test_simplification.py 10.8 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
import base64
import io

import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal

import pytest

from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt

from matplotlib import patches, transforms
from matplotlib.path import Path


# NOTE: All of these tests assume that path.simplify is set to True
# (the default)

@image_comparison(['clipping'], remove_text=True)
def test_clipping():
    t = np.arange(0.0, 2.0, 0.01)
    s = np.sin(2*np.pi*t)

    fig, ax = plt.subplots()
    ax.plot(t, s, linewidth=1.0)
    ax.set_ylim((-0.20, -0.28))


@image_comparison(['overflow'], remove_text=True)
def test_overflow():
    x = np.array([1.0, 2.0, 3.0, 2.0e5])
    y = np.arange(len(x))

    fig, ax = plt.subplots()
    ax.plot(x, y)
    ax.set_xlim(2, 6)


@image_comparison(['clipping_diamond'], remove_text=True)
def test_diamond():
    x = np.array([0.0, 1.0, 0.0, -1.0, 0.0])
    y = np.array([1.0, 0.0, -1.0, 0.0, 1.0])

    fig, ax = plt.subplots()
    ax.plot(x, y)
    ax.set_xlim(-0.6, 0.6)
    ax.set_ylim(-0.6, 0.6)


def test_noise():
    np.random.seed(0)
    x = np.random.uniform(size=50000) * 50

    fig, ax = plt.subplots()
    p1 = ax.plot(x, solid_joinstyle='round', linewidth=2.0)

    # Ensure that the path's transform takes the new axes limits into account.
    fig.canvas.draw()
    path = p1[0].get_path()
    transform = p1[0].get_transform()
    path = transform.transform_path(path)
    simplified = path.cleaned(simplify=True)

    assert simplified.vertices.size == 25512


def test_antiparallel_simplification():
    def _get_simplified(x, y):
        fig, ax = plt.subplots()
        p1 = ax.plot(x, y)

        path = p1[0].get_path()
        transform = p1[0].get_transform()
        path = transform.transform_path(path)
        simplified = path.cleaned(simplify=True)
        simplified = transform.inverted().transform_path(simplified)

        return simplified

    # test ending on a maximum
    x = [0, 0, 0, 0, 0, 1]
    y = [.5, 1, -1, 1, 2, .5]

    simplified = _get_simplified(x, y)

    assert_array_almost_equal([[0., 0.5],
                               [0., -1.],
                               [0., 2.],
                               [1., 0.5]],
                              simplified.vertices[:-2, :])

    # test ending on a minimum
    x = [0, 0,  0, 0, 0, 1]
    y = [.5, 1, -1, 1, -2, .5]

    simplified = _get_simplified(x, y)

    assert_array_almost_equal([[0., 0.5],
                               [0., 1.],
                               [0., -2.],
                               [1., 0.5]],
                              simplified.vertices[:-2, :])

    # test ending in between
    x = [0, 0, 0, 0, 0, 1]
    y = [.5, 1, -1, 1, 0, .5]

    simplified = _get_simplified(x, y)

    assert_array_almost_equal([[0., 0.5],
                               [0., 1.],
                               [0., -1.],
                               [0., 0.],
                               [1., 0.5]],
                              simplified.vertices[:-2, :])

    # test no anti-parallel ending at max
    x = [0, 0, 0, 0, 0, 1]
    y = [.5, 1, 2, 1, 3, .5]

    simplified = _get_simplified(x, y)

    assert_array_almost_equal([[0., 0.5],
                               [0., 3.],
                               [1., 0.5]],
                              simplified.vertices[:-2, :])

    # test no anti-parallel ending in middle
    x = [0, 0, 0, 0, 0, 1]
    y = [.5, 1, 2, 1, 1, .5]

    simplified = _get_simplified(x, y)

    assert_array_almost_equal([[0., 0.5],
                               [0., 2.],
                               [0., 1.],
                               [1., 0.5]],
                              simplified.vertices[:-2, :])


# Only consider angles in 0 <= angle <= pi/2, otherwise
# using min/max will get the expected results out of order:
# min/max for simplification code depends on original vector,
# and if angle is outside above range then simplification
# min/max will be opposite from actual min/max.
@pytest.mark.parametrize('angle', [0, np.pi/4, np.pi/3, np.pi/2])
@pytest.mark.parametrize('offset', [0, .5])
def test_angled_antiparallel(angle, offset):
    scale = 5
    np.random.seed(19680801)
    # get 15 random offsets
    # TODO: guarantee offset > 0 results in some offsets < 0
    vert_offsets = (np.random.rand(15) - offset) * scale
    # always start at 0 so rotation makes sense
    vert_offsets[0] = 0
    # always take the first step the same direction
    vert_offsets[1] = 1
    # compute points along a diagonal line
    x = np.sin(angle) * vert_offsets
    y = np.cos(angle) * vert_offsets

