1 + d * cosA, y1 + d * sinA))
                d = self.armA
                rounded.append((x1 + d * cosA, y1 + d * sinA))

            if self.armB:
                cosB = math.cos(math.radians(self.angleB))
                sinB = math.sin(math.radians(self.angleB))
                x_armB, y_armB = x2 + self.armB * cosB, y2 + self.armB * sinB

                if rounded:
                    xp, yp = rounded[-1]
                    dx, dy = x_armB - xp, y_armB - yp
                    dd = (dx * dx + dy * dy) ** .5

                    rounded.append((xp + self.rad * dx / dd,
                                    yp + self.rad * dy / dd))
                    vertices.extend(rounded)
                    codes.extend([Path.LINETO,
                                  Path.CURVE3,
                                  Path.CURVE3])
                else:
                    xp, yp = vertices[-1]
                    dx, dy = x_armB - xp, y_armB - yp
                    dd = (dx * dx + dy * dy) ** .5

                d = dd - self.rad
                rounded = [(xp + d * dx / dd, yp + d * dy / dd),
                           (x_armB, y_armB)]

            if rounded:
                xp, yp = rounded[-1]
                dx, dy = x2 - xp, y2 - yp
                dd = (dx * dx + dy * dy) ** .5

                rounded.append((xp + self.rad * dx / dd,
                                yp + self.rad * dy / dd))
                vertices.extend(rounded)
                codes.extend([Path.LINETO,
                              Path.CURVE3,
                              Path.CURVE3])

            vertices.append((x2, y2))
            codes.append(Path.LINETO)

            return Path(vertices, codes)

    @_register_style(_style_list)
    class Bar(_Base):
        """
        A line with *angle* between A and B with *armA* and
        *armB*. One of the arms is extended so that they are connected in
        a right angle. The length of armA is determined by (*armA*
        + *fraction* x AB distance). Same for armB.
        """

        def __init__(self, armA=0., armB=0., fraction=0.3, angle=None):
            """
            Parameters
            ----------
            armA : float
                minimum length of armA

            armB : float
                minimum length of armB

            fraction : float
                a fraction of the distance between two points that
                will be added to armA and armB.

            angle : float or None
                angle of the connecting line (if None, parallel
                to A and B)
            """
            self.armA = armA
            self.armB = armB
            self.fraction = fraction
            self.angle = angle

        def connect(self, posA, posB):
            x1, y1 = posA
            x20, y20 = x2, y2 = posB

            theta1 = math.atan2(y2 - y1, x2 - x1)
            dx, dy = x2 - x1, y2 - y1
            dd = (dx * dx + dy * dy) ** .5
            ddx, ddy = dx / dd, dy / dd

            armA, armB = self.armA, self.armB

            if self.angle is not None:
                theta0 = np.deg2rad(self.angle)
                dtheta = theta1 - theta0
                dl = dd * math.sin(dtheta)
                dL = dd * math.cos(dtheta)
                x2, y2 = x1 + dL * math.cos(theta0), y1 + dL * math.sin(theta0)
                armB = armB - dl

                # update
                dx, dy = x2 - x1, y2 - y1
                dd2 = (dx * dx + dy * dy) ** .5
                ddx, ddy = dx / dd2, dy / dd2

            arm = max(armA, armB)
            f = self.fraction * dd + arm

            cx1, cy1 = x1 + f * ddy, y1 - f * ddx
            cx2, cy2 = x2 + f * ddy, y2 - f * ddx

            vertices = [(x1, y1),
                        (cx1, cy1),
                        (cx2, cy2),
                        (x20, y20)]
            codes = [Path.MOVETO,
                     Path.LINETO,
                     Path.LINETO,
                     Path.LINETO]

            return Path(vertices, codes)

    if __doc__:
        __doc__ = inspect.cleandoc(__doc__) % {
            "AvailableConnectorstyles": _pprint_styles(_style_list)}


def _point_along_a_line(x0, y0, x1, y1, d):
    """
    Return the point on the line connecting (*x0*, *y0*) -- (*x1*, *y1*) whose
    distance from (*x0*, *y0*) is *d*.
    """
    dx, dy = x0 - x1, y0 - y1
    ff = d / (dx * dx + dy * dy) ** .5
    x2, y2 = x0 - ff * dx, y0 - ff * dy

    return x2, y2


class ArrowStyle(_Style):
    """
    :class:`ArrowStyle` is a container class which defines several
    arrowstyle classes, which is used to create an arrow path along a
    given path. These are mainly used with :class:`FancyArrowPatch`.

    A arrowstyle object can be either created as::

           ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4)

    or::

           ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)

    or::

           ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")

    The following classes are defined

    %(AvailableArrowstyles)s

    An instance of any arrow style class is a callable object,
    whose call signature is::

        __call__(self, path, mutation_size, linewidth, aspect_ratio=1.)

    and it returns a tuple of a :class:`Path` instance and a boolean
    value. *path* is a :class:`Path` instance along which the arrow
    will be drawn. *mutation_size* and *aspect_ratio* have the same
    meaning as in :class:`BoxStyle`. *linewidth* is a line width to be
    stroked. This is meant to be used to correct the location of the
    head so that it does not overshoot the destination point, but not all
    classes support it.
    """

    _style_list = {}

    class _Base:
        """
        Arrow Transmuter Base class

        ArrowTransmuterBase and its derivatives are used to make a fancy
        arrow around a given path. The __call__ method returns a path
        (which will be used to create a PathPatch instance) and a boolean
        value indicating the path is open therefore is not fillable.  This
        class is not an artist and actual drawing of the fancy arrow is
        done by the FancyArrowPatch class.

        """

        # The derived classes are required to be able to be initialized
        # w/o arguments, i.e., all its argument (except self) must have
        # the default values.

