tricontour.py 9.56 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
import numpy as np

from matplotlib.contour import ContourSet
from matplotlib.tri.triangulation import Triangulation


class TriContourSet(ContourSet):
    """
    Create and store a set of contour lines or filled regions for
    a triangular grid.

    User-callable method: clabel

    Useful attributes:
      ax:
        the axes object in which the contours are drawn
      collections:
        a silent_list of LineCollections or PolyCollections
      levels:
        contour levels
      layers:
        same as levels for line contours; half-way between
        levels for filled contours.  See _process_colors method.
    """
    def __init__(self, ax, *args, **kwargs):
        """
        Draw triangular grid contour lines or filled regions,
        depending on whether keyword arg 'filled' is False
        (default) or True.

        The first argument of the initializer must be an axes
        object.  The remaining arguments and keyword arguments
        are described in the docstring of `tricontour`.
        """
        ContourSet.__init__(self, ax, *args, **kwargs)

    def _process_args(self, *args, **kwargs):
        """
        Process args and kwargs.
        """
        if isinstance(args[0], TriContourSet):
            C = args[0].cppContourGenerator
            if self.levels is None:
                self.levels = args[0].levels
        else:
            from matplotlib import _tri
            tri, z = self._contour_args(args, kwargs)
            C = _tri.TriContourGenerator(tri.get_cpp_triangulation(), z)
            self._mins = [tri.x.min(), tri.y.min()]
            self._maxs = [tri.x.max(), tri.y.max()]

        self.cppContourGenerator = C
        return kwargs

    def _get_allsegs_and_allkinds(self):
        """
        Create and return allsegs and allkinds by calling underlying C code.
        """
        allsegs = []
        if self.filled:
            lowers, uppers = self._get_lowers_and_uppers()
            allkinds = []
            for lower, upper in zip(lowers, uppers):
                segs, kinds = self.cppContourGenerator.create_filled_contour(
                    lower, upper)
                allsegs.append([segs])
                allkinds.append([kinds])
        else:
            allkinds = None
            for level in self.levels:
                segs = self.cppContourGenerator.create_contour(level)
                allsegs.append(segs)
        return allsegs, allkinds

    def _contour_args(self, args, kwargs):
        if self.filled:
            fn = 'contourf'
        else:
            fn = 'contour'
        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args,
                                                                   **kwargs)
        z = np.ma.asarray(args[0])
        if z.shape != tri.x.shape:
            raise ValueError('z array must have same length as triangulation x'
                             ' and y arrays')

        # z values must be finite, only need to check points that are included
        # in the triangulation.
        z_check = z[np.unique(tri.get_masked_triangles())]
        if np.ma.is_masked(z_check):
            raise ValueError('z must not contain masked points within the '
                             'triangulation')
        if not np.isfinite(z_check).all():
            raise ValueError('z array must not contain non-finite values '
                             'within the triangulation')

        z = np.ma.masked_invalid(z, copy=False)
        self.zmax = float(z_check.max())
        self.zmin = float(z_check.min())
        if self.logscale and self.zmin <= 0:
            raise ValueError('Cannot %s log of negative values.' % fn)
        self._contour_level_args(z, args[1:])
        return (tri, z)


def tricontour(ax, *args, **kwargs):
    """
    Draw contours on an unstructured triangular grid.

    `.tricontour` and `.tricontourf` draw contour lines and filled contours,
    respectively.  Except as noted, function signatures and return values are
    the same for both versions.

    The triangulation can be specified in one of two ways; either ::

        tricontour(triangulation, ...)

    where *triangulation* is a `matplotlib.tri.Triangulation` object, or ::

        tricontour(x, y, ...)
        tricontour(x, y, triangles, ...)
        tricontour(x, y, triangles=triangles, ...)
        tricontour(x, y, mask=mask, ...)
        tricontour(x, y, triangles, mask=mask, ...)

    in which case a `.Triangulation` object will be created.  See that class'
    docstring for an explanation of these cases.

    The remaining arguments may be::

        tricontour(..., Z)

    where *Z* is the array of values to contour, one per point in the
    triangulation.  The level values are chosen automatically.

    ::

        tricontour(..., Z, N)

    contour up to *N+1* automatically chosen contour levels (*N* intervals).

    ::

        tricontour(..., Z, V)

    draw contour lines at the values specified in sequence *V*,
    which must be in increasing order.

