axes3d.py 96.3 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
"""
axes3d.py, original mplot3d version by John Porter
Created: 23 Sep 2005

Parts fixed by Reinier Heeres <reinier@heeres.eu>
Minor additions by Ben Axelrod <baxelrod@coroware.com>
Significant updates and revisions by Ben Root <ben.v.root@gmail.com>

Module containing Axes3D, an object which can plot 3D objects on a
2D matplotlib figure.
"""

from collections import defaultdict
from functools import reduce
import math

import numpy as np

from matplotlib import artist
import matplotlib.axes as maxes
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.docstring as docstring
import matplotlib.scale as mscale
from matplotlib.axes import Axes, rcParams
from matplotlib.colors import Normalize, LightSource
from matplotlib.transforms import Bbox
from matplotlib.tri.triangulation import Triangulation

from . import art3d
from . import proj3d
from . import axis3d


@cbook.deprecated("3.2", alternative="Bbox.unit()")
def unit_bbox():
    box = Bbox(np.array([[0, 0], [1, 1]]))
    return box


class Axes3D(Axes):
    """
    3D axes object.
    """
    name = '3d'
    _shared_z_axes = cbook.Grouper()

    @docstring.dedent_interpd
    def __init__(
            self, fig, rect=None, *args,
            azim=-60, elev=30, zscale=None, sharez=None, proj_type='persp',
            **kwargs):
        """
        Parameters
        ----------
        fig : Figure
            The parent figure.
        rect : (float, float, float, float)
            The ``(left, bottom, width, height)`` axes position.
        azim : float, optional
            Azimuthal viewing angle, defaults to -60.
        elev : float, optional
            Elevation viewing angle, defaults to 30.
        zscale : %(scale_type)s, optional
            The z scale.  Note that currently, only a linear scale is
            supported.
        sharez : Axes3D, optional
            Other axes to share z-limits with.
        proj_type : {'persp', 'ortho'}
            The projection type, default 'persp'.

        Notes
        -----
        .. versionadded:: 1.2.1
            The *sharez* parameter.
        """

        if rect is None:
            rect = [0.0, 0.0, 1.0, 1.0]
        self._cids = []

        self.initial_azim = azim
        self.initial_elev = elev
        self.set_proj_type(proj_type)

        self.xy_viewLim = Bbox.unit()
        self.zz_viewLim = Bbox.unit()
        self.xy_dataLim = Bbox.unit()
        self.zz_dataLim = Bbox.unit()
        # inhibit autoscale_view until the axes are defined
        # they can't be defined until Axes.__init__ has been called
        self.view_init(self.initial_elev, self.initial_azim)
        self._ready = 0

        self._sharez = sharez
        if sharez is not None:
            self._shared_z_axes.join(self, sharez)
            self._adjustable = 'datalim'

        super().__init__(fig, rect, frameon=True, *args, **kwargs)
        # Disable drawing of axes by base class
        super().set_axis_off()
        # Enable drawing of axes by Axes3D class
        self.set_axis_on()
        self.M = None

        # func used to format z -- fall back on major formatters
        self.fmt_zdata = None

        if zscale is not None:
            self.set_zscale(zscale)

        if self.zaxis is not None:
            self._zcid = self.zaxis.callbacks.connect(
                'units finalize', lambda: self._on_units_changed(scalez=True))
        else:
            self._zcid = None

        self._ready = 1
        self.mouse_init()
        self.set_top_view()

        self.patch.set_linewidth(0)
        # Calculate the pseudo-data width and height
        pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)])
        self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0]

        self.figure.add_axes(self)

        # mplot3d currently manages its own spines and needs these turned off
        # for bounding box calculations
        for k in self.spines.keys():
            self.spines[k].set_visible(False)

    def set_axis_off(self):
        self._axis3don = False
        self.stale = True

    def set_axis_on(self):
        self._axis3don = True
        self.stale = True

    def convert_zunits(self, z):
        """
        For artists in an axes, if the zaxis has units support,
        convert *z* using zaxis unit type

        .. versionadded:: 1.2.1

        """
        return self.zaxis.convert_units(z)

    def _process_unit_info(self, xdata=None, ydata=None, zdata=None,
                           kwargs=None):
        """
        Look for unit *kwargs* and update the axis instances as necessary

        """
        super()._process_unit_info(xdata=xdata, ydata=ydata, kwargs=kwargs)

        if self.xaxis is None or self.yaxis is None or self.zaxis is None:
            return

        if zdata is not None:
            # we only need to update if there is nothing set yet.
            if not self.zaxis.have_units():
                self.zaxis.update_units(xdata)

        # process kwargs 2nd since these will override default units
        if kwargs is not None:
            zunits = kwargs.pop('zunits', self.zaxis.units)
            if zunits != self.zaxis.units:
                self.zaxis.set_units(zunits)
                # If the units being set imply a different converter,
                # we need to update.
                if zdata is not None:
                    self.zaxis.update_units(zdata)

    def set_top_view(self):
        # this happens to be the right view for the viewing coordinates
        # moved up and to the left slightly to fit labels and axes
        xdwl = 0.95 / self.dist
        xdw = 0.9 / self.dist
        ydwl = 0.95 / self.dist
        ydw = 0.9 / self.dist
        # This is purposely using the 2D Axes's set_xlim and set_ylim,
        # because we are trying to place our viewing pane.
        super().set_xlim(-xdwl, xdw, auto=None)
        super().set_ylim(-ydwl, ydw, auto=None)

    def _init_axis(self):
        '''Init 3D axes; overrides creation of regular X/Y axes'''
        self.xaxis = axis3d.XAxis('x', self.xy_viewLim.intervalx,
                                  self.xy_dataLim.intervalx, self)
        self.yaxis = axis3d.YAxis('y', self.xy_viewLim.intervaly,
                                  self.xy_dataLim.intervaly, self)
        self.zaxis = axis3d.ZAxis('z', self.zz_viewLim.intervalx,
                                  self.zz_dataLim.intervalx, self)
        for ax in self.xaxis, self.yaxis, self.zaxis:
            ax.init3d()

    def get_zaxis(self):
        '''Return the ``ZAxis`` (`~.axis3d.Axis`) instance.'''
        return self.zaxis

    @cbook.deprecated("3.1", alternative="xaxis", pending=True)
    @property
    def w_xaxis(self):
        return self.xaxis

    @cbook.deprecated("3.1", alternative="yaxis", pending=True)
    @property
    def w_yaxis(self):
        return self.yaxis

    @cbook.deprecated("3.1", alternative="zaxis", pending=True)
    @property
    def w_zaxis(self):
        return self.zaxis

    def _get_axis_list(self):
        return super()._get_axis_list() + (self.zaxis, )

    def unit_cube(self, vals=None):
        minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims()
        return [(minx, miny, minz),
                (maxx, miny, minz),
                (maxx, maxy, minz),
                (minx, maxy, minz),
                (minx, miny, maxz),
                (maxx, miny, maxz),
                (maxx, maxy, maxz),
                (minx, maxy, maxz)]

    def tunit_cube(self, vals=None, M=None):
        if M is None:
            M = self.M
        xyzs = self.unit_cube(vals)
        tcube = proj3d.proj_points(xyzs, M)
        return tcube

    def tunit_edges(self, vals=None, M=None):
        tc = self.tunit_cube(vals, M)
        edges = [(tc[0], tc[1]),
                 (tc[1], tc[2]),
                 (tc[2], tc[3]),
                 (tc[3], tc[0]),

                 (tc[0], tc[4]),
                 (tc[1], tc[5]),
                 (tc[2], tc[6]),
                 (tc[3], tc[7]),

                 (tc[4], tc[5]),
                 (tc[5], tc[6]),
                 (tc[6], tc[7]),
                 (tc[7], tc[4])]
        return edges

    @artist.allow_rasterization
    def draw(self, renderer):
        # draw the background patch
        self.patch.draw(renderer)
        self._frameon = False

        # first, set the aspect
        # this is duplicated from `axes._base._AxesBase.draw`
        # but must be called before any of the artist are drawn as
        # it adjusts the view limits and the size of the bounding box
        # of the axes
        locator = self.get_axes_locator()
        if locator:
            pos = locator(self, renderer)
            self.apply_aspect(pos)
        else:
            self.apply_aspect()