        @staticmethod
        def ensure_quadratic_bezier(path):
            """
            Some ArrowStyle class only works with a simple quadratic Bezier
            curve (created with Arc3Connection or Angle3Connector). This static
            method is to check if the provided path is a simple quadratic
            Bezier curve and returns its control points if true.
            """
            segments = list(path.iter_segments())
            if (len(segments) != 2 or segments[0][1] != Path.MOVETO or
                    segments[1][1] != Path.CURVE3):
                raise ValueError(
                    "'path' is not a valid quadratic Bezier curve")
            return [*segments[0][0], *segments[1][0]]

        def transmute(self, path, mutation_size, linewidth):
            """
            The transmute method is the very core of the ArrowStyle class and
            must be overridden in the subclasses. It receives the path object
            along which the arrow will be drawn, and the mutation_size, with
            which the arrow head etc. will be scaled. The linewidth may be
            used to adjust the path so that it does not pass beyond the given
            points. It returns a tuple of a Path instance and a boolean. The
            boolean value indicate whether the path can be filled or not. The
            return value can also be a list of paths and list of booleans of a
            same length.
            """
            raise NotImplementedError('Derived must override')

        def __call__(self, path, mutation_size, linewidth,
                     aspect_ratio=1.):
            """
            The __call__ method is a thin wrapper around the transmute method
            and takes care of the aspect ratio.
            """

            path = make_path_regular(path)

            if aspect_ratio is not None:
                # Squeeze the given height by the aspect_ratio

                vertices, codes = path.vertices[:], path.codes[:]
                # Squeeze the height
                vertices[:, 1] = vertices[:, 1] / aspect_ratio
                path_shrunk = Path(vertices, codes)
                # call transmute method with squeezed height.
                path_mutated, fillable = self.transmute(path_shrunk,
                                                        linewidth,
                                                        mutation_size)
                if np.iterable(fillable):
                    path_list = []
                    for p in zip(path_mutated):
                        v, c = p.vertices, p.codes
                        # Restore the height
                        v[:, 1] = v[:, 1] * aspect_ratio
                        path_list.append(Path(v, c))
                    return path_list, fillable
                else:
                    return path_mutated, fillable
            else:
                return self.transmute(path, mutation_size, linewidth)

    class _Curve(_Base):
        """
        A simple arrow which will work with any path instance. The
        returned path is simply concatenation of the original path + at
        most two paths representing the arrow head at the begin point and the
        at the end point. The arrow heads can be either open or closed.
        """

        def __init__(self, beginarrow=None, endarrow=None,
                     fillbegin=False, fillend=False,
                     head_length=.2, head_width=.1):
            """
            The arrows are drawn if *beginarrow* and/or *endarrow* are
            true. *head_length* and *head_width* determines the size
            of the arrow relative to the *mutation scale*.  The
            arrowhead at the begin (or end) is closed if fillbegin (or
            fillend) is True.
            """
            self.beginarrow, self.endarrow = beginarrow, endarrow
            self.head_length, self.head_width = head_length, head_width
            self.fillbegin, self.fillend = fillbegin, fillend
            super().__init__()

        def _get_arrow_wedge(self, x0, y0, x1, y1,
                             head_dist, cos_t, sin_t, linewidth):
            """
            Return the paths for arrow heads. Since arrow lines are
            drawn with capstyle=projected, The arrow goes beyond the
            desired point. This method also returns the amount of the path
            to be shrunken so that it does not overshoot.
            """

            # arrow from x0, y0 to x1, y1
            dx, dy = x0 - x1, y0 - y1

            cp_distance = np.hypot(dx, dy)

            # pad_projected : amount of pad to account the
            # overshooting of the projection of the wedge
            pad_projected = (.5 * linewidth / sin_t)

            # Account for division by zero
            if cp_distance == 0:
                cp_distance = 1

            # apply pad for projected edge
            ddx = pad_projected * dx / cp_distance
            ddy = pad_projected * dy / cp_distance

            # offset for arrow wedge
            dx = dx / cp_distance * head_dist
            dy = dy / cp_distance * head_dist

            dx1, dy1 = cos_t * dx + sin_t * dy, -sin_t * dx + cos_t * dy
            dx2, dy2 = cos_t * dx - sin_t * dy, sin_t * dx + cos_t * dy

            vertices_arrow = [(x1 + ddx + dx1, y1 + ddy + dy1),
                              (x1 + ddx, y1 + ddy),
                              (x1 + ddx + dx2, y1 + ddy + dy2)]
            codes_arrow = [Path.MOVETO,
                           Path.LINETO,
                           Path.LINETO]

            return vertices_arrow, codes_arrow, ddx, ddy

        def transmute(self, path, mutation_size, linewidth):

            head_length = self.head_length * mutation_size
            head_width = self.head_width * mutation_size
            head_dist = np.hypot(head_length, head_width)
            cos_t, sin_t = head_length / head_dist, head_width / head_dist

            # begin arrow
            x0, y0 = path.vertices[0]
            x1, y1 = path.vertices[1]

            # If there is no room for an arrow and a line, then skip the arrow
            has_begin_arrow = self.beginarrow and (x0, y0) != (x1, y1)
            verticesA, codesA, ddxA, ddyA = (
                self._get_arrow_wedge(x1, y1, x0, y0,
                                      head_dist, cos_t, sin_t, linewidth)
                if has_begin_arrow
                else ([], [], 0, 0)
            )

            # end arrow
            x2, y2 = path.vertices[-2]
            x3, y3 = path.vertices[-1]

            # If there is no room for an arrow and a line, then skip the arrow
            has_end_arrow = self.endarrow and (x2, y2) != (x3, y3)
            verticesB, codesB, ddxB, ddyB = (
                self._get_arrow_wedge(x2, y2, x3, y3,
                                      head_dist, cos_t, sin_t, linewidth)
                if has_end_arrow
                else ([], [], 0, 0)
            )