    ::

        tricontourf(..., Z, V)

    fill the (len(*V*)-1) regions between the values in *V*,
    which must be in increasing order.

    ::

        tricontour(Z, **kwargs)

    Use keyword args to control colors, linewidth, origin, cmap ... see
    below for more details.

    `.tricontour(...)` returns a `~matplotlib.contour.TriContourSet` object.

    Optional keyword arguments:

        *colors*: [ *None* | string | (mpl_colors) ]
        If *None*, the colormap specified by cmap will be used.

        If a string, like 'r' or 'red', all levels will be plotted in this
        color.

        If a tuple of matplotlib color args (string, float, rgb, etc),
        different levels will be plotted in different colors in the order
        specified.

        *alpha*: float
        The alpha blending value

        *cmap*: [ *None* | Colormap ]
        A cm :class:`~matplotlib.colors.Colormap` instance or
        *None*. If *cmap* is *None* and *colors* is *None*, a
        default Colormap is used.

        *norm*: [ *None* | Normalize ]
        A :class:`matplotlib.colors.Normalize` instance for
        scaling data values to colors. If *norm* is *None* and
        *colors* is *None*, the default linear scaling is used.

        *levels* [level0, level1, ..., leveln]
        A list of floating point numbers indicating the level
        curves to draw, in increasing order; e.g., to draw just
        the zero contour pass ``levels=[0]``

        *origin*: [ *None* | 'upper' | 'lower' | 'image' ]
        If *None*, the first value of *Z* will correspond to the
        lower left corner, location (0, 0). If 'image', the rc
        value for ``image.origin`` will be used.

        This keyword is not active if *X* and *Y* are specified in
        the call to contour.

        *extent*: [ *None* | (x0, x1, y0, y1) ]

        If *origin* is not *None*, then *extent* is interpreted as
        in :func:`matplotlib.pyplot.imshow`: it gives the outer
        pixel boundaries. In this case, the position of Z[0, 0]
        is the center of the pixel, not a corner. If *origin* is
        *None*, then (*x0*, *y0*) is the position of Z[0, 0], and
        (*x1*, *y1*) is the position of Z[-1,-1].

        This keyword is not active if *X* and *Y* are specified in
        the call to contour.

        *locator*: [ *None* | ticker.Locator subclass ]
        If *locator* is None, the default
        :class:`~matplotlib.ticker.MaxNLocator` is used. The
        locator is used to determine the contour levels if they
        are not given explicitly via the *V* argument.

        *extend*: [ 'neither' | 'both' | 'min' | 'max' ]
        Unless this is 'neither', contour levels are automatically
        added to one or both ends of the range so that all data
        are included. These added ranges are then mapped to the
        special colormap values which default to the ends of the
        colormap range, but can be set via
        :meth:`matplotlib.colors.Colormap.set_under` and
        :meth:`matplotlib.colors.Colormap.set_over` methods.

        *xunits*, *yunits*: [ *None* | registered units ]
        Override axis units by specifying an instance of a
        :class:`matplotlib.units.ConversionInterface`.

    tricontour-only keyword arguments:

        *linewidths*: [ *None* | number | tuple of numbers ]
        If *linewidths* is *None*, defaults to rc:`lines.linewidth`.

        If a number, all levels will be plotted with this linewidth.

        If a tuple, different levels will be plotted with different
        linewidths in the order specified

        *linestyles*: [ *None* | 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
        If *linestyles* is *None*, the 'solid' is used.

        *linestyles* can also be an iterable of the above strings
        specifying a set of linestyles to be used. If this
        iterable is shorter than the number of contour levels
        it will be repeated as necessary.

        If contour is using a monochrome colormap and the contour
        level is less than 0, then the linestyle specified
        in :rc:`contour.negative_linestyle` will be used.

    tricontourf-only keyword arguments:

        *antialiased*: bool
        enable antialiasing

    Note: `.tricontourf` fills intervals that are closed at the top; that is,
    for boundaries *z1* and *z2*, the filled region is::

        z1 < Z <= z2

    except for the lowest interval, which is closed on both sides (i.e. it
    includes the lowest value).
    """
    kwargs['filled'] = False
    return TriContourSet(ax, *args, **kwargs)


def tricontourf(ax, *args, **kwargs):
    kwargs['filled'] = True
    return TriContourSet(ax, *args, **kwargs)


tricontourf.__doc__ = tricontour.__doc__