        # add the projection matrix to the renderer
        self.M = self.get_proj()
        renderer.M = self.M
        renderer.vvec = self.vvec
        renderer.eye = self.eye
        renderer.get_axis_position = self.get_axis_position

        # Calculate projection of collections and patches and zorder them.
        # Make sure they are drawn above the grids.
        zorder_offset = max(axis.get_zorder()
                            for axis in self._get_axis_list()) + 1
        for i, col in enumerate(
                sorted(self.collections,
                       key=lambda col: col.do_3d_projection(renderer),
                       reverse=True)):
            col.zorder = zorder_offset + i
        for i, patch in enumerate(
                sorted(self.patches,
                       key=lambda patch: patch.do_3d_projection(renderer),
                       reverse=True)):
            patch.zorder = zorder_offset + i

        if self._axis3don:
            # Draw panes first
            for axis in self._get_axis_list():
                axis.draw_pane(renderer)
            # Then axes
            for axis in self._get_axis_list():
                axis.draw(renderer)

        # Then rest
        super().draw(renderer)

    def get_axis_position(self):
        vals = self.get_w_lims()
        tc = self.tunit_cube(vals, self.M)
        xhigh = tc[1][2] > tc[2][2]
        yhigh = tc[3][2] > tc[2][2]
        zhigh = tc[0][2] > tc[2][2]
        return xhigh, yhigh, zhigh

    def _on_units_changed(self, scalex=False, scaley=False, scalez=False):
        """
        Callback for processing changes to axis units.

        Currently forces updates of data limits and view limits.
        """
        self.relim()
        self.autoscale_view(scalex=scalex, scaley=scaley, scalez=scalez)

    def update_datalim(self, xys, **kwargs):
        pass

    def get_autoscale_on(self):
        """
        Get whether autoscaling is applied for all axes on plot commands

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.
        """
        return super().get_autoscale_on() and self.get_autoscalez_on()

    def get_autoscalez_on(self):
        """
        Get whether autoscaling for the z-axis is applied on plot commands

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.
        """
        return self._autoscaleZon

    def set_autoscale_on(self, b):
        """
        Set whether autoscaling is applied on plot commands

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.

        Parameters
        ----------
        b : bool
        """
        super().set_autoscale_on(b)
        self.set_autoscalez_on(b)

    def set_autoscalez_on(self, b):
        """
        Set whether autoscaling for the z-axis is applied on plot commands

        .. versionadded:: 1.1.0

        Parameters
        ----------
        b : bool
        """
        self._autoscaleZon = b

    def set_zmargin(self, m):
        """
        Set padding of Z data limits prior to autoscaling.

        *m* times the data interval will be added to each
        end of that interval before it is used in autoscaling.

        accepts: float in range 0 to 1

        .. versionadded:: 1.1.0
        """
        if m < 0 or m > 1:
            raise ValueError("margin must be in range 0 to 1")
        self._zmargin = m
        self.stale = True

    def margins(self, *margins, x=None, y=None, z=None, tight=True):
        """
        Convenience method to set or retrieve autoscaling margins.

        Call signatures::

            margins()

        returns xmargin, ymargin, zmargin

        ::

            margins(margin)

            margins(xmargin, ymargin, zmargin)

            margins(x=xmargin, y=ymargin, z=zmargin)

            margins(..., tight=False)

        All forms above set the xmargin, ymargin and zmargin
        parameters. All keyword parameters are optional.  A single
        positional argument specifies xmargin, ymargin and zmargin.
        Passing both positional and keyword arguments for xmargin,
        ymargin, and/or zmargin is invalid.

        The *tight* parameter
        is passed to :meth:`autoscale_view`, which is executed after
        a margin is changed; the default here is *True*, on the
        assumption that when margins are specified, no additional
        padding to match tick marks is usually desired.  Setting
        *tight* to *None* will preserve the previous setting.

        Specifying any margin changes only the autoscaling; for example,
        if *xmargin* is not None, then *xmargin* times the X data
        interval will be added to each end of that interval before
        it is used in autoscaling.

        .. versionadded:: 1.1.0
        """
        if margins and x is not None and y is not None and z is not None:
            raise TypeError('Cannot pass both positional and keyword '
                            'arguments for x, y, and/or z.')
        elif len(margins) == 1:
            x = y = z = margins[0]
        elif len(margins) == 3:
            x, y, z = margins
        elif margins:
            raise TypeError('Must pass a single positional argument for all '
                            'margins, or one for each margin (x, y, z).')

        if x is None and y is None and z is None:
            if tight is not True:
                cbook._warn_external(f'ignoring tight={tight!r} in get mode')
            return self._xmargin, self._ymargin, self._zmargin

        if x is not None:
            self.set_xmargin(x)
        if y is not None:
            self.set_ymargin(y)
        if z is not None:
            self.set_zmargin(z)

        self.autoscale_view(
            tight=tight, scalex=(x is not None), scaley=(y is not None),
            scalez=(z is not None)
        )

    def autoscale(self, enable=True, axis='both', tight=None):
        """
        Convenience method for simple axis view autoscaling.
        See :meth:`matplotlib.axes.Axes.autoscale` for full explanation.
        Note that this function behaves the same, but for all
        three axes.  Therefore, 'z' can be passed for *axis*,
        and 'both' applies to all three axes.

        .. versionadded:: 1.1.0
        """
        if enable is None:
            scalex = True
            scaley = True
            scalez = True
        else:
            if axis in ['x', 'both']:
                self._autoscaleXon = scalex = bool(enable)
            else:
                scalex = False
            if axis in ['y', 'both']:
                self._autoscaleYon = scaley = bool(enable)
            else:
                scaley = False
            if axis in ['z', 'both']:
                self._autoscaleZon = scalez = bool(enable)
            else:
                scalez = False
        self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley,
                            scalez=scalez)

    def auto_scale_xyz(self, X, Y, Z=None, had_data=None):
        # This updates the bounding boxes as to keep a record as to what the
        # minimum sized rectangular volume holds the data.
        X = np.reshape(X, -1)
        Y = np.reshape(Y, -1)
        self.xy_dataLim.update_from_data_xy(
            np.column_stack([X, Y]), not had_data)
        if Z is not None:
            Z = np.reshape(Z, -1)
            self.zz_dataLim.update_from_data_xy(
                np.column_stack([Z, Z]), not had_data)
        # Let autoscale_view figure out how to use this data.
        self.autoscale_view()

    def autoscale_view(self, tight=None, scalex=True, scaley=True,
                       scalez=True):
        """
        Autoscale the view limits using the data limits.
        See :meth:`matplotlib.axes.Axes.autoscale_view` for documentation.
        Note that this function applies to the 3D axes, and as such
        adds the *scalez* to the function arguments.

        .. versionchanged:: 1.1.0
            Function signature was changed to better match the 2D version.
            *tight* is now explicitly a kwarg and placed first.

        .. versionchanged:: 1.2.1
            This is now fully functional.

        """
        if not self._ready:
            return

        # This method looks at the rectangular volume (see above)
        # of data and decides how to scale the view portal to fit it.
        if tight is None:
            # if image data only just use the datalim
            _tight = self._tight or (
                len(self.images) > 0
                and len(self.lines) == len(self.patches) == 0)
        else:
            _tight = self._tight = bool(tight)

        if scalex and self._autoscaleXon:
            self._shared_x_axes.clean()
            x0, x1 = self.xy_dataLim.intervalx
            xlocator = self.xaxis.get_major_locator()
            x0, x1 = xlocator.nonsingular(x0, x1)
            if self._xmargin > 0:
                delta = (x1 - x0) * self._xmargin
                x0 -= delta
                x1 += delta
            if not _tight:
                x0, x1 = xlocator.view_limits(x0, x1)
            self.set_xbound(x0, x1)

        if scaley and self._autoscaleYon:
            self._shared_y_axes.clean()
            y0, y1 = self.xy_dataLim.intervaly
            ylocator = self.yaxis.get_major_locator()
            y0, y1 = ylocator.nonsingular(y0, y1)
            if self._ymargin > 0:
                delta = (y1 - y0) * self._ymargin
                y0 -= delta
                y1 += delta
            if not _tight:
                y0, y1 = ylocator.view_limits(y0, y1)
            self.set_ybound(y0, y1)

        if scalez and self._autoscaleZon:
            self._shared_z_axes.clean()
            z0, z1 = self.zz_dataLim.intervalx
            zlocator = self.zaxis.get_major_locator()
            z0, z1 = zlocator.nonsingular(z0, z1)
            if self._zmargin > 0:
                delta = (z1 - z0) * self._zmargin
                z0 -= delta
                z1 += delta
            if not _tight:
                z0, z1 = zlocator.view_limits(z0, z1)
            self.set_zbound(z0, z1)

    def get_w_lims(self):
        '''Get 3D world limits.'''
        minx, maxx = self.get_xlim3d()
        miny, maxy = self.get_ylim3d()
        minz, maxz = self.get_zlim3d()
        return minx, maxx, miny, maxy, minz, maxz

    def set_xlim3d(self, left=None, right=None, emit=True, auto=False,
                   *, xmin=None, xmax=None):
        """
        Set 3D x limits.