    # will check these later
    x_max = x[1:].max()
    x_min = x[1:].min()

    y_max = y[1:].max()
    y_min = y[1:].min()

    if offset > 0:
        p_expected = Path([[0, 0],
                           [x_max, y_max],
                           [x_min, y_min],
                           [x[-1], y[-1]],
                           [0, 0]],
                          codes=[1, 2, 2, 2, 0])

    else:
        p_expected = Path([[0, 0],
                           [x_max, y_max],
                           [x[-1], y[-1]],
                           [0, 0]],
                          codes=[1, 2, 2, 0])

    p = Path(np.vstack([x, y]).T)
    p2 = p.cleaned(simplify=True)

    assert_array_almost_equal(p_expected.vertices,
                              p2.vertices)
    assert_array_equal(p_expected.codes, p2.codes)


def test_sine_plus_noise():
    np.random.seed(0)
    x = (np.sin(np.linspace(0, np.pi * 2.0, 50000)) +
         np.random.uniform(size=50000) * 0.01)

    fig, ax = plt.subplots()
    p1 = ax.plot(x, solid_joinstyle='round', linewidth=2.0)

    # Ensure that the path's transform takes the new axes limits into account.
    fig.canvas.draw()
    path = p1[0].get_path()
    transform = p1[0].get_transform()
    path = transform.transform_path(path)
    simplified = path.cleaned(simplify=True)

    assert simplified.vertices.size == 25240


@image_comparison(['simplify_curve'], remove_text=True)
def test_simplify_curve():
    pp1 = patches.PathPatch(
        Path([(0, 0), (1, 0), (1, 1), (np.nan, 1), (0, 0), (2, 0), (2, 2),
              (0, 0)],
             [Path.MOVETO, Path.CURVE3, Path.CURVE3, Path.CURVE3, Path.CURVE3,
              Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY]),
        fc="none")

    fig, ax = plt.subplots()
    ax.add_patch(pp1)
    ax.set_xlim((0, 2))
    ax.set_ylim((0, 2))


@image_comparison(['hatch_simplify'], remove_text=True)
def test_hatch():
    fig, ax = plt.subplots()
    ax.add_patch(plt.Rectangle((0, 0), 1, 1, fill=False, hatch="/"))
    ax.set_xlim((0.45, 0.55))
    ax.set_ylim((0.45, 0.55))


@image_comparison(['fft_peaks'], remove_text=True)
def test_fft_peaks():
    fig, ax = plt.subplots()
    t = np.arange(65536)
    p1 = ax.plot(abs(np.fft.fft(np.sin(2*np.pi*.01*t)*np.blackman(len(t)))))

    # Ensure that the path's transform takes the new axes limits into account.
    fig.canvas.draw()
    path = p1[0].get_path()
    transform = p1[0].get_transform()
    path = transform.transform_path(path)
    simplified = path.cleaned(simplify=True)

    assert simplified.vertices.size == 36


def test_start_with_moveto():
    # Should be entirely clipped away to a single MOVETO
    data = b"""
ZwAAAAku+v9UAQAA+Tj6/z8CAADpQ/r/KAMAANlO+v8QBAAAyVn6//UEAAC6ZPr/2gUAAKpv+v+8
BgAAm3r6/50HAACLhfr/ewgAAHyQ+v9ZCQAAbZv6/zQKAABepvr/DgsAAE+x+v/lCwAAQLz6/7wM
AAAxx/r/kA0AACPS+v9jDgAAFN36/zQPAAAF6Pr/AxAAAPfy+v/QEAAA6f36/5wRAADbCPv/ZhIA
AMwT+/8uEwAAvh77//UTAACwKfv/uRQAAKM0+/98FQAAlT/7/z0WAACHSvv//RYAAHlV+/+7FwAA
bGD7/3cYAABea/v/MRkAAFF2+//pGQAARIH7/6AaAAA3jPv/VRsAACmX+/8JHAAAHKL7/7ocAAAP
rfv/ah0AAAO4+/8YHgAA9sL7/8QeAADpzfv/bx8AANzY+/8YIAAA0OP7/78gAADD7vv/ZCEAALf5
+/8IIgAAqwT8/6kiAACeD/z/SiMAAJIa/P/oIwAAhiX8/4QkAAB6MPz/HyUAAG47/P+4JQAAYkb8
/1AmAABWUfz/5SYAAEpc/P95JwAAPmf8/wsoAAAzcvz/nCgAACd9/P8qKQAAHIj8/7cpAAAQk/z/
QyoAAAWe/P/MKgAA+aj8/1QrAADus/z/2isAAOO+/P9eLAAA2Mn8/+AsAADM1Pz/YS0AAMHf/P/g
LQAAtur8/10uAACr9fz/2C4AAKEA/f9SLwAAlgv9/8ovAACLFv3/QDAAAIAh/f+1MAAAdSz9/ycx
AABrN/3/mDEAAGBC/f8IMgAAVk39/3UyAABLWP3/4TIAAEFj/f9LMwAANm79/7MzAAAsef3/GjQA
ACKE/f9+NAAAF4/9/+E0AAANmv3/QzUAAAOl/f+iNQAA+a/9/wA2AADvuv3/XDYAAOXF/f+2NgAA
29D9/w83AADR2/3/ZjcAAMfm/f+7NwAAvfH9/w44AACz/P3/XzgAAKkH/v+vOAAAnxL+//04AACW
Hf7/SjkAAIwo/v+UOQAAgjP+/905AAB5Pv7/JDoAAG9J/v9pOgAAZVT+/606AABcX/7/7zoAAFJq
/v8vOwAASXX+/207AAA/gP7/qjsAADaL/v/lOwAALZb+/x48AAAjof7/VTwAABqs/v+LPAAAELf+
/788AAAHwv7/8TwAAP7M/v8hPQAA9df+/1A9AADr4v7/fT0AAOLt/v+oPQAA2fj+/9E9AADQA///
+T0AAMYO//8fPgAAvRn//0M+AAC0JP//ZT4AAKsv//+GPgAAojr//6U+AACZRf//wj4AAJBQ///d
PgAAh1v///c+AAB+Zv//Dz8AAHRx//8lPwAAa3z//zk/AABih///TD8AAFmS//9dPwAAUJ3//2w/
AABHqP//ej8AAD6z//+FPwAANb7//48/AAAsyf//lz8AACPU//+ePwAAGt///6M/AAAR6v//pj8A
AAj1//+nPwAA/////w=="""

    verts = np.frombuffer(base64.decodebytes(data), dtype='<i4')
    verts = verts.reshape((len(verts) // 2, 2))
    path = Path(verts)
    segs = path.iter_segments(transforms.IdentityTransform(),
                              clip=(0.0, 0.0, 100.0, 100.0))
    segs = list(segs)
    assert len(segs) == 1
    assert segs[0][1] == Path.MOVETO


def test_throw_rendering_complexity_exceeded():
    plt.rcParams['path.simplify'] = False
    xx = np.arange(200000)
    yy = np.random.rand(200000)
    yy[1000] = np.nan

    fig, ax = plt.subplots()
    ax.plot(xx, yy)
    with pytest.raises(OverflowError):
        fig.savefig(io.BytesIO())


@image_comparison(['clipper_edge'], remove_text=True)
def test_clipper():
    dat = (0, 1, 0, 2, 0, 3, 0, 4, 0, 5)
    fig = plt.figure(figsize=(2, 1))
    fig.subplots_adjust(left=0, bottom=0, wspace=0, hspace=0)

    ax = fig.add_axes((0, 0, 1.0, 1.0), ylim=(0, 5), autoscale_on=False)
    ax.plot(dat)
    ax.xaxis.set_major_locator(plt.MultipleLocator(1))
    ax.yaxis.set_major_locator(plt.MultipleLocator(1))
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')

    ax.set_xlim(5, 9)


@image_comparison(['para_equal_perp'], remove_text=True)
def test_para_equal_perp():
    x = np.array([0, 1, 2, 1, 0, -1, 0, 1] + [1] * 128)
    y = np.array([1, 1, 2, 1, 0, -1, 0, 0] + [0] * 128)

    fig, ax = plt.subplots()
    ax.plot(x + 1, y + 1)
    ax.plot(x + 1, y + 1, 'ro')


@image_comparison(['clipping_with_nans'])
def test_clipping_with_nans():
    x = np.linspace(0, 3.14 * 2, 3000)
    y = np.sin(x)
    x[::100] = np.nan

    fig, ax = plt.subplots()
    ax.plot(x, y)
    ax.set_ylim(-0.25, 0.25)


def test_clipping_full():
    p = Path([[1e30, 1e30]] * 5)
    simplified = list(p.iter_segments(clip=[0, 0, 100, 100]))
    assert simplified == []

    p = Path([[50, 40], [75, 65]], [1, 2])
    simplified = list(p.iter_segments(clip=[0, 0, 100, 100]))
    assert ([(list(x), y) for x, y in simplified] ==
            [([50, 40], 1), ([75, 65], 2)])

    p = Path([[50, 40]], [1])
    simplified = list(p.iter_segments(clip=[0, 0, 100, 100]))
    assert ([(list(x), y) for x, y in simplified] ==
            [([50, 40], 1)])