spines.py 20.7 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
import numpy as np

import matplotlib
from matplotlib import cbook, docstring, rcParams
from matplotlib.artist import allow_rasterization
import matplotlib.cbook as cbook
import matplotlib.transforms as mtransforms
import matplotlib.patches as mpatches
import matplotlib.path as mpath


class Spine(mpatches.Patch):
    """
    An axis spine -- the line noting the data area boundaries

    Spines are the lines connecting the axis tick marks and noting the
    boundaries of the data area. They can be placed at arbitrary
    positions. See function:`~matplotlib.spines.Spine.set_position`
    for more information.

    The default position is ``('outward',0)``.

    Spines are subclasses of class:`~matplotlib.patches.Patch`, and
    inherit much of their behavior.

    Spines draw a line, a circle, or an arc depending if
    function:`~matplotlib.spines.Spine.set_patch_line`,
    function:`~matplotlib.spines.Spine.set_patch_circle`, or
    function:`~matplotlib.spines.Spine.set_patch_arc` has been called.
    Line-like is the default.

    """
    def __str__(self):
        return "Spine"

    @docstring.dedent_interpd
    def __init__(self, axes, spine_type, path, **kwargs):
        """
        Parameters
        ----------
        axes : `~matplotlib.axes.Axes`
            The `~.axes.Axes` instance containing the spine.
        spine_type : str
            The spine type.
        path : `~matplotlib.path.Path`
            The `.Path` instance used to draw the spine.

        Other Parameters
        ----------------
        **kwargs
            Valid keyword arguments are:

            %(Patch)s
        """
        super().__init__(**kwargs)
        self.axes = axes
        self.set_figure(self.axes.figure)
        self.spine_type = spine_type
        self.set_facecolor('none')
        self.set_edgecolor(rcParams['axes.edgecolor'])
        self.set_linewidth(rcParams['axes.linewidth'])
        self.set_capstyle('projecting')
        self.axis = None

        self.set_zorder(2.5)
        self.set_transform(self.axes.transData)  # default transform

        self._bounds = None  # default bounds
        self._smart_bounds = False  # deprecated in 3.2

        # Defer initial position determination. (Not much support for
        # non-rectangular axes is currently implemented, and this lets
        # them pass through the spines machinery without errors.)
        self._position = None
        cbook._check_isinstance(matplotlib.path.Path, path=path)
        self._path = path

        # To support drawing both linear and circular spines, this
        # class implements Patch behavior three ways. If
        # self._patch_type == 'line', behave like a mpatches.PathPatch
        # instance. If self._patch_type == 'circle', behave like a
        # mpatches.Ellipse instance. If self._patch_type == 'arc', behave like
        # a mpatches.Arc instance.
        self._patch_type = 'line'

        # Behavior copied from mpatches.Ellipse:
        # Note: This cannot be calculated until this is added to an Axes
        self._patch_transform = mtransforms.IdentityTransform()

    @cbook.deprecated("3.2")
    def set_smart_bounds(self, value):
        """Set the spine and associated axis to have smart bounds."""
        self._smart_bounds = value

        # also set the axis if possible
        if self.spine_type in ('left', 'right'):
            self.axes.yaxis.set_smart_bounds(value)
        elif self.spine_type in ('top', 'bottom'):
            self.axes.xaxis.set_smart_bounds(value)
        self.stale = True

    @cbook.deprecated("3.2")
    def get_smart_bounds(self):
        """Return whether the spine has smart bounds."""
        return self._smart_bounds

    def set_patch_arc(self, center, radius, theta1, theta2):
        """Set the spine to be arc-like."""
        self._patch_type = 'arc'
        self._center = center
        self._width = radius * 2
        self._height = radius * 2
        self._theta1 = theta1
        self._theta2 = theta2
        self._path = mpath.Path.arc(theta1, theta2)
        # arc drawn on axes transform
        self.set_transform(self.axes.transAxes)
        self.stale = True

    def set_patch_circle(self, center, radius):
        """Set the spine to be circular."""
        self._patch_type = 'circle'
        self._center = center
        self._width = radius * 2
        self._height = radius * 2
        # circle drawn on axes transform
        self.set_transform(self.axes.transAxes)
        self.stale = True

    def set_patch_line(self):
        """Set the spine to be linear."""
        self._patch_type = 'line'
        self.stale = True