        See :meth:`matplotlib.axes.Axes.set_xlim` for full documentation.

        """
        if right is None and np.iterable(left):
            left, right = left
        if xmin is not None:
            cbook.warn_deprecated('3.0', name='`xmin`',
                                  alternative='`left`', obj_type='argument')
            if left is not None:
                raise TypeError('Cannot pass both `xmin` and `left`')
            left = xmin
        if xmax is not None:
            cbook.warn_deprecated('3.0', name='`xmax`',
                                  alternative='`right`', obj_type='argument')
            if right is not None:
                raise TypeError('Cannot pass both `xmax` and `right`')
            right = xmax

        self._process_unit_info(xdata=(left, right))
        left = self._validate_converted_limits(left, self.convert_xunits)
        right = self._validate_converted_limits(right, self.convert_xunits)

        old_left, old_right = self.get_xlim()
        if left is None:
            left = old_left
        if right is None:
            right = old_right

        if left == right:
            cbook._warn_external(
                f"Attempting to set identical left == right == {left} results "
                f"in singular transformations; automatically expanding.")
        reverse = left > right
        left, right = self.xaxis.get_major_locator().nonsingular(left, right)
        left, right = self.xaxis.limit_range_for_scale(left, right)
        # cast to bool to avoid bad interaction between python 3.8 and np.bool_
        left, right = sorted([left, right], reverse=bool(reverse))
        self.xy_viewLim.intervalx = (left, right)

        if auto is not None:
            self._autoscaleXon = bool(auto)

        if emit:
            self.callbacks.process('xlim_changed', self)
            # Call all of the other x-axes that are shared with this one
            for other in self._shared_x_axes.get_siblings(self):
                if other is not self:
                    other.set_xlim(self.xy_viewLim.intervalx,
                                   emit=False, auto=auto)
                    if other.figure != self.figure:
                        other.figure.canvas.draw_idle()
        self.stale = True
        return left, right
    set_xlim = set_xlim3d

    def set_ylim3d(self, bottom=None, top=None, emit=True, auto=False,
                   *, ymin=None, ymax=None):
        """
        Set 3D y limits.

        See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation.

        """
        if top is None and np.iterable(bottom):
            bottom, top = bottom
        if ymin is not None:
            cbook.warn_deprecated('3.0', name='`ymin`',
                                  alternative='`bottom`', obj_type='argument')
            if bottom is not None:
                raise TypeError('Cannot pass both `ymin` and `bottom`')
            bottom = ymin
        if ymax is not None:
            cbook.warn_deprecated('3.0', name='`ymax`',
                                  alternative='`top`', obj_type='argument')
            if top is not None:
                raise TypeError('Cannot pass both `ymax` and `top`')
            top = ymax

        self._process_unit_info(ydata=(bottom, top))
        bottom = self._validate_converted_limits(bottom, self.convert_yunits)
        top = self._validate_converted_limits(top, self.convert_yunits)

        old_bottom, old_top = self.get_ylim()
        if bottom is None:
            bottom = old_bottom
        if top is None:
            top = old_top

        if bottom == top:
            cbook._warn_external(
                f"Attempting to set identical bottom == top == {bottom} "
                f"results in singular transformations; automatically "
                f"expanding.")
        swapped = bottom > top
        bottom, top = self.yaxis.get_major_locator().nonsingular(bottom, top)
        bottom, top = self.yaxis.limit_range_for_scale(bottom, top)
        if swapped:
            bottom, top = top, bottom
        self.xy_viewLim.intervaly = (bottom, top)

        if auto is not None:
            self._autoscaleYon = bool(auto)

        if emit:
            self.callbacks.process('ylim_changed', self)
            # Call all of the other y-axes that are shared with this one
            for other in self._shared_y_axes.get_siblings(self):
                if other is not self:
                    other.set_ylim(self.xy_viewLim.intervaly,
                                   emit=False, auto=auto)
                    if other.figure != self.figure:
                        other.figure.canvas.draw_idle()
        self.stale = True
        return bottom, top
    set_ylim = set_ylim3d

    def set_zlim3d(self, bottom=None, top=None, emit=True, auto=False,
                   *, zmin=None, zmax=None):
        """
        Set 3D z limits.

        See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation

        """
        if top is None and np.iterable(bottom):
            bottom, top = bottom
        if zmin is not None:
            cbook.warn_deprecated('3.0', name='`zmin`',
                                  alternative='`bottom`', obj_type='argument')
            if bottom is not None:
                raise TypeError('Cannot pass both `zmin` and `bottom`')
            bottom = zmin
        if zmax is not None:
            cbook.warn_deprecated('3.0', name='`zmax`',
                                  alternative='`top`', obj_type='argument')
            if top is not None:
                raise TypeError('Cannot pass both `zmax` and `top`')
            top = zmax

        self._process_unit_info(zdata=(bottom, top))
        bottom = self._validate_converted_limits(bottom, self.convert_zunits)
        top = self._validate_converted_limits(top, self.convert_zunits)

        old_bottom, old_top = self.get_zlim()
        if bottom is None:
            bottom = old_bottom
        if top is None:
            top = old_top

        if bottom == top:
            cbook._warn_external(
                f"Attempting to set identical bottom == top == {bottom} "
                f"results in singular transformations; automatically "
                f"expanding.")
        swapped = bottom > top
        bottom, top = self.zaxis.get_major_locator().nonsingular(bottom, top)
        bottom, top = self.zaxis.limit_range_for_scale(bottom, top)
        if swapped:
            bottom, top = top, bottom
        self.zz_viewLim.intervalx = (bottom, top)

        if auto is not None:
            self._autoscaleZon = bool(auto)

        if emit:
            self.callbacks.process('zlim_changed', self)
            # Call all of the other y-axes that are shared with this one
            for other in self._shared_z_axes.get_siblings(self):
                if other is not self:
                    other.set_zlim(self.zz_viewLim.intervalx,
                                   emit=False, auto=auto)
                    if other.figure != self.figure:
                        other.figure.canvas.draw_idle()
        self.stale = True
        return bottom, top
    set_zlim = set_zlim3d

    def get_xlim3d(self):
        return tuple(self.xy_viewLim.intervalx)
    get_xlim3d.__doc__ = maxes.Axes.get_xlim.__doc__
    get_xlim = get_xlim3d
    if get_xlim.__doc__ is not None:
        get_xlim.__doc__ += """
        .. versionchanged:: 1.1.0
            This function now correctly refers to the 3D x-limits
        """

    def get_ylim3d(self):
        return tuple(self.xy_viewLim.intervaly)
    get_ylim3d.__doc__ = maxes.Axes.get_ylim.__doc__
    get_ylim = get_ylim3d
    if get_ylim.__doc__ is not None:
        get_ylim.__doc__ += """
        .. versionchanged:: 1.1.0
            This function now correctly refers to the 3D y-limits.
        """

    def get_zlim3d(self):
        '''Get 3D z limits.'''
        return tuple(self.zz_viewLim.intervalx)
    get_zlim = get_zlim3d

    def get_zscale(self):
        """
        Return the zaxis scale string %s

        """ % (", ".join(mscale.get_scale_names()))
        return self.zaxis.get_scale()

    # We need to slightly redefine these to pass scalez=False
    # to their calls of autoscale_view.

    def set_xscale(self, value, **kwargs):
        self.xaxis._set_scale(value, **kwargs)
        self.autoscale_view(scaley=False, scalez=False)
        self._update_transScale()
        self.stale = True

    def set_yscale(self, value, **kwargs):
        self.yaxis._set_scale(value, **kwargs)
        self.autoscale_view(scalex=False, scalez=False)
        self._update_transScale()
        self.stale = True

    def set_zscale(self, value, **kwargs):
        self.zaxis._set_scale(value, **kwargs)
        self.autoscale_view(scalex=False, scaley=False)
        self._update_transScale()
        self.stale = True

    set_xscale.__doc__, set_yscale.__doc__, set_zscale.__doc__ = map(
        """
        Set the {}-axis scale.