            # This simple code will not work if ddx, ddy is greater than the
            # separation between vertices.
            _path = [Path(np.concatenate([[(x0 + ddxA, y0 + ddyA)],
                                          path.vertices[1:-1],
                                          [(x3 + ddxB, y3 + ddyB)]]),
                          path.codes)]
            _fillable = [False]

            if has_begin_arrow:
                if self.fillbegin:
                    p = np.concatenate([verticesA, [verticesA[0],
                                                    verticesA[0]], ])
                    c = np.concatenate([codesA, [Path.LINETO, Path.CLOSEPOLY]])
                    _path.append(Path(p, c))
                    _fillable.append(True)
                else:
                    _path.append(Path(verticesA, codesA))
                    _fillable.append(False)

            if has_end_arrow:
                if self.fillend:
                    _fillable.append(True)
                    p = np.concatenate([verticesB, [verticesB[0],
                                                    verticesB[0]], ])
                    c = np.concatenate([codesB, [Path.LINETO, Path.CLOSEPOLY]])
                    _path.append(Path(p, c))
                else:
                    _fillable.append(False)
                    _path.append(Path(verticesB, codesB))

            return _path, _fillable

    @_register_style(_style_list, name="-")
    class Curve(_Curve):
        """
        A simple curve without any arrow head.
        """

        def __init__(self):
            super().__init__(beginarrow=False, endarrow=False)

    @_register_style(_style_list, name="<-")
    class CurveA(_Curve):
        """
        An arrow with a head at its begin point.
        """

        def __init__(self, head_length=.4, head_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.2
                Width of the arrow head
            """
            super().__init__(beginarrow=True, endarrow=False,
                             head_length=head_length, head_width=head_width)

    @_register_style(_style_list, name="->")
    class CurveB(_Curve):
        """
        An arrow with a head at its end point.
        """

        def __init__(self, head_length=.4, head_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.2
                Width of the arrow head
            """
            super().__init__(beginarrow=False, endarrow=True,
                             head_length=head_length, head_width=head_width)

    @_register_style(_style_list, name="<->")
    class CurveAB(_Curve):
        """
        An arrow with heads both at the begin and the end point.
        """

        def __init__(self, head_length=.4, head_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.2
                Width of the arrow head
            """
            super().__init__(beginarrow=True, endarrow=True,
                             head_length=head_length, head_width=head_width)

    @_register_style(_style_list, name="<|-")
    class CurveFilledA(_Curve):
        """
        An arrow with filled triangle head at the begin.
        """

        def __init__(self, head_length=.4, head_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.2
                Width of the arrow head
            """
            super().__init__(beginarrow=True, endarrow=False,
                             fillbegin=True, fillend=False,
                             head_length=head_length, head_width=head_width)

    @_register_style(_style_list, name="-|>")
    class CurveFilledB(_Curve):
        """
        An arrow with filled triangle head at the end.
        """

        def __init__(self, head_length=.4, head_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.2
                Width of the arrow head
            """
            super().__init__(beginarrow=False, endarrow=True,
                             fillbegin=False, fillend=True,
                             head_length=head_length, head_width=head_width)

    @_register_style(_style_list, name="<|-|>")
    class CurveFilledAB(_Curve):
        """
        An arrow with filled triangle heads at both ends.
        """

        def __init__(self, head_length=.4, head_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.2
                Width of the arrow head
            """
            super().__init__(beginarrow=True, endarrow=True,
                             fillbegin=True, fillend=True,
                             head_length=head_length, head_width=head_width)

    class _Bracket(_Base):

        def __init__(self, bracketA=None, bracketB=None,
                     widthA=1., widthB=1.,
                     lengthA=0.2, lengthB=0.2,
                     angleA=None, angleB=None,
                     scaleA=None, scaleB=None):
            self.bracketA, self.bracketB = bracketA, bracketB
            self.widthA, self.widthB = widthA, widthB
            self.lengthA, self.lengthB = lengthA, lengthB
            self.angleA, self.angleB = angleA, angleB
            self.scaleA, self.scaleB = scaleA, scaleB

        def _get_bracket(self, x0, y0,
                         cos_t, sin_t, width, length):

            # arrow from x0, y0 to x1, y1
            from matplotlib.bezier import get_normal_points
            x1, y1, x2, y2 = get_normal_points(x0, y0, cos_t, sin_t, width)

            dx, dy = length * cos_t, length * sin_t

            vertices_arrow = [(x1 + dx, y1 + dy),
                              (x1, y1),
                              (x2, y2),
                              (x2 + dx, y2 + dy)]
            codes_arrow = [Path.MOVETO,
                           Path.LINETO,
                           Path.LINETO,
                           Path.LINETO]

            return vertices_arrow, codes_arrow

        def transmute(self, path, mutation_size, linewidth):

            if self.scaleA is None:
                scaleA = mutation_size
            else:
                scaleA = self.scaleA

            if self.scaleB is None:
                scaleB = mutation_size
            else:
                scaleB = self.scaleB

            vertices_list, codes_list = [], []

            if self.bracketA:
                x0, y0 = path.vertices[0]
                x1, y1 = path.vertices[1]
                cos_t, sin_t = get_cos_sin(x1, y1, x0, y0)
                verticesA, codesA = self._get_bracket(x0, y0, cos_t, sin_t,
                                                      self.widthA * scaleA,
                                                      self.lengthA * scaleA)
                vertices_list.append(verticesA)
                codes_list.append(codesA)

            vertices_list.append(path.vertices)
            codes_list.append(path.codes)

            if self.bracketB:
                x0, y0 = path.vertices[-1]
                x1, y1 = path.vertices[-2]
                cos_t, sin_t = get_cos_sin(x1, y1, x0, y0)
                verticesB, codesB = self._get_bracket(x0, y0, cos_t, sin_t,
                                                      self.widthB * scaleB,
                                                      self.lengthB * scaleB)
                vertices_list.append(verticesB)
                codes_list.append(codesB)

            vertices = np.concatenate(vertices_list)
            codes = np.concatenate(codes_list)

            p = Path(vertices, codes)

            return p, False

    @_register_style(_style_list, name="]-[")
    class BracketAB(_Bracket):
        """
        An arrow with a bracket(]) at both ends.
        """

        def __init__(self,
                     widthA=1., lengthA=0.2, angleA=None,
                     widthB=1., lengthB=0.2, angleB=None):
            """
            Parameters
            ----------
            widthA : float, optional, default : 1.0
                Width of the bracket

            lengthA : float, optional, default : 0.2
                Length of the bracket

            angleA : float, optional, default : None
                Angle between the bracket and the line

            widthB : float, optional, default : 1.0
                Width of the bracket

            lengthB : float, optional, default : 0.2
                Length of the bracket

            angleB : float, optional, default : None
                Angle between the bracket and the line
            """
            super().__init__(True, True,
                             widthA=widthA, lengthA=lengthA, angleA=angleA,
                             widthB=widthB, lengthB=lengthB, angleB=angleB)