    # Behavior copied from mpatches.Ellipse:
    def _recompute_transform(self):
        """
        Notes
        -----
        This cannot be called until after this has been added to an Axes,
        otherwise unit conversion will fail. This makes it very important to
        call the accessor method and not directly access the transformation
        member variable.
        """
        assert self._patch_type in ('arc', 'circle')
        center = (self.convert_xunits(self._center[0]),
                  self.convert_yunits(self._center[1]))
        width = self.convert_xunits(self._width)
        height = self.convert_yunits(self._height)
        self._patch_transform = mtransforms.Affine2D() \
            .scale(width * 0.5, height * 0.5) \
            .translate(*center)

    def get_patch_transform(self):
        if self._patch_type in ('arc', 'circle'):
            self._recompute_transform()
            return self._patch_transform
        else:
            return super().get_patch_transform()

    def get_window_extent(self, renderer=None):
        """
        Return the window extent of the spines in display space, including
        padding for ticks (but not their labels)

        See Also
        --------
        matplotlib.axes.Axes.get_tightbbox
        matplotlib.axes.Axes.get_window_extent
        """
        # make sure the location is updated so that transforms etc are correct:
        self._adjust_location()
        bb = super().get_window_extent(renderer=renderer)
        if self.axis is None:
            return bb
        bboxes = [bb]
        tickstocheck = [self.axis.majorTicks[0]]
        if len(self.axis.minorTicks) > 1:
            # only pad for minor ticks if there are more than one
            # of them.  There is always one...
            tickstocheck.append(self.axis.minorTicks[1])
        for tick in tickstocheck:
            bb0 = bb.frozen()
            tickl = tick._size
            tickdir = tick._tickdir
            if tickdir == 'out':
                padout = 1
                padin = 0
            elif tickdir == 'in':
                padout = 0
                padin = 1
            else:
                padout = 0.5
                padin = 0.5
            padout = padout * tickl / 72 * self.figure.dpi
            padin = padin * tickl / 72 * self.figure.dpi

            if tick.tick1line.get_visible():
                if self.spine_type == 'left':
                    bb0.x0 = bb0.x0 - padout
                    bb0.x1 = bb0.x1 + padin
                elif self.spine_type == 'bottom':
                    bb0.y0 = bb0.y0 - padout
                    bb0.y1 = bb0.y1 + padin

            if tick.tick2line.get_visible():
                if self.spine_type == 'right':
                    bb0.x1 = bb0.x1 + padout
                    bb0.x0 = bb0.x0 - padin
                elif self.spine_type == 'top':
                    bb0.y1 = bb0.y1 + padout
                    bb0.y0 = bb0.y0 - padout
            bboxes.append(bb0)

        return mtransforms.Bbox.union(bboxes)

    def get_path(self):
        return self._path

    def _ensure_position_is_set(self):
        if self._position is None:
            # default position
            self._position = ('outward', 0.0)  # in points
            self.set_position(self._position)

    def register_axis(self, axis):
        """Register an axis.

        An axis should be registered with its corresponding spine from
        the Axes instance. This allows the spine to clear any axis
        properties when needed.
        """
        self.axis = axis
        if self.axis is not None:
            self.axis.cla()
        self.stale = True

    def cla(self):
        """Clear the current spine."""
        self._position = None  # clear position
        if self.axis is not None:
            self.axis.cla()

    @cbook.deprecated("3.1")
    def is_frame_like(self):
        """Return True if directly on axes frame.

        This is useful for determining if a spine is the edge of an
        old style MPL plot. If so, this function will return True.
        """
        self._ensure_position_is_set()
        position = self._position
        if isinstance(position, str):
            if position == 'center':
                position = ('axes', 0.5)
            elif position == 'zero':
                position = ('data', 0)
        if len(position) != 2:
            raise ValueError("position should be 2-tuple")
        position_type, amount = position
        if position_type == 'outward' and amount == 0:
            return True
        else:
            return False

    def _adjust_location(self):
        """Automatically set spine bounds to the view interval."""

        if self.spine_type == 'circle':
            return

        if self._bounds is None:
            if self.spine_type in ('left', 'right'):
                low, high = self.axes.viewLim.intervaly
            elif self.spine_type in ('top', 'bottom'):
                low, high = self.axes.viewLim.intervalx
            else:
                raise ValueError('unknown spine spine_type: %s' %
                                 self.spine_type)

            if self._smart_bounds:  # deprecated in 3.2
                # attempt to set bounds in sophisticated way