        Parameters
        ----------
        value : {{"linear"}}
            The axis scale type to apply.  3D axes currently only support
            linear scales; other scales yield nonsensical results.

        **kwargs
            Keyword arguments are nominally forwarded to the scale class, but
            none of them is applicable for linear scales.
        """.format,
        ["x", "y", "z"])

    def set_zticks(self, *args, **kwargs):
        """
        Set z-axis tick locations.
        See :meth:`matplotlib.axes.Axes.set_yticks` for more details.

        .. note::
            Minor ticks are not supported.

        .. versionadded:: 1.1.0
        """
        return self.zaxis.set_ticks(*args, **kwargs)

    @cbook._make_keyword_only("3.2", "minor")
    def get_zticks(self, minor=False):
        """
        Return the z ticks as a list of locations
        See :meth:`matplotlib.axes.Axes.get_yticks` for more details.

        .. note::
            Minor ticks are not supported.

        .. versionadded:: 1.1.0
        """
        return self.zaxis.get_ticklocs(minor=minor)

    def get_zmajorticklabels(self):
        """
        Get the ztick labels as a list of Text instances

        .. versionadded:: 1.1.0
        """
        return self.zaxis.get_majorticklabels()

    def get_zminorticklabels(self):
        """
        Get the ztick labels as a list of Text instances

        .. note::
            Minor ticks are not supported. This function was added
            only for completeness.

        .. versionadded:: 1.1.0
        """
        return self.zaxis.get_minorticklabels()

    def set_zticklabels(self, *args, **kwargs):
        """
        Set z-axis tick labels.
        See :meth:`matplotlib.axes.Axes.set_yticklabels` for more details.

        .. note::
            Minor ticks are not supported by Axes3D objects.

        .. versionadded:: 1.1.0
        """
        return self.zaxis.set_ticklabels(*args, **kwargs)

    def get_zticklabels(self, minor=False):
        """
        Get ztick labels as a list of Text instances.
        See :meth:`matplotlib.axes.Axes.get_yticklabels` for more details.

        .. note::
            Minor ticks are not supported.

        .. versionadded:: 1.1.0
        """
        return self.zaxis.get_ticklabels(minor=minor)

    def zaxis_date(self, tz=None):
        """
        Sets up z-axis ticks and labels that treat the z data as dates.

        *tz* is a timezone string or :class:`tzinfo` instance.
        Defaults to rc value.

        .. note::
            This function is merely provided for completeness.
            Axes3D objects do not officially support dates for ticks,
            and so this may or may not work as expected.

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.
        """
        self.zaxis.axis_date(tz)

    def get_zticklines(self):
        """
        Get ztick lines as a list of Line2D instances.
        Note that this function is provided merely for completeness.
        These lines are re-calculated as the display changes.

        .. versionadded:: 1.1.0
        """
        return self.zaxis.get_ticklines()

    def clabel(self, *args, **kwargs):
        """
        This function is currently not implemented for 3D axes.
        Returns *None*.
        """
        return None

    def view_init(self, elev=None, azim=None):
        """
        Set the elevation and azimuth of the axes in degrees (not radians).

        This can be used to rotate the axes programmatically.

        'elev' stores the elevation angle in the z plane (in degrees).
        'azim' stores the azimuth angle in the (x, y) plane (in degrees).

        if elev or azim are None (default), then the initial value
        is used which was specified in the :class:`Axes3D` constructor.
        """

        self.dist = 10

        if elev is None:
            self.elev = self.initial_elev
        else:
            self.elev = elev

        if azim is None:
            self.azim = self.initial_azim
        else:
            self.azim = azim

    def set_proj_type(self, proj_type):
        """
        Set the projection type.

        Parameters
        ----------
        proj_type : {'persp', 'ortho'}
        """
        self._projection = cbook._check_getitem({
            'persp': proj3d.persp_transformation,
            'ortho': proj3d.ortho_transformation,
        }, proj_type=proj_type)

    def get_proj(self):
        """
        Create the projection matrix from the current viewing position.

        elev stores the elevation angle in the z plane
        azim stores the azimuth angle in the (x, y) plane

        dist is the distance of the eye viewing point from the object point.
        """
        relev, razim = np.pi * self.elev/180, np.pi * self.azim/180

        xmin, xmax = self.get_xlim3d()
        ymin, ymax = self.get_ylim3d()
        zmin, zmax = self.get_zlim3d()

        # transform to uniform world coordinates 0-1, 0-1, 0-1
        worldM = proj3d.world_transformation(xmin, xmax,
                                             ymin, ymax,
                                             zmin, zmax)

        # look into the middle of the new coordinates
        R = np.array([0.5, 0.5, 0.5])

        xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist
        yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist
        zp = R[2] + np.sin(relev) * self.dist
        E = np.array((xp, yp, zp))

        self.eye = E
        self.vvec = R - E
        self.vvec = self.vvec / np.linalg.norm(self.vvec)

        if abs(relev) > np.pi/2:
            # upside down
            V = np.array((0, 0, -1))
        else:
            V = np.array((0, 0, 1))
        zfront, zback = -self.dist, self.dist

        viewM = proj3d.view_transformation(E, R, V)
        projM = self._projection(zfront, zback)
        M0 = np.dot(viewM, worldM)
        M = np.dot(projM, M0)
        return M

    def mouse_init(self, rotate_btn=1, zoom_btn=3):
        """
        Initializes mouse button callbacks to enable 3D rotation of the axes.
        Also optionally sets the mouse buttons for 3D rotation and zooming.

        Parameters
        ----------
        rotate_btn : int or list of int
            The mouse button or buttons to use for 3D rotation of the axes;
            defaults to 1.
        zoom_btn : int or list of int
            The mouse button or buttons to use to zoom the 3D axes; defaults to
            3.
        """
        self.button_pressed = None
        self._cids = [
            self.figure.canvas.mpl_connect(
                'motion_notify_event', self._on_move),
            self.figure.canvas.mpl_connect(
                'button_press_event', self._button_press),
            self.figure.canvas.mpl_connect(
                'button_release_event', self._button_release),
        ]
        # coerce scalars into array-like, then convert into
        # a regular list to avoid comparisons against None
        # which breaks in recent versions of numpy.
        self._rotate_btn = np.atleast_1d(rotate_btn).tolist()
        self._zoom_btn = np.atleast_1d(zoom_btn).tolist()

    def can_zoom(self):
        """
        Return *True* if this axes supports the zoom box button functionality.

        3D axes objects do not use the zoom box button.
        """
        return False

    def can_pan(self):
        """
        Return *True* if this axes supports the pan/zoom button functionality.