    @_register_style(_style_list, name="]-")
    class BracketA(_Bracket):
        """
        An arrow with a bracket(])  at its end.
        """

        def __init__(self, widthA=1., lengthA=0.2, angleA=None):
            """
            Parameters
            ----------
            widthA : float, optional, default : 1.0
                Width of the bracket

            lengthA : float, optional, default : 0.2
                Length of the bracket

            angleA : float, optional, default : None
                Angle between the bracket and the line
            """
            super().__init__(True, None,
                             widthA=widthA, lengthA=lengthA, angleA=angleA)

    @_register_style(_style_list, name="-[")
    class BracketB(_Bracket):
        """
        An arrow with a bracket([)  at its end.
        """

        def __init__(self, widthB=1., lengthB=0.2, angleB=None):
            """
            Parameters
            ----------
            widthB : float, optional, default : 1.0
                Width of the bracket

            lengthB : float, optional, default : 0.2
                Length of the bracket

            angleB : float, optional, default : None
                Angle between the bracket and the line
            """
            super().__init__(None, True,
                             widthB=widthB, lengthB=lengthB, angleB=angleB)

    @_register_style(_style_list, name="|-|")
    class BarAB(_Bracket):
        """
        An arrow with a bar(|) at both ends.
        """

        def __init__(self,
                     widthA=1., angleA=None,
                     widthB=1., angleB=None):
            """
            Parameters
            ----------
            widthA : float, optional, default : 1.0
                Width of the bracket

            angleA : float, optional, default : None
                Angle between the bracket and the line

            widthB : float, optional, default : 1.0
                Width of the bracket

            angleB : float, optional, default : None
                Angle between the bracket and the line
            """
            super().__init__(True, True,
                             widthA=widthA, lengthA=0, angleA=angleA,
                             widthB=widthB, lengthB=0, angleB=angleB)

    @_register_style(_style_list)
    class Simple(_Base):
        """
        A simple arrow. Only works with a quadratic Bezier curve.
        """

        def __init__(self, head_length=.5, head_width=.5, tail_width=.2):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.5
                Length of the arrow head

            head_width : float, optional, default : 0.5
                Width of the arrow head

            tail_width : float, optional, default : 0.2
                Width of the arrow tail
            """
            self.head_length, self.head_width, self.tail_width = \
                head_length, head_width, tail_width
            super().__init__()

        def transmute(self, path, mutation_size, linewidth):

            x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path)

            # divide the path into a head and a tail
            head_length = self.head_length * mutation_size
            in_f = inside_circle(x2, y2, head_length)
            arrow_path = [(x0, y0), (x1, y1), (x2, y2)]

            try:
                arrow_out, arrow_in = \
                    split_bezier_intersecting_with_closedpath(
                        arrow_path, in_f, tolerance=0.01)
            except NonIntersectingPathException:
                # if this happens, make a straight line of the head_length
                # long.
                x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length)
                x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2)
                arrow_in = [(x0, y0), (x1n, y1n), (x2, y2)]
                arrow_out = None

            # head
            head_width = self.head_width * mutation_size
            head_left, head_right = make_wedged_bezier2(arrow_in,
                                                        head_width / 2., wm=.5)

            # tail
            if arrow_out is not None:
                tail_width = self.tail_width * mutation_size
                tail_left, tail_right = get_parallels(arrow_out,
                                                      tail_width / 2.)

                patch_path = [(Path.MOVETO, tail_right[0]),
                              (Path.CURVE3, tail_right[1]),
                              (Path.CURVE3, tail_right[2]),
                              (Path.LINETO, head_right[0]),
                              (Path.CURVE3, head_right[1]),
                              (Path.CURVE3, head_right[2]),
                              (Path.CURVE3, head_left[1]),
                              (Path.CURVE3, head_left[0]),
                              (Path.LINETO, tail_left[2]),
                              (Path.CURVE3, tail_left[1]),
                              (Path.CURVE3, tail_left[0]),
                              (Path.LINETO, tail_right[0]),
                              (Path.CLOSEPOLY, tail_right[0]),
                              ]
            else:
                patch_path = [(Path.MOVETO, head_right[0]),
                              (Path.CURVE3, head_right[1]),
                              (Path.CURVE3, head_right[2]),
                              (Path.CURVE3, head_left[1]),
                              (Path.CURVE3, head_left[0]),
                              (Path.CLOSEPOLY, head_left[0]),
                              ]

            path = Path([p for c, p in patch_path], [c for c, p in patch_path])

            return path, True

    @_register_style(_style_list)
    class Fancy(_Base):
        """
        A fancy arrow. Only works with a quadratic Bezier curve.
        """

        def __init__(self, head_length=.4, head_width=.4, tail_width=.4):
            """
            Parameters
            ----------
            head_length : float, optional, default : 0.4
                Length of the arrow head

            head_width : float, optional, default : 0.4
                Width of the arrow head

            tail_width : float, optional, default : 0.4
                Width of the arrow tail
            """
            self.head_length, self.head_width, self.tail_width = \
                head_length, head_width, tail_width
            super().__init__()

        def transmute(self, path, mutation_size, linewidth):

            x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path)

            # divide the path into a head and a tail
            head_length = self.head_length * mutation_size
            arrow_path = [(x0, y0), (x1, y1), (x2, y2)]

            # path for head
            in_f = inside_circle(x2, y2, head_length)
            try:
                path_out, path_in = split_bezier_intersecting_with_closedpath(
                    arrow_path, in_f, tolerance=0.01)
            except NonIntersectingPathException:
                # if this happens, make a straight line of the head_length
                # long.
                x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length)
                x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2)
                arrow_path = [(x0, y0), (x1n, y1n), (x2, y2)]
                path_head = arrow_path
            else:
                path_head = path_in