                # handle inverted limits
                viewlim_low, viewlim_high = sorted([low, high])

                if self.spine_type in ('left', 'right'):
                    datalim_low, datalim_high = self.axes.dataLim.intervaly
                    ticks = self.axes.get_yticks()
                elif self.spine_type in ('top', 'bottom'):
                    datalim_low, datalim_high = self.axes.dataLim.intervalx
                    ticks = self.axes.get_xticks()
                # handle inverted limits
                ticks = np.sort(ticks)
                datalim_low, datalim_high = sorted([datalim_low, datalim_high])

                if datalim_low < viewlim_low:
                    # Data extends past view. Clip line to view.
                    low = viewlim_low
                else:
                    # Data ends before view ends.
                    cond = (ticks <= datalim_low) & (ticks >= viewlim_low)
                    tickvals = ticks[cond]
                    if len(tickvals):
                        # A tick is less than or equal to lowest data point.
                        low = tickvals[-1]
                    else:
                        # No tick is available
                        low = datalim_low
                    low = max(low, viewlim_low)

                if datalim_high > viewlim_high:
                    # Data extends past view. Clip line to view.
                    high = viewlim_high
                else:
                    # Data ends before view ends.
                    cond = (ticks >= datalim_high) & (ticks <= viewlim_high)
                    tickvals = ticks[cond]
                    if len(tickvals):
                        # A tick is greater than or equal to highest data
                        # point.
                        high = tickvals[0]
                    else:
                        # No tick is available
                        high = datalim_high
                    high = min(high, viewlim_high)

        else:
            low, high = self._bounds

        if self._patch_type == 'arc':
            if self.spine_type in ('bottom', 'top'):
                try:
                    direction = self.axes.get_theta_direction()
                except AttributeError:
                    direction = 1
                try:
                    offset = self.axes.get_theta_offset()
                except AttributeError:
                    offset = 0
                low = low * direction + offset
                high = high * direction + offset
                if low > high:
                    low, high = high, low

                self._path = mpath.Path.arc(np.rad2deg(low), np.rad2deg(high))

                if self.spine_type == 'bottom':
                    rmin, rmax = self.axes.viewLim.intervaly
                    try:
                        rorigin = self.axes.get_rorigin()
                    except AttributeError:
                        rorigin = rmin
                    scaled_diameter = (rmin - rorigin) / (rmax - rorigin)
                    self._height = scaled_diameter
                    self._width = scaled_diameter

            else:
                raise ValueError('unable to set bounds for spine "%s"' %
                                 self.spine_type)
        else:
            v1 = self._path.vertices
            assert v1.shape == (2, 2), 'unexpected vertices shape'
            if self.spine_type in ['left', 'right']:
                v1[0, 1] = low
                v1[1, 1] = high
            elif self.spine_type in ['bottom', 'top']:
                v1[0, 0] = low
                v1[1, 0] = high
            else:
                raise ValueError('unable to set bounds for spine "%s"' %
                                 self.spine_type)

    @allow_rasterization
    def draw(self, renderer):
        self._adjust_location()
        ret = super().draw(renderer)
        self.stale = False
        return ret

    def set_position(self, position):
        """Set the position of the spine.

        Spine position is specified by a 2 tuple of (position type,
        amount). The position types are:

        * 'outward' : place the spine out from the data area by the
          specified number of points. (Negative values specify placing the
          spine inward.)

        * 'axes' : place the spine at the specified Axes coordinate (from
          0.0-1.0).

        * 'data' : place the spine at the specified data coordinate.

        Additionally, shorthand notations define a special positions:

        * 'center' -> ('axes',0.5)
        * 'zero' -> ('data', 0.0)

        """
        if position in ('center', 'zero'):
            # special positions
            pass
        else:
            if len(position) != 2:
                raise ValueError("position should be 'center' or 2-tuple")
            if position[0] not in ['outward', 'axes', 'data']:
                raise ValueError("position[0] should be one of 'outward', "
                                 "'axes', or 'data' ")
        self._position = position

        self.set_transform(self.get_spine_transform())

        if self.axis is not None:
            self.axis.reset_ticks()
        self.stale = True

    def get_position(self):
        """Return the spine position."""
        self._ensure_position_is_set()
        return self._position

    def get_spine_transform(self):
        """Return the spine transform."""
        self._ensure_position_is_set()

        position = self._position
        if isinstance(position, str):
            if position == 'center':
                position = ('axes', 0.5)
            elif position == 'zero':
                position = ('data', 0)
        assert len(position) == 2, 'position should be 2-tuple'
        position_type, amount = position
        cbook._check_in_list(['axes', 'outward', 'data'],
                             position_type=position_type)
        if self.spine_type in ['left', 'right']:
            base_transform = self.axes.get_yaxis_transform(which='grid')
        elif self.spine_type in ['top', 'bottom']:
            base_transform = self.axes.get_xaxis_transform(which='grid')
        else:
            raise ValueError(f'unknown spine spine_type: {self.spine_type!r}')

        if position_type == 'outward':
            if amount == 0:  # short circuit commonest case
                return base_transform
            else:
                offset_vec = {'left': (-1, 0), 'right': (1, 0),
                              'bottom': (0, -1), 'top': (0, 1),
                              }[self.spine_type]
                # calculate x and y offset in dots
                offset_dots = amount * np.array(offset_vec) / 72
                return (base_transform
                        + mtransforms.ScaledTranslation(
                            *offset_dots, self.figure.dpi_scale_trans))
        elif position_type == 'axes':
            if self.spine_type in ['left', 'right']:
                # keep y unchanged, fix x at amount
                return (mtransforms.Affine2D.from_values(0, 0, 0, 1, amount, 0)
                        + base_transform)
            elif self.spine_type in ['bottom', 'top']:
                # keep x unchanged, fix y at amount
                return (mtransforms.Affine2D.from_values(1, 0, 0, 0, 0, amount)
                        + base_transform)
        elif position_type == 'data':
            if self.spine_type in ('right', 'top'):
                # The right and top spines have a default position of 1 in
                # axes coordinates.  When specifying the position in data
                # coordinates, we need to calculate the position relative to 0.
                amount -= 1
            if self.spine_type in ('left', 'right'):
                return mtransforms.blended_transform_factory(
                    mtransforms.Affine2D().translate(amount, 0)
                    + self.axes.transData,
                    self.axes.transData)
            elif self.spine_type in ('bottom', 'top'):
                return mtransforms.blended_transform_factory(
                    self.axes.transData,
                    mtransforms.Affine2D().translate(0, amount)
                    + self.axes.transData)

    def set_bounds(self, low=None, high=None):
        """
        Set the spine bounds.

        Parameters
        ----------
        low : float or None, optional
            The lower spine bound. Passing *None* leaves the limit unchanged.

            The bounds may also be passed as the tuple (*low*, *high*) as the
            first positional argument.

            .. ACCEPTS: (low: float, high: float)

        high : float or None, optional
            The higher spine bound. Passing *None* leaves the limit unchanged.
        """
        if self.spine_type == 'circle':
            raise ValueError(
                'set_bounds() method incompatible with circular spines')
        if high is None and np.iterable(low):
            low, high = low
        old_low, old_high = self.get_bounds() or (None, None)
        if low is None:
            low = old_low
        if high is None:
            high = old_high
        self._bounds = (low, high)
        self.stale = True

    def get_bounds(self):
        """Get the bounds of the spine."""
        return self._bounds

    @classmethod
    def linear_spine(cls, axes, spine_type, **kwargs):
        """
        Returns a linear `Spine`.
        """
        # all values of 0.999 get replaced upon call to set_bounds()
        if spine_type == 'left':
            path = mpath.Path([(0.0, 0.999), (0.0, 0.999)])
        elif spine_type == 'right':
            path = mpath.Path([(1.0, 0.999), (1.0, 0.999)])
        elif spine_type == 'bottom':
            path = mpath.Path([(0.999, 0.0), (0.999, 0.0)])
        elif spine_type == 'top':
            path = mpath.Path([(0.999, 1.0), (0.999, 1.0)])
        else:
            raise ValueError('unable to make path for spine "%s"' % spine_type)
        result = cls(axes, spine_type, path, **kwargs)
        result.set_visible(rcParams['axes.spines.{0}'.format(spine_type)])

        return result

    @classmethod
    def arc_spine(cls, axes, spine_type, center, radius, theta1, theta2,
                  **kwargs):
        """
        Returns an arc `Spine`.
        """
        path = mpath.Path.arc(theta1, theta2)
        result = cls(axes, spine_type, path, **kwargs)
        result.set_patch_arc(center, radius, theta1, theta2)
        return result

    @classmethod
    def circular_spine(cls, axes, center, radius, **kwargs):
        """
        Returns a circular `Spine`.
        """
        path = mpath.Path.unit_circle()
        spine_type = 'circle'
        result = cls(axes, spine_type, path, **kwargs)
        result.set_patch_circle(center, radius)
        return result

    def set_color(self, c):
        """
        Set the edgecolor.

        Parameters
        ----------
        c : color

        Notes
        -----
        This method does not modify the facecolor (which defaults to "none"),
        unlike the `Patch.set_color` method defined in the parent class.  Use
        `Patch.set_facecolor` to set the facecolor.
        """
        self.set_edgecolor(c)
        self.stale = True