        3D axes objects do not use the pan/zoom button.
        """
        return False

    def cla(self):
        # docstring inherited.

        super().cla()
        self.zaxis.cla()

        if self._sharez is not None:
            self.zaxis.major = self._sharez.zaxis.major
            self.zaxis.minor = self._sharez.zaxis.minor
            z0, z1 = self._sharez.get_zlim()
            self.set_zlim(z0, z1, emit=False, auto=None)
            self.zaxis._set_scale(self._sharez.zaxis.get_scale())
        else:
            self.zaxis._set_scale('linear')
            try:
                self.set_zlim(0, 1)
            except TypeError:
                pass

        self._autoscaleZon = True
        self._zmargin = 0

        self.grid(rcParams['axes3d.grid'])

    def disable_mouse_rotation(self):
        """Disable mouse button callbacks."""
        # Disconnect the various events we set.
        for cid in self._cids:
            self.figure.canvas.mpl_disconnect(cid)
        self._cids = []

    def _button_press(self, event):
        if event.inaxes == self:
            self.button_pressed = event.button
            self.sx, self.sy = event.xdata, event.ydata

    def _button_release(self, event):
        self.button_pressed = None

    def format_zdata(self, z):
        """
        Return *z* string formatted.  This function will use the
        :attr:`fmt_zdata` attribute if it is callable, else will fall
        back on the zaxis major formatter
        """
        try:
            return self.fmt_zdata(z)
        except (AttributeError, TypeError):
            func = self.zaxis.get_major_formatter().format_data_short
            val = func(z)
            return val

    def format_coord(self, xd, yd):
        """
        Given the 2D view coordinates attempt to guess a 3D coordinate.
        Looks for the nearest edge to the point and then assumes that
        the point is at the same z location as the nearest point on the edge.
        """

        if self.M is None:
            return ''

        if self.button_pressed in self._rotate_btn:
            return 'azimuth={:.0f} deg, elevation={:.0f} deg '.format(
                self.azim, self.elev)
            # ignore xd and yd and display angles instead

        # nearest edge
        p0, p1 = min(self.tunit_edges(),
                     key=lambda edge: proj3d._line2d_seg_dist(
                         edge[0], edge[1], (xd, yd)))

        # scale the z value to match
        x0, y0, z0 = p0
        x1, y1, z1 = p1
        d0 = np.hypot(x0-xd, y0-yd)
        d1 = np.hypot(x1-xd, y1-yd)
        dt = d0+d1
        z = d1/dt * z0 + d0/dt * z1

        x, y, z = proj3d.inv_transform(xd, yd, z, self.M)

        xs = self.format_xdata(x)
        ys = self.format_ydata(y)
        zs = self.format_zdata(z)
        return 'x=%s, y=%s, z=%s' % (xs, ys, zs)

    def _on_move(self, event):
        """Mouse moving

        button-1 rotates by default.  Can be set explicitly in mouse_init().
        button-3 zooms by default.  Can be set explicitly in mouse_init().
        """

        if not self.button_pressed:
            return

        if self.M is None:
            return

        x, y = event.xdata, event.ydata
        # In case the mouse is out of bounds.
        if x is None:
            return

        dx, dy = x - self.sx, y - self.sy
        w = self._pseudo_w
        h = self._pseudo_h
        self.sx, self.sy = x, y

        # Rotation
        if self.button_pressed in self._rotate_btn:
            # rotate viewing point
            # get the x and y pixel coords
            if dx == 0 and dy == 0:
                return
            self.elev = art3d._norm_angle(self.elev - (dy/h)*180)
            self.azim = art3d._norm_angle(self.azim - (dx/w)*180)
            self.get_proj()
            self.stale = True
            self.figure.canvas.draw_idle()

#        elif self.button_pressed == 2:
            # pan view
            # project xv, yv, zv -> xw, yw, zw
            # pan
#            pass

        # Zoom
        elif self.button_pressed in self._zoom_btn:
            # zoom view
            # hmmm..this needs some help from clipping....
            minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
            df = 1-((h - dy)/h)
            dx = (maxx-minx)*df
            dy = (maxy-miny)*df
            dz = (maxz-minz)*df
            self.set_xlim3d(minx - dx, maxx + dx)
            self.set_ylim3d(miny - dy, maxy + dy)
            self.set_zlim3d(minz - dz, maxz + dz)
            self.get_proj()
            self.figure.canvas.draw_idle()

    def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs):
        '''
        Set zlabel.  See doc for :meth:`set_ylabel` for description.
        '''
        if labelpad is not None:
            self.zaxis.labelpad = labelpad
        return self.zaxis.set_label_text(zlabel, fontdict, **kwargs)

    def get_zlabel(self):
        """
        Get the z-label text string.

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.
        """
        label = self.zaxis.get_label()
        return label.get_text()

    # Axes rectangle characteristics

    def get_frame_on(self):
        """Get whether the 3D axes panels are drawn."""
        return self._frameon

    def set_frame_on(self, b):
        """
        Set whether the 3D axes panels are drawn.

        Parameters
        ----------
        b : bool
        """
        self._frameon = bool(b)
        self.stale = True

    def grid(self, b=True, **kwargs):
        '''
        Set / unset 3D grid.

        .. note::

            Currently, this function does not behave the same as
            :meth:`matplotlib.axes.Axes.grid`, but it is intended to
            eventually support that behavior.

        .. versionadded:: 1.1.0
        '''
        # TODO: Operate on each axes separately
        if len(kwargs):
            b = True
        self._draw_grid = b
        self.stale = True

    def locator_params(self, axis='both', tight=None, **kwargs):
        """
        Convenience method for controlling tick locators.

        See :meth:`matplotlib.axes.Axes.locator_params` for full
        documentation.  Note that this is for Axes3D objects,
        therefore, setting *axis* to 'both' will result in the
        parameters being set for all three axes.  Also, *axis*
        can also take a value of 'z' to apply parameters to the
        z axis.

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.
        """
        _x = axis in ['x', 'both']
        _y = axis in ['y', 'both']
        _z = axis in ['z', 'both']
        if _x:
            self.xaxis.get_major_locator().set_params(**kwargs)
        if _y:
            self.yaxis.get_major_locator().set_params(**kwargs)
        if _z:
            self.zaxis.get_major_locator().set_params(**kwargs)
        self.autoscale_view(tight=tight, scalex=_x, scaley=_y, scalez=_z)

    def tick_params(self, axis='both', **kwargs):
        """
        Convenience method for changing the appearance of ticks and
        tick labels.

        See :meth:`matplotlib.axes.Axes.tick_params` for more complete
        documentation.

        The only difference is that setting *axis* to 'both' will
        mean that the settings are applied to all three axes. Also,
        the *axis* parameter also accepts a value of 'z', which
        would mean to apply to only the z-axis.

        Also, because of how Axes3D objects are drawn very differently
        from regular 2D axes, some of these settings may have
        ambiguous meaning.  For simplicity, the 'z' axis will
        accept settings as if it was like the 'y' axis.

        .. note::
           Axes3D currently ignores some of these settings.

        .. versionadded:: 1.1.0
        """
        cbook._check_in_list(['x', 'y', 'z', 'both'], axis=axis)
        if axis in ['x', 'y', 'both']:
            super().tick_params(axis, **kwargs)
        if axis in ['z', 'both']:
            zkw = dict(kwargs)
            zkw.pop('top', None)
            zkw.pop('bottom', None)
            zkw.pop('labeltop', None)
            zkw.pop('labelbottom', None)
            self.zaxis.set_tick_params(**zkw)

    # data limits, ticks, tick labels, and formatting

    def invert_zaxis(self):
        """
        Invert the z-axis.

        .. versionadded:: 1.1.0
            This function was added, but not tested. Please report any bugs.
        """
        bottom, top = self.get_zlim()
        self.set_zlim(top, bottom, auto=None)

    def zaxis_inverted(self):
        '''
        Returns True if the z-axis is inverted.

        .. versionadded:: 1.1.0
        '''
        bottom, top = self.get_zlim()
        return top < bottom

    def get_zbound(self):
        """
        Return the lower and upper z-axis bounds, in increasing order.

        .. versionadded:: 1.1.0
        """
        bottom, top = self.get_zlim()
        if bottom < top:
            return bottom, top
        else:
            return top, bottom

    def set_zbound(self, lower=None, upper=None):
        """
        Set the lower and upper numerical bounds of the z-axis.
        This method will honor axes inversion regardless of parameter order.
        It will not change the :attr:`_autoscaleZon` attribute.

        .. versionadded:: 1.1.0
        """
        if upper is None and np.iterable(lower):
            lower, upper = lower
        old_lower, old_upper = self.get_zbound()
        if lower is None:
            lower = old_lower
        if upper is None:
            upper = old_upper

        if self.zaxis_inverted():
            if lower < upper:
                self.set_zlim(upper, lower, auto=None)
            else:
                self.set_zlim(lower, upper, auto=None)
        else:
            if lower < upper:
                self.set_zlim(lower, upper, auto=None)
            else:
                self.set_zlim(upper, lower, auto=None)

    def text(self, x, y, z, s, zdir=None, **kwargs):
        '''
        Add text to the plot. kwargs will be passed on to Axes.text,
        except for the `zdir` keyword, which sets the direction to be
        used as the z direction.
        '''
        text = super().text(x, y, s, **kwargs)
        art3d.text_2d_to_3d(text, z, zdir)
        return text

    text3D = text
    text2D = Axes.text

    def plot(self, xs, ys, *args, zdir='z', **kwargs):
        """
        Plot 2D or 3D data.