            # path for head
            in_f = inside_circle(x2, y2, head_length * .8)
            path_out, path_in = split_bezier_intersecting_with_closedpath(
                arrow_path, in_f, tolerance=0.01)
            path_tail = path_out

            # head
            head_width = self.head_width * mutation_size
            head_l, head_r = make_wedged_bezier2(path_head,
                                                 head_width / 2.,
                                                 wm=.6)

            # tail
            tail_width = self.tail_width * mutation_size
            tail_left, tail_right = make_wedged_bezier2(path_tail,
                                                        tail_width * .5,
                                                        w1=1., wm=0.6, w2=0.3)

            # path for head
            in_f = inside_circle(x0, y0, tail_width * .3)
            path_in, path_out = split_bezier_intersecting_with_closedpath(
                arrow_path, in_f, tolerance=0.01)
            tail_start = path_in[-1]

            head_right, head_left = head_r, head_l
            patch_path = [(Path.MOVETO, tail_start),
                          (Path.LINETO, tail_right[0]),
                          (Path.CURVE3, tail_right[1]),
                          (Path.CURVE3, tail_right[2]),
                          (Path.LINETO, head_right[0]),
                          (Path.CURVE3, head_right[1]),
                          (Path.CURVE3, head_right[2]),
                          (Path.CURVE3, head_left[1]),
                          (Path.CURVE3, head_left[0]),
                          (Path.LINETO, tail_left[2]),
                          (Path.CURVE3, tail_left[1]),
                          (Path.CURVE3, tail_left[0]),
                          (Path.LINETO, tail_start),
                          (Path.CLOSEPOLY, tail_start),
                          ]
            path = Path([p for c, p in patch_path], [c for c, p in patch_path])

            return path, True

    @_register_style(_style_list)
    class Wedge(_Base):
        """
        Wedge(?) shape. Only works with a quadratic Bezier curve.  The
        begin point has a width of the tail_width and the end point has a
        width of 0. At the middle, the width is shrink_factor*tail_width.
        """

        def __init__(self, tail_width=.3, shrink_factor=0.5):
            """
            Parameters
            ----------
            tail_width : float, optional, default : 0.3
                Width of the tail

            shrink_factor : float, optional, default : 0.5
                Fraction of the arrow width at the middle point
            """
            self.tail_width = tail_width
            self.shrink_factor = shrink_factor
            super().__init__()

        def transmute(self, path, mutation_size, linewidth):

            x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path)

            arrow_path = [(x0, y0), (x1, y1), (x2, y2)]
            b_plus, b_minus = make_wedged_bezier2(
                                    arrow_path,
                                    self.tail_width * mutation_size / 2.,
                                    wm=self.shrink_factor)

            patch_path = [(Path.MOVETO, b_plus[0]),
                          (Path.CURVE3, b_plus[1]),
                          (Path.CURVE3, b_plus[2]),
                          (Path.LINETO, b_minus[2]),
                          (Path.CURVE3, b_minus[1]),
                          (Path.CURVE3, b_minus[0]),
                          (Path.CLOSEPOLY, b_minus[0]),
                          ]
            path = Path([p for c, p in patch_path], [c for c, p in patch_path])

            return path, True

    if __doc__:
        __doc__ = inspect.cleandoc(__doc__) % {
            "AvailableArrowstyles": _pprint_styles(_style_list)}


docstring.interpd.update(
    AvailableArrowstyles=_pprint_styles(ArrowStyle._style_list),
    AvailableConnectorstyles=_pprint_styles(ConnectionStyle._style_list),
)


class FancyArrowPatch(Patch):
    """
    A fancy arrow patch. It draws an arrow using the :class:`ArrowStyle`.

    The head and tail positions are fixed at the specified start and end points
    of the arrow, but the size and shape (in display coordinates) of the arrow
    does not change when the axis is moved or zoomed.
    """
    _edge_default = True

    def __str__(self):

        if self._posA_posB is not None:
            (x1, y1), (x2, y2) = self._posA_posB
            return self.__class__.__name__ \
                + "((%g, %g)->(%g, %g))" % (x1, y1, x2, y2)
        else:
            return self.__class__.__name__ \
                + "(%s)" % (str(self._path_original),)

    @docstring.dedent_interpd
    def __init__(self, posA=None, posB=None,
                 path=None,
                 arrowstyle="simple",
                 arrow_transmuter=None,
                 connectionstyle="arc3",
                 connector=None,
                 patchA=None,
                 patchB=None,
                 shrinkA=2,
                 shrinkB=2,
                 mutation_scale=1,
                 mutation_aspect=None,
                 dpi_cor=1,
                 **kwargs):
        """
        There are two ways for defining an arrow:

        - If *posA* and *posB* are given, a path connecting two points is
          created according to *connectionstyle*. The path will be
          clipped with *patchA* and *patchB* and further shrunken by
          *shrinkA* and *shrinkB*. An arrow is drawn along this
          resulting path using the *arrowstyle* parameter.

        - Alternatively if *path* is provided, an arrow is drawn along this
          path and *patchA*, *patchB*, *shrinkA*, and *shrinkB* are ignored.

        Parameters
        ----------
        posA, posB : (float, float), optional (default: None)
            (x, y) coordinates of arrow tail and arrow head respectively.

        path : `~matplotlib.path.Path`, optional (default: None)
            If provided, an arrow is drawn along this path and *patchA*,
            *patchB*, *shrinkA*, and *shrinkB* are ignored.

        arrowstyle : str or `.ArrowStyle`, optional (default: 'simple')
            Describes how the fancy arrow will be
            drawn. It can be string of the available arrowstyle names,
            with optional comma-separated attributes, or an
            :class:`ArrowStyle` instance. The optional attributes are meant to
            be scaled with the *mutation_scale*. The following arrow styles are
            available:

            %(AvailableArrowstyles)s

        arrow_transmuter
            Ignored.

        connectionstyle : str or `.ConnectionStyle` or None, optional \
(default: 'arc3')
            Describes how *posA* and *posB* are connected. It can be an
            instance of the :class:`ConnectionStyle` class or a string of the
            connectionstyle name, with optional comma-separated attributes. The
            following connection styles are available:

            %(AvailableConnectorstyles)s

        connector
            Ignored.

        patchA, patchB : `.Patch`, optional (default: None)
            Head and tail patch respectively. :class:`matplotlib.patch.Patch`
            instance.

        shrinkA, shrinkB : float, optional (default: 2)
            Shrinking factor of the tail and head of the arrow respectively.

        mutation_scale : float, optional (default: 1)
            Value with which attributes of *arrowstyle* (e.g., *head_length*)
            will be scaled.

        mutation_aspect : None or float, optional (default: None)
            The height of the rectangle will be squeezed by this value before
            the mutation and the mutated box will be stretched by the inverse
            of it.

        dpi_cor : float, optional (default: 1)
            dpi_cor is currently used for linewidth-related things and shrink
            factor. Mutation scale is affected by this.

        Other Parameters
        ----------------
        **kwargs : `.Patch` properties, optional
            Here is a list of available `.Patch` properties:

        %(Patch)s

            In contrast to other patches, the default ``capstyle`` and
            ``joinstyle`` for `FancyArrowPatch` are set to ``"round"``.
        """
        if arrow_transmuter is not None:
            cbook.warn_deprecated(
                3.0,
                message=('The "arrow_transmuter" keyword argument is not used,'
                         ' and will be removed in Matplotlib 3.1'),
                name='arrow_transmuter',
                obj_type='keyword argument')
        if connector is not None:
            cbook.warn_deprecated(
                3.0,
                message=('The "connector" keyword argument is not used,'
                         ' and will be removed in Matplotlib 3.1'),
                name='connector',
                obj_type='keyword argument')
        # Traditionally, the cap- and joinstyle for FancyArrowPatch are round
        kwargs.setdefault("joinstyle", "round")
        kwargs.setdefault("capstyle", "round")

        Patch.__init__(self, **kwargs)

        if posA is not None and posB is not None and path is None:
            self._posA_posB = [posA, posB]

            if connectionstyle is None:
                connectionstyle = "arc3"
            self.set_connectionstyle(connectionstyle)

        elif posA is None and posB is None and path is not None:
            self._posA_posB = None
        else:
            raise ValueError("either posA and posB, or path need to provided")

        self.patchA = patchA
        self.patchB = patchB
        self.shrinkA = shrinkA
        self.shrinkB = shrinkB

        self._path_original = path

        self.set_arrowstyle(arrowstyle)

        self._mutation_scale = mutation_scale
        self._mutation_aspect = mutation_aspect

        self.set_dpi_cor(dpi_cor)

    def set_dpi_cor(self, dpi_cor):
        """
        dpi_cor is currently used for linewidth-related things and
        shrink factor. Mutation scale is affected by this.

        Parameters
        ----------
        dpi_cor : scalar
        """
        self._dpi_cor = dpi_cor
        self.stale = True

    def get_dpi_cor(self):
        """
        dpi_cor is currently used for linewidth-related things and
        shrink factor. Mutation scale is affected by this.

        Returns
        -------
        dpi_cor : scalar
        """
        return self._dpi_cor

    def set_positions(self, posA, posB):
        """
        Set the begin and end positions of the connecting path.

        Parameters
        ----------
        posA, posB : None, tuple
            (x, y) coordinates of arrow tail and arrow head respectively. If
            `None` use current value.
        """
        if posA is not None:
            self._posA_posB[0] = posA
        if posB is not None:
            self._posA_posB[1] = posB
        self.stale = True

    def set_patchA(self, patchA):
        """
        Set the tail patch.

        Parameters
        ----------
        patchA : Patch
            :class:`matplotlib.patch.Patch` instance.
        """
        self.patchA = patchA
        self.stale = True

    def set_patchB(self, patchB):
        """
        Set the head patch.

        Parameters
        ----------
        patchB : Patch
            :class:`matplotlib.patch.Patch` instance.
        """
        self.patchB = patchB
        self.stale = True

    def set_connectionstyle(self, connectionstyle, **kw):
        """
        Set the connection style. Old attributes are forgotten.

        Parameters
        ----------
        connectionstyle : str or `.ConnectionStyle` or None, optional
            Can be a string with connectionstyle name with
            optional comma-separated attributes, e.g.::

                set_connectionstyle("arc,angleA=0,armA=30,rad=10")

            Alternatively, the attributes can be provided as keywords, e.g.::

                set_connectionstyle("arc", angleA=0,armA=30,rad=10)

            Without any arguments (or with ``connectionstyle=None``), return
            available styles as a list of strings.
        """

        if connectionstyle is None:
            return ConnectionStyle.pprint_styles()

        if (isinstance(connectionstyle, ConnectionStyle._Base) or
                callable(connectionstyle)):
            self._connector = connectionstyle
        else:
            self._connector = ConnectionStyle(connectionstyle, **kw)
        self.stale = True

    def get_connectionstyle(self):
        """
        Return the :class:`ConnectionStyle` instance.
        """
        return self._connector

    def set_arrowstyle(self, arrowstyle=None, **kw):
        """
        Set the arrow style. Old attributes are forgotten. Without arguments
        (or with ``arrowstyle=None``) returns available box styles as a list of
        strings.

        Parameters
        ----------
        arrowstyle : None, ArrowStyle, str, optional (default: None)
            Can be a string with arrowstyle name with optional comma-separated
            attributes, e.g.::

                set_arrowstyle("Fancy,head_length=0.2")

            Alternatively attributes can be provided as keywords, e.g.::

                set_arrowstyle("fancy", head_length=0.2)

        """

        if arrowstyle is None:
            return ArrowStyle.pprint_styles()

        if isinstance(arrowstyle, ArrowStyle._Base):
            self._arrow_transmuter = arrowstyle
        else:
            self._arrow_transmuter = ArrowStyle(arrowstyle, **kw)
        self.stale = True

    def get_arrowstyle(self):
        """
        Return the arrowstyle object.
        """
        return self._arrow_transmuter

    def set_mutation_scale(self, scale):
        """
        Set the mutation scale.

        Parameters
        ----------
        scale : scalar
        """
        self._mutation_scale = scale
        self.stale = True

    def get_mutation_scale(self):
        """
        Return the mutation scale.

        Returns
        -------
        scale : scalar
        """
        return self._mutation_scale

    def set_mutation_aspect(self, aspect):
        """
        Set the aspect ratio of the bbox mutation.

        Parameters
        ----------
        aspect : scalar
        """
        self._mutation_aspect = aspect
        self.stale = True

    def get_mutation_aspect(self):
        """
        Return the aspect ratio of the bbox mutation.
        """
        return self._mutation_aspect

    def get_path(self):
        """
        Return the path of the arrow in the data coordinates. Use
        get_path_in_displaycoord() method to retrieve the arrow path
        in display coordinates.
        """
        _path, fillable = self.get_path_in_displaycoord()
        if np.iterable(fillable):
            _path = concatenate_paths(_path)
        return self.get_transform().inverted().transform_path(_path)

    def get_path_in_displaycoord(self):
        """
        Return the mutated path of the arrow in display coordinates.
        """

        dpi_cor = self.get_dpi_cor()

        if self._posA_posB is not None:
            posA = self._convert_xy_units(self._posA_posB[0])
            posB = self._convert_xy_units(self._posA_posB[1])
            (posA, posB) = self.get_transform().transform((posA, posB))
            _path = self.get_connectionstyle()(posA, posB,
                                               patchA=self.patchA,
                                               patchB=self.patchB,
                                               shrinkA=self.shrinkA * dpi_cor,
                                               shrinkB=self.shrinkB * dpi_cor
                                               )
        else:
            _path = self.get_transform().transform_path(self._path_original)

        _path, fillable = self.get_arrowstyle()(
            _path,
            self.get_mutation_scale() * dpi_cor,
            self.get_linewidth() * dpi_cor,
            self.get_mutation_aspect())

        # if not fillable:
        #    self._fill = False

        return _path, fillable

    def draw(self, renderer):
        if not self.get_visible():
            return

        with self._bind_draw_path_function(renderer) as draw_path:

            # FIXME : dpi_cor is for the dpi-dependency of the linewidth. There
            # could be room for improvement.
            self.set_dpi_cor(renderer.points_to_pixels(1.))
            path, fillable = self.get_path_in_displaycoord()

            if not np.iterable(fillable):
                path = [path]
                fillable = [fillable]

            affine = transforms.IdentityTransform()

            for p, f in zip(path, fillable):
                draw_path(
                    p, affine,
                    self._facecolor if f and self._facecolor[3] else None)


class ConnectionPatch(FancyArrowPatch):
    """
    A :class:`~matplotlib.patches.ConnectionPatch` class is to make
    connecting lines between two points (possibly in different axes).
    """
    def __str__(self):
        return "ConnectionPatch((%g, %g), (%g, %g))" % \
               (self.xy1[0], self.xy1[1], self.xy2[0], self.xy2[1])

    @docstring.dedent_interpd
    def __init__(self, xyA, xyB, coordsA, coordsB=None,
                 axesA=None, axesB=None,
                 arrowstyle="-",
                 arrow_transmuter=None,
                 connectionstyle="arc3",
                 connector=None,
                 patchA=None,
                 patchB=None,
                 shrinkA=0.,
                 shrinkB=0.,
                 mutation_scale=10.,
                 mutation_aspect=None,
                 clip_on=False,
                 dpi_cor=1.,
                 **kwargs):
        """Connect point *xyA* in *coordsA* with point *xyB* in *coordsB*

        Valid keys are

        ===============  ======================================================
        Key              Description
        ===============  ======================================================
        arrowstyle       the arrow style
        connectionstyle  the connection style
        relpos           default is (0.5, 0.5)
        patchA           default is bounding box of the text
        patchB           default is None
        shrinkA          default is 2 points
        shrinkB          default is 2 points
        mutation_scale   default is text size (in points)
        mutation_aspect  default is 1.
        ?                any key for :class:`matplotlib.patches.PathPatch`
        ===============  ======================================================

        *coordsA* and *coordsB* are strings that indicate the
        coordinates of *xyA* and *xyB*.

        =================  ===================================================
        Property           Description
        =================  ===================================================
        'figure points'    points from the lower left corner of the figure
        'figure pixels'    pixels from the lower left corner of the figure
        'figure fraction'  0, 0 is lower left of figure and 1, 1 is upper right
        'axes points'      points from lower left corner of axes
        'axes pixels'      pixels from lower left corner of axes
        'axes fraction'    0, 0 is lower left of axes and 1, 1 is upper right
        'data'             use the coordinate system of the object being
                           annotated (default)
        'offset points'    offset (in points) from the *xy* value
        'polar'            you can specify *theta*, *r* for the annotation,
                           even in cartesian plots.  Note that if you are using
                           a polar axes, you do not need to specify polar for
                           the coordinate system since that is the native
                           "data" coordinate system.
        =================  ===================================================

        Alternatively they can be set to any valid
        `~matplotlib.transforms.Transform`.

        .. note::

           Using :class:`~matplotlib.patches.ConnectionPatch` across
           two :class:`~matplotlib.axes.Axes` instances is not
           directly compatible with :doc:`constrained layout
           </tutorials/intermediate/constrainedlayout_guide>`. Add the
           artist directly to the :class:`~matplotlib.figure.Figure`
           instead of adding it to a specific Axes.

