test_agg.py 7.38 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
import io

import numpy as np
from numpy.testing import assert_array_almost_equal
import pytest

from matplotlib import (
    collections, path, pyplot as plt, transforms as mtransforms, rcParams)
from matplotlib.image import imread
from matplotlib.figure import Figure
from matplotlib.testing.decorators import image_comparison


def test_repeated_save_with_alpha():
    # We want an image which has a background color of bluish green, with an
    # alpha of 0.25.

    fig = Figure([1, 0.4])
    fig.set_facecolor((0, 1, 0.4))
    fig.patch.set_alpha(0.25)

    # The target color is fig.patch.get_facecolor()

    buf = io.BytesIO()

    fig.savefig(buf,
                facecolor=fig.get_facecolor(),
                edgecolor='none')

    # Save the figure again to check that the
    # colors don't bleed from the previous renderer.
    buf.seek(0)
    fig.savefig(buf,
                facecolor=fig.get_facecolor(),
                edgecolor='none')

    # Check the first pixel has the desired color & alpha
    # (approx: 0, 1.0, 0.4, 0.25)
    buf.seek(0)
    assert_array_almost_equal(tuple(imread(buf)[0, 0]),
                              (0.0, 1.0, 0.4, 0.250),
                              decimal=3)


def test_large_single_path_collection():
    buff = io.BytesIO()

    # Generates a too-large single path in a path collection that
    # would cause a segfault if the draw_markers optimization is
    # applied.
    f, ax = plt.subplots()
    collection = collections.PathCollection(
        [path.Path([[-10, 5], [10, 5], [10, -5], [-10, -5], [-10, 5]])])
    ax.add_artist(collection)
    ax.set_xlim(10**-3, 1)
    plt.savefig(buff)


def test_marker_with_nan():
    # This creates a marker with nans in it, which was segfaulting the
    # Agg backend (see #3722)
    fig, ax = plt.subplots(1)
    steps = 1000
    data = np.arange(steps)
    ax.semilogx(data)
    ax.fill_between(data, data*0.8, data*1.2)
    buf = io.BytesIO()
    fig.savefig(buf, format='png')


def test_long_path():
    buff = io.BytesIO()

    fig, ax = plt.subplots()
    np.random.seed(0)
    points = np.random.rand(70000)
    ax.plot(points)
    fig.savefig(buff, format='png')


@image_comparison(['agg_filter.png'], remove_text=True)
def test_agg_filter():
    def smooth1d(x, window_len):
        # copied from http://www.scipy.org/Cookbook/SignalSmooth
        s = np.r_[
            2*x[0] - x[window_len:1:-1], x, 2*x[-1] - x[-1:-window_len:-1]]
        w = np.hanning(window_len)
        y = np.convolve(w/w.sum(), s, mode='same')
        return y[window_len-1:-window_len+1]

    def smooth2d(A, sigma=3):
        window_len = max(int(sigma), 3) * 2 + 1
        A = np.apply_along_axis(smooth1d, 0, A, window_len)
        A = np.apply_along_axis(smooth1d, 1, A, window_len)
        return A

    class BaseFilter:

        def get_pad(self, dpi):
            return 0

        def process_image(padded_src, dpi):
            raise NotImplementedError("Should be overridden by subclasses")

        def __call__(self, im, dpi):
            pad = self.get_pad(dpi)
            padded_src = np.pad(im, [(pad, pad), (pad, pad), (0, 0)],
                                "constant")
            tgt_image = self.process_image(padded_src, dpi)
            return tgt_image, -pad, -pad

    class OffsetFilter(BaseFilter):

        def __init__(self, offsets=(0, 0)):
            self.offsets = offsets

        def get_pad(self, dpi):
            return int(max(self.offsets) / 72 * dpi)

        def process_image(self, padded_src, dpi):
            ox, oy = self.offsets
            a1 = np.roll(padded_src, int(ox / 72 * dpi), axis=1)
            a2 = np.roll(a1, -int(oy / 72 * dpi), axis=0)
            return a2

    class GaussianFilter(BaseFilter):
        """Simple Gaussian filter."""

        def __init__(self, sigma, alpha=0.5, color=(0, 0, 0)):
            self.sigma = sigma
            self.alpha = alpha
            self.color = color

        def get_pad(self, dpi):
            return int(self.sigma*3 / 72 * dpi)

        def process_image(self, padded_src, dpi):
            tgt_image = np.empty_like(padded_src)
            tgt_image[:, :, :3] = self.color
            tgt_image[:, :, 3] = smooth2d(padded_src[:, :, 3] * self.alpha,
                                          self.sigma / 72 * dpi)
            return tgt_image

    class DropShadowFilter(BaseFilter):

        def __init__(self, sigma, alpha=0.3, color=(0, 0, 0), offsets=(0, 0)):
            self.gauss_filter = GaussianFilter(sigma, alpha, color)
            self.offset_filter = OffsetFilter(offsets)

        def get_pad(self, dpi):
            return max(self.gauss_filter.get_pad(dpi),
                       self.offset_filter.get_pad(dpi))

        def process_image(self, padded_src, dpi):
            t1 = self.gauss_filter.process_image(padded_src, dpi)
            t2 = self.offset_filter.process_image(t1, dpi)
            return t2

    fig, ax = plt.subplots()

    # draw lines
    l1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-",
                  mec="b", mfc="w", lw=5, mew=3, ms=10, label="Line 1")
    l2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "ro-",
                  mec="r", mfc="w", lw=5, mew=3, ms=10, label="Line 1")

    gauss = DropShadowFilter(4)

    for l in [l1, l2]:

        # draw shadows with same lines with slight offset.
        xx = l.get_xdata()
        yy = l.get_ydata()
        shadow, = ax.plot(xx, yy)
        shadow.update_from(l)

        # offset transform
        ot = mtransforms.offset_copy(l.get_transform(), ax.figure,
                                     x=4.0, y=-6.0, units='points')

        shadow.set_transform(ot)

        # adjust zorder of the shadow lines so that it is drawn below the
        # original lines
        shadow.set_zorder(l.get_zorder() - 0.5)
        shadow.set_agg_filter(gauss)
        shadow.set_rasterized(True)  # to support mixed-mode renderers

    ax.set_xlim(0., 1.)
    ax.set_ylim(0., 1.)

    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)


def test_too_large_image():
    fig = plt.figure(figsize=(300, 1000))
    buff = io.BytesIO()
    with pytest.raises(ValueError):
        fig.savefig(buff)


def test_chunksize():
    x = range(200)

    # Test without chunksize
    fig, ax = plt.subplots()
    ax.plot(x, np.sin(x))
    fig.canvas.draw()

    # Test with chunksize
    fig, ax = plt.subplots()
    rcParams['agg.path.chunksize'] = 105
    ax.plot(x, np.sin(x))
    fig.canvas.draw()


@pytest.mark.backend('Agg')
def test_jpeg_dpi():
    Image = pytest.importorskip("PIL.Image")
    # Check that dpi is set correctly in jpg files.
    plt.plot([0, 1, 2], [0, 1, 0])
    buf = io.BytesIO()
    plt.savefig(buf, format="jpg", dpi=200)
    im = Image.open(buf)
    assert im.info['dpi'] == (200, 200)


def test_pil_kwargs_png():
    Image = pytest.importorskip("PIL.Image")
    from PIL.PngImagePlugin import PngInfo
    buf = io.BytesIO()
    pnginfo = PngInfo()
    pnginfo.add_text("Software", "test")
    plt.figure().savefig(buf, format="png", pil_kwargs={"pnginfo": pnginfo})
    im = Image.open(buf)
    assert im.info["Software"] == "test"


def test_pil_kwargs_tiff():
    Image = pytest.importorskip("PIL.Image")
    from PIL.TiffTags import TAGS_V2 as TAGS
    buf = io.BytesIO()
    pil_kwargs = {"description": "test image"}
    plt.figure().savefig(buf, format="tiff", pil_kwargs=pil_kwargs)
    im = Image.open(buf)
    tags = {TAGS[k].name: v for k, v in im.tag_v2.items()}
    assert tags["ImageDescription"] == "test image"