        Parameters
        ----------
        xs : 1D array-like
            x coordinates of vertices.
        ys : 1D array-like
            y coordinates of vertices.
        zs : scalar or 1D array-like
            z coordinates of vertices; either one for all points or one for
            each point.
        zdir : {'x', 'y', 'z'}
            When plotting 2D data, the direction to use as z ('x', 'y' or 'z');
            defaults to 'z'.
        **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.plot`.
        """
        had_data = self.has_data()

        # `zs` can be passed positionally or as keyword; checking whether
        # args[0] is a string matches the behavior of 2D `plot` (via
        # `_process_plot_var_args`).
        if args and not isinstance(args[0], str):
            zs, *args = args
            if 'zs' in kwargs:
                raise TypeError("plot() for multiple values for argument 'z'")
        else:
            zs = kwargs.pop('zs', 0)

        # Match length
        zs = np.broadcast_to(zs, len(xs))

        lines = super().plot(xs, ys, *args, **kwargs)
        for line in lines:
            art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)

        xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir)
        self.auto_scale_xyz(xs, ys, zs, had_data)
        return lines

    plot3D = plot

    def plot_surface(self, X, Y, Z, *args, norm=None, vmin=None,
                     vmax=None, lightsource=None, **kwargs):
        """
        Create a surface plot.

        By default it will be colored in shades of a solid color, but it also
        supports color mapping by supplying the *cmap* argument.

        .. note::

           The *rcount* and *ccount* kwargs, which both default to 50,
           determine the maximum number of samples used in each direction.  If
           the input data is larger, it will be downsampled (by slicing) to
           these numbers of points.

        Parameters
        ----------
        X, Y, Z : 2d arrays
            Data values.

        rcount, ccount : int
            Maximum number of samples used in each direction.  If the input
            data is larger, it will be downsampled (by slicing) to these
            numbers of points.  Defaults to 50.

            .. versionadded:: 2.0

        rstride, cstride : int
            Downsampling stride in each direction.  These arguments are
            mutually exclusive with *rcount* and *ccount*.  If only one of
            *rstride* or *cstride* is set, the other defaults to 10.

            'classic' mode uses a default of ``rstride = cstride = 10`` instead
            of the new default of ``rcount = ccount = 50``.

        color : color-like
            Color of the surface patches.

        cmap : Colormap
            Colormap of the surface patches.

        facecolors : array-like of colors.
            Colors of each individual patch.

        norm : Normalize
            Normalization for the colormap.

        vmin, vmax : float
            Bounds for the normalization.

        shade : bool
            Whether to shade the facecolors. Defaults to True. Shading is
            always disabled when `cmap` is specified.

        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when `shade` is True.

        **kwargs
            Other arguments are forwarded to `.Poly3DCollection`.
        """

        had_data = self.has_data()

        if Z.ndim != 2:
            raise ValueError("Argument Z must be 2-dimensional.")
        if np.any(np.isnan(Z)):
            cbook._warn_external(
                "Z contains NaN values. This may result in rendering "
                "artifacts.")

        # TODO: Support masked arrays
        X, Y, Z = np.broadcast_arrays(X, Y, Z)
        rows, cols = Z.shape

        has_stride = 'rstride' in kwargs or 'cstride' in kwargs
        has_count = 'rcount' in kwargs or 'ccount' in kwargs

        if has_stride and has_count:
            raise ValueError("Cannot specify both stride and count arguments")

        rstride = kwargs.pop('rstride', 10)
        cstride = kwargs.pop('cstride', 10)
        rcount = kwargs.pop('rcount', 50)
        ccount = kwargs.pop('ccount', 50)

        if rcParams['_internal.classic_mode']:
            # Strides have priority over counts in classic mode.
            # So, only compute strides from counts
            # if counts were explicitly given
            compute_strides = has_count
        else:
            # If the strides are provided then it has priority.
            # Otherwise, compute the strides from the counts.
            compute_strides = not has_stride

        if compute_strides:
            rstride = int(max(np.ceil(rows / rcount), 1))
            cstride = int(max(np.ceil(cols / ccount), 1))

        if 'facecolors' in kwargs:
            fcolors = kwargs.pop('facecolors')
        else:
            color = kwargs.pop('color', None)
            if color is None:
                color = self._get_lines.get_next_color()
            color = np.array(mcolors.to_rgba(color))
            fcolors = None

        cmap = kwargs.get('cmap', None)
        shade = kwargs.pop('shade', cmap is None)
        if shade is None:
            cbook.warn_deprecated(
                "3.1",
                message="Passing shade=None to Axes3D.plot_surface() is "
                        "deprecated since matplotlib 3.1 and will change its "
                        "semantic or raise an error in matplotlib 3.3. "
                        "Please use shade=False instead.")

        # evenly spaced, and including both endpoints
        row_inds = list(range(0, rows-1, rstride)) + [rows-1]
        col_inds = list(range(0, cols-1, cstride)) + [cols-1]

        colset = []  # the sampled facecolor
        polys = []
        for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
            for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
                ps = [
                    # +1 ensures we share edges between polygons
                    cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1])
                    for a in (X, Y, Z)
                ]
                # ps = np.stack(ps, axis=-1)
                ps = np.array(ps).T
                polys.append(ps)

                if fcolors is not None:
                    colset.append(fcolors[rs][cs])

        # note that the striding causes some polygons to have more coordinates
        # than others
        polyc = art3d.Poly3DCollection(polys, *args, **kwargs)

        if fcolors is not None:
            if shade:
                colset = self._shade_colors(
                    colset, self._generate_normals(polys), lightsource)
            polyc.set_facecolors(colset)
            polyc.set_edgecolors(colset)
        elif cmap:
            # doesn't vectorize because polys is jagged
            avg_z = np.array([ps[:, 2].mean() for ps in polys])
            polyc.set_array(avg_z)
            if vmin is not None or vmax is not None:
                polyc.set_clim(vmin, vmax)
            if norm is not None:
                polyc.set_norm(norm)
        else:
            if shade:
                colset = self._shade_colors(
                    color, self._generate_normals(polys), lightsource)
            else:
                colset = color
            polyc.set_facecolors(colset)

        self.add_collection(polyc)
        self.auto_scale_xyz(X, Y, Z, had_data)

        return polyc

    def _generate_normals(self, polygons):
        """
        Takes a list of polygons and return an array of their normals.

        Normals point towards the viewer for a face with its vertices in
        counterclockwise order, following the right hand rule.

        Uses three points equally spaced around the polygon.
        This normal of course might not make sense for polygons with more than
        three points not lying in a plane, but it's a plausible and fast
        approximation.

        Parameters
        ----------
        polygons: list of (M_i, 3) array-like, or (..., M, 3) array-like
            A sequence of polygons to compute normals for, which can have
            varying numbers of vertices. If the polygons all have the same
            number of vertices and array is passed, then the operation will
            be vectorized.

        Returns
        -------
        normals: (..., 3) array-like
            A normal vector estimated for the polygon.