           .. code-block:: default

              fig, ax = plt.subplots(1, 2, constrained_layout=True)
              con = ConnectionPatch(..., axesA=ax[0], axesB=ax[1])
              fig.add_artist(con)

        """
        if coordsB is None:
            coordsB = coordsA
        # we'll draw ourself after the artist we annotate by default
        self.xy1 = xyA
        self.xy2 = xyB
        self.coords1 = coordsA
        self.coords2 = coordsB

        self.axesA = axesA
        self.axesB = axesB

        FancyArrowPatch.__init__(self,
                                 posA=(0, 0), posB=(1, 1),
                                 arrowstyle=arrowstyle,
                                 arrow_transmuter=arrow_transmuter,
                                 connectionstyle=connectionstyle,
                                 connector=connector,
                                 patchA=patchA,
                                 patchB=patchB,
                                 shrinkA=shrinkA,
                                 shrinkB=shrinkB,
                                 mutation_scale=mutation_scale,
                                 mutation_aspect=mutation_aspect,
                                 clip_on=clip_on,
                                 dpi_cor=dpi_cor,
                                 **kwargs)

        # if True, draw annotation only if self.xy is inside the axes
        self._annotation_clip = None

    def _get_xy(self, x, y, s, axes=None):
        """Calculate the pixel position of given point."""
        if axes is None:
            axes = self.axes

        if s == 'data':
            trans = axes.transData
            x = float(self.convert_xunits(x))
            y = float(self.convert_yunits(y))
            return trans.transform((x, y))
        elif s == 'offset points':
            # convert the data point
            dx, dy = self.xy

            # prevent recursion
            if self.xycoords == 'offset points':
                return self._get_xy(dx, dy, 'data')

            dx, dy = self._get_xy(dx, dy, self.xycoords)

            # convert the offset
            dpi = self.figure.get_dpi()
            x *= dpi / 72.
            y *= dpi / 72.

            # add the offset to the data point
            x += dx
            y += dy

            return x, y
        elif s == 'polar':
            theta, r = x, y
            x = r * np.cos(theta)
            y = r * np.sin(theta)
            trans = axes.transData
            return trans.transform((x, y))
        elif s == 'figure points':
            # points from the lower left corner of the figure
            dpi = self.figure.dpi
            l, b, w, h = self.figure.bbox.bounds
            r = l + w
            t = b + h

            x *= dpi / 72.
            y *= dpi / 72.
            if x < 0:
                x = r + x
            if y < 0:
                y = t + y
            return x, y
        elif s == 'figure pixels':
            # pixels from the lower left corner of the figure
            l, b, w, h = self.figure.bbox.bounds
            r = l + w
            t = b + h
            if x < 0:
                x = r + x
            if y < 0:
                y = t + y
            return x, y
        elif s == 'figure fraction':
            # (0, 0) is lower left, (1, 1) is upper right of figure
            trans = self.figure.transFigure
            return trans.transform((x, y))
        elif s == 'axes points':
            # points from the lower left corner of the axes
            dpi = self.figure.dpi
            l, b, w, h = axes.bbox.bounds
            r = l + w
            t = b + h
            if x < 0:
                x = r + x * dpi / 72.
            else:
                x = l + x * dpi / 72.
            if y < 0:
                y = t + y * dpi / 72.
            else:
                y = b + y * dpi / 72.
            return x, y
        elif s == 'axes pixels':
            # pixels from the lower left corner of the axes
            l, b, w, h = axes.bbox.bounds
            r = l + w
            t = b + h
            if x < 0:
                x = r + x
            else:
                x = l + x
            if y < 0:
                y = t + y
            else:
                y = b + y
            return x, y
        elif s == 'axes fraction':
            # (0, 0) is lower left, (1, 1) is upper right of axes
            trans = axes.transAxes
            return trans.transform((x, y))
        elif isinstance(s, transforms.Transform):
            return s.transform((x, y))
        else:
            raise ValueError("{} is not a valid coordinate "
                             "transformation.".format(s))

    def set_annotation_clip(self, b):
        """
        Set the clipping behavior.

        Parameters
        ----------
        b : bool or None

            - *False*: The annotation will always be drawn regardless of its
              position.
            - *True*: The annotation will only be drawn if ``self.xy`` is
              inside the axes.
            - *None*: The annotation will only be drawn if ``self.xy`` is
              inside the axes and  ``self.xycoords == "data"``.
        """
        self._annotation_clip = b
        self.stale = True

    def get_annotation_clip(self):
        """
        Return the clipping behavior.

        See `.set_annotation_clip` for the meaning of the return value.
        """
        return self._annotation_clip

    def get_path_in_displaycoord(self):
        """Return the mutated path of the arrow in display coordinates."""

        dpi_cor = self.get_dpi_cor()

        x, y = self.xy1
        posA = self._get_xy(x, y, self.coords1, self.axesA)

        x, y = self.xy2
        posB = self._get_xy(x, y, self.coords2, self.axesB)

        _path = self.get_connectionstyle()(posA, posB,
                                           patchA=self.patchA,
                                           patchB=self.patchB,
                                           shrinkA=self.shrinkA * dpi_cor,
                                           shrinkB=self.shrinkB * dpi_cor
                                           )

        _path, fillable = self.get_arrowstyle()(
                                        _path,
                                        self.get_mutation_scale() * dpi_cor,
                                        self.get_linewidth() * dpi_cor,
                                        self.get_mutation_aspect()
                                        )

        return _path, fillable

    def _check_xy(self, renderer):
        """Check whether the annotation needs to be drawn."""

        b = self.get_annotation_clip()

        if b or (b is None and self.coords1 == "data"):
            x, y = self.xy1
            xy_pixel = self._get_xy(x, y, self.coords1, self.axesA)
            if self.axesA is None:
                axes = self.axes
            else:
                axes = self.axesA
            if not axes.contains_point(xy_pixel):
                return False

        if b or (b is None and self.coords2 == "data"):
            x, y = self.xy2
            xy_pixel = self._get_xy(x, y, self.coords2, self.axesB)
            if self.axesB is None:
                axes = self.axes
            else:
                axes = self.axesB
            if not axes.contains_point(xy_pixel):
                return False

        return True

    def draw(self, renderer):
        if renderer is not None:
            self._renderer = renderer
        if not self.get_visible() or not self._check_xy(renderer):
            return
        FancyArrowPatch.draw(self, renderer)