        """
        if isinstance(polygons, np.ndarray):
            # optimization: polygons all have the same number of points, so can
            # vectorize
            n = polygons.shape[-2]
            i1, i2, i3 = 0, n//3, 2*n//3
            v1 = polygons[..., i1, :] - polygons[..., i2, :]
            v2 = polygons[..., i2, :] - polygons[..., i3, :]
        else:
            # The subtraction doesn't vectorize because polygons is jagged.
            v1 = np.empty((len(polygons), 3))
            v2 = np.empty((len(polygons), 3))
            for poly_i, ps in enumerate(polygons):
                n = len(ps)
                i1, i2, i3 = 0, n//3, 2*n//3
                v1[poly_i, :] = ps[i1, :] - ps[i2, :]
                v2[poly_i, :] = ps[i2, :] - ps[i3, :]
        return np.cross(v1, v2)

    def _shade_colors(self, color, normals, lightsource=None):
        """
        Shade *color* using normal vectors given by *normals*.
        *color* can also be an array of the same length as *normals*.
        """
        if lightsource is None:
            # chosen for backwards-compatibility
            lightsource = LightSource(azdeg=225, altdeg=19.4712)

        with np.errstate(invalid="ignore"):
            shade = ((normals / np.linalg.norm(normals, axis=1, keepdims=True))
                     @ lightsource.direction)
        mask = ~np.isnan(shade)

        if mask.any():
            # convert dot product to allowed shading fractions
            in_norm = Normalize(-1, 1)
            out_norm = Normalize(0.3, 1).inverse

            def norm(x):
                return out_norm(in_norm(x))

            shade[~mask] = 0

            color = mcolors.to_rgba_array(color)
            # shape of color should be (M, 4) (where M is number of faces)
            # shape of shade should be (M,)
            # colors should have final shape of (M, 4)
            alpha = color[:, 3]
            colors = norm(shade)[:, np.newaxis] * color
            colors[:, 3] = alpha
        else:
            colors = np.asanyarray(color).copy()

        return colors

    def plot_wireframe(self, X, Y, Z, *args, **kwargs):
        """
        Plot a 3D wireframe.

        .. note::

           The *rcount* and *ccount* kwargs, which both default to 50,
           determine the maximum number of samples used in each direction.  If
           the input data is larger, it will be downsampled (by slicing) to
           these numbers of points.

        Parameters
        ----------
        X, Y, Z : 2d arrays
            Data values.

        rcount, ccount : int
            Maximum number of samples used in each direction.  If the input
            data is larger, it will be downsampled (by slicing) to these
            numbers of points.  Setting a count to zero causes the data to be
            not sampled in the corresponding direction, producing a 3D line
            plot rather than a wireframe plot.  Defaults to 50.

            .. versionadded:: 2.0

        rstride, cstride : int
            Downsampling stride in each direction.  These arguments are
            mutually exclusive with *rcount* and *ccount*.  If only one of
            *rstride* or *cstride* is set, the other defaults to 1.  Setting a
            stride to zero causes the data to be not sampled in the
            corresponding direction, producing a 3D line plot rather than a
            wireframe plot.

            'classic' mode uses a default of ``rstride = cstride = 1`` instead
            of the new default of ``rcount = ccount = 50``.

        **kwargs
            Other arguments are forwarded to `.Line3DCollection`.
        """

        had_data = self.has_data()
        if Z.ndim != 2:
            raise ValueError("Argument Z must be 2-dimensional.")
        # FIXME: Support masked arrays
        X, Y, Z = np.broadcast_arrays(X, Y, Z)
        rows, cols = Z.shape

        has_stride = 'rstride' in kwargs or 'cstride' in kwargs
        has_count = 'rcount' in kwargs or 'ccount' in kwargs

        if has_stride and has_count:
            raise ValueError("Cannot specify both stride and count arguments")

        rstride = kwargs.pop('rstride', 1)
        cstride = kwargs.pop('cstride', 1)
        rcount = kwargs.pop('rcount', 50)
        ccount = kwargs.pop('ccount', 50)

        if rcParams['_internal.classic_mode']:
            # Strides have priority over counts in classic mode.
            # So, only compute strides from counts
            # if counts were explicitly given
            if has_count:
                rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
                cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
        else:
            # If the strides are provided then it has priority.
            # Otherwise, compute the strides from the counts.
            if not has_stride:
                rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
                cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0

        # We want two sets of lines, one running along the "rows" of
        # Z and another set of lines running along the "columns" of Z.
        # This transpose will make it easy to obtain the columns.
        tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z)

        if rstride:
            rii = list(range(0, rows, rstride))
            # Add the last index only if needed
            if rows > 0 and rii[-1] != (rows - 1):
                rii += [rows-1]
        else:
            rii = []
        if cstride:
            cii = list(range(0, cols, cstride))
            # Add the last index only if needed
            if cols > 0 and cii[-1] != (cols - 1):
                cii += [cols-1]
        else:
            cii = []

        if rstride == 0 and cstride == 0:
            raise ValueError("Either rstride or cstride must be non zero")

        # If the inputs were empty, then just
        # reset everything.
        if Z.size == 0:
            rii = []
            cii = []

        xlines = [X[i] for i in rii]
        ylines = [Y[i] for i in rii]
        zlines = [Z[i] for i in rii]

        txlines = [tX[i] for i in cii]
        tylines = [tY[i] for i in cii]
        tzlines = [tZ[i] for i in cii]

        lines = ([list(zip(xl, yl, zl))
                 for xl, yl, zl in zip(xlines, ylines, zlines)]
                 + [list(zip(xl, yl, zl))
                 for xl, yl, zl in zip(txlines, tylines, tzlines)])

        linec = art3d.Line3DCollection(lines, *args, **kwargs)
        self.add_collection(linec)
        self.auto_scale_xyz(X, Y, Z, had_data)

        return linec

    def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None,
                     lightsource=None, **kwargs):
        """
        Plot a triangulated surface.

        The (optional) triangulation can be specified in one of two ways;
        either::

          plot_trisurf(triangulation, ...)

        where triangulation is a :class:`~matplotlib.tri.Triangulation`
        object, or::

          plot_trisurf(X, Y, ...)
          plot_trisurf(X, Y, triangles, ...)
          plot_trisurf(X, Y, triangles=triangles, ...)

        in which case a Triangulation object will be created.  See
        :class:`~matplotlib.tri.Triangulation` for a explanation of
        these possibilities.

        The remaining arguments are::

          plot_trisurf(..., Z)

        where *Z* is the array of values to contour, one per point
        in the triangulation.

        Parameters
        ----------
        X, Y, Z : array-like
            Data values as 1D arrays.
        color
            Color of the surface patches.
        cmap
            A colormap for the surface patches.
        norm : Normalize
            An instance of Normalize to map values to colors.
        vmin, vmax : scalar, optional, default: None
            Minimum and maximum value to map.
        shade : bool
            Whether to shade the facecolors. Defaults to True. Shading is
            always disabled when *cmap* is specified.
        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.
        **kwargs
            All other arguments are passed on to
            :class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`

        Examples
        --------
        .. plot:: gallery/mplot3d/trisurf3d.py
        .. plot:: gallery/mplot3d/trisurf3d_2.py

        .. versionadded:: 1.2.0
        """

        had_data = self.has_data()

        # TODO: Support custom face colours
        if color is None:
            color = self._get_lines.get_next_color()
        color = np.array(mcolors.to_rgba(color))

        cmap = kwargs.get('cmap', None)
        shade = kwargs.pop('shade', cmap is None)

        tri, args, kwargs = \
            Triangulation.get_from_args_and_kwargs(*args, **kwargs)
        try:
            z = kwargs.pop('Z')
        except KeyError:
            # We do this so Z doesn't get passed as an arg to PolyCollection
            z, *args = args
        z = np.asarray(z)

        triangles = tri.get_masked_triangles()
        xt = tri.x[triangles]
        yt = tri.y[triangles]
        zt = z[triangles]
        verts = np.stack((xt, yt, zt), axis=-1)

        polyc = art3d.Poly3DCollection(verts, *args, **kwargs)

        if cmap:
            # average over the three points of each triangle
            avg_z = verts[:, :, 2].mean(axis=1)
            polyc.set_array(avg_z)
            if vmin is not None or vmax is not None:
                polyc.set_clim(vmin, vmax)
            if norm is not None:
                polyc.set_norm(norm)
        else:
            if shade:
                normals = self._generate_normals(verts)
                colset = self._shade_colors(color, normals, lightsource)
            else:
                colset = color
            polyc.set_facecolors(colset)

        self.add_collection(polyc)
        self.auto_scale_xyz(tri.x, tri.y, z, had_data)

        return polyc

    def _3d_extend_contour(self, cset, stride=5):
        '''
        Extend a contour in 3D by creating
        '''

        levels = cset.levels
        colls = cset.collections
        dz = (levels[1] - levels[0]) / 2

        for z, linec in zip(levels, colls):
            paths = linec.get_paths()
            if not paths:
                continue
            topverts = art3d._paths_to_3d_segments(paths, z - dz)
            botverts = art3d._paths_to_3d_segments(paths, z + dz)

            color = linec.get_color()[0]

            polyverts = []
            normals = []
            nsteps = round(len(topverts[0]) / stride)
            if nsteps <= 1:
                if len(topverts[0]) > 1:
                    nsteps = 2
                else:
                    continue

            stepsize = (len(topverts[0]) - 1) / (nsteps - 1)
            for i in range(int(round(nsteps)) - 1):
                i1 = int(round(i * stepsize))
                i2 = int(round((i + 1) * stepsize))
                polyverts.append([topverts[0][i1],
                                  topverts[0][i2],
                                  botverts[0][i2],
                                  botverts[0][i1]])

            # all polygons have 4 vertices, so vectorize
            polyverts = np.array(polyverts)
            normals = self._generate_normals(polyverts)

            colors = self._shade_colors(color, normals)
            colors2 = self._shade_colors(color, normals)
            polycol = art3d.Poly3DCollection(polyverts,
                                             facecolors=colors,
                                             edgecolors=colors2)
            polycol.set_sort_zpos(z)
            self.add_collection3d(polycol)

        for col in colls:
            self.collections.remove(col)

    def add_contour_set(
            self, cset, extend3d=False, stride=5, zdir='z', offset=None):
        zdir = '-' + zdir
        if extend3d:
            self._3d_extend_contour(cset, stride)
        else:
            for z, linec in zip(cset.levels, cset.collections):
                if offset is not None:
                    z = offset
                art3d.line_collection_2d_to_3d(linec, z, zdir=zdir)

    def add_contourf_set(self, cset, zdir='z', offset=None):
        zdir = '-' + zdir
        for z, linec in zip(cset.levels, cset.collections):
            if offset is not None:
                z = offset
            art3d.poly_collection_2d_to_3d(linec, z, zdir=zdir)
            linec.set_sort_zpos(z)

    def contour(self, X, Y, Z, *args,
                extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
        """
        Create a 3D contour plot.

        Parameters
        ----------
        X, Y, Z : array-likes
            Input data.
        extend3d : bool
            Whether to extend contour in 3D; defaults to False.
        stride : int
            Step size for extending contour.
        zdir : {'x', 'y', 'z'}
            The direction to use; defaults to 'z'.
        offset : scalar
            If specified, plot a projection of the contour lines at this
            position in a plane normal to zdir
        *args, **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.contour`.

        Returns
        -------
        matplotlib.contour.QuadContourSet
        """
        had_data = self.has_data()

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        cset = super().contour(jX, jY, jZ, *args, **kwargs)
        self.add_contour_set(cset, extend3d, stride, zdir, offset)

        self.auto_scale_xyz(X, Y, Z, had_data)
        return cset

    contour3D = contour

    def tricontour(self, *args,
                   extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
        """
        Create a 3D contour plot.

        .. versionchanged:: 1.3.0
            Added support for custom triangulations

        .. note::
            This method currently produces incorrect output due to a
            longstanding bug in 3D PolyCollection rendering.

        Parameters
        ----------
        X, Y, Z : array-likes
            Input data.
        extend3d : bool
            Whether to extend contour in 3D; defaults to False.
        stride : int
            Step size for extending contour.
        zdir : {'x', 'y', 'z'}
            The direction to use; defaults to 'z'.
        offset : scalar
            If specified, plot a projection of the contour lines at this
            position in a plane normal to zdir
        *args, **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.tricontour`.

        Returns
        -------
        matplotlib.tri.tricontour.TriContourSet
        """
        had_data = self.has_data()

        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
                *args, **kwargs)
        X = tri.x
        Y = tri.y
        if 'Z' in kwargs:
            Z = kwargs.pop('Z')
        else:
            # We do this so Z doesn't get passed as an arg to Axes.tricontour
            Z, *args = args

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        tri = Triangulation(jX, jY, tri.triangles, tri.mask)

        cset = super().tricontour(tri, jZ, *args, **kwargs)
        self.add_contour_set(cset, extend3d, stride, zdir, offset)

        self.auto_scale_xyz(X, Y, Z, had_data)
        return cset

    def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs):
        """
        Create a 3D filled contour plot.

        Parameters
        ----------
        X, Y, Z : array-likes
            Input data.
        zdir : {'x', 'y', 'z'}
            The direction to use; defaults to 'z'.
        offset : scalar
            If specified, plot a projection of the contour lines at this
            position in a plane normal to zdir
        *args, **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.contourf`.

        Returns
        -------
        matplotlib.contour.QuadContourSet

        Notes
        -----
        .. versionadded:: 1.1.0
            The *zdir* and *offset* parameters.
        """
        had_data = self.has_data()

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        cset = super().contourf(jX, jY, jZ, *args, **kwargs)
        self.add_contourf_set(cset, zdir, offset)

        self.auto_scale_xyz(X, Y, Z, had_data)
        return cset

    contourf3D = contourf

    def tricontourf(self, *args, zdir='z', offset=None, **kwargs):
        """
        Create a 3D filled contour plot.

        .. note::
            This method currently produces incorrect output due to a
            longstanding bug in 3D PolyCollection rendering.

        Parameters
        ----------
        X, Y, Z : array-likes
            Input data.
        zdir : {'x', 'y', 'z'}
            The direction to use; defaults to 'z'.
        offset : scalar
            If specified, plot a projection of the contour lines at this
            position in a plane normal to zdir
        *args, **kwargs
            Other arguments are forwarded to
            `matplotlib.axes.Axes.tricontourf`.

        Returns
        -------
        matplotlib.tri.tricontour.TriContourSet

        Notes
        -----
        .. versionadded:: 1.1.0
            The *zdir* and *offset* parameters.
        .. versionchanged:: 1.3.0
            Added support for custom triangulations
        """
        had_data = self.has_data()

        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
                *args, **kwargs)
        X = tri.x
        Y = tri.y
        if 'Z' in kwargs:
            Z = kwargs.pop('Z')
        else:
            # We do this so Z doesn't get passed as an arg to Axes.tricontourf
            Z, *args = args

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        tri = Triangulation(jX, jY, tri.triangles, tri.mask)

        cset = super().tricontourf(tri, jZ, *args, **kwargs)
        self.add_contourf_set(cset, zdir, offset)

        self.auto_scale_xyz(X, Y, Z, had_data)
        return cset

    def add_collection3d(self, col, zs=0, zdir='z'):
        '''
        Add a 3D collection object to the plot.

        2D collection types are converted to a 3D version by
        modifying the object and adding z coordinate information.

        Supported are:
            - PolyCollection
            - LineCollection
            - PatchCollection
        '''
        zvals = np.atleast_1d(zs)
        zsortval = (np.min(zvals) if zvals.size
                    else 0)  # FIXME: arbitrary default

        # FIXME: use issubclass() (although, then a 3D collection
        #       object would also pass.)  Maybe have a collection3d
        #       abstract class to test for and exclude?
        if type(col) is mcoll.PolyCollection:
            art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir)
            col.set_sort_zpos(zsortval)
        elif type(col) is mcoll.LineCollection:
            art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir)
            col.set_sort_zpos(zsortval)
        elif type(col) is mcoll.PatchCollection:
            art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir)
            col.set_sort_zpos(zsortval)

        super().add_collection(col)

    def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True,
                *args, **kwargs):
        """
        Create a scatter plot.

        Parameters
        ----------
        xs, ys : array-like
             The data positions.
        zs : float or array-like, optional, default: 0
            The z-positions. Either an array of the same length as *xs* and
            *ys* or a single value to place all points in the same plane.
        zdir : {'x', 'y', 'z', '-x', '-y', '-z'}, optional, default: 'z'
            The axis direction for the *zs*. This is useful when plotting 2D
            data on a 3D Axes. The data must be passed as *xs*, *ys*. Setting
            *zdir* to 'y' then plots the data to the x-z-plane.

            See also :doc:`/gallery/mplot3d/2dcollections3d`.

        s : scalar or array-like, optional, default: 20
            The marker size in points**2. Either an array of the same length
            as *xs* and *ys* or a single value to make all markers the same
            size.
        c : color, sequence, or sequence of colors, optional
            The marker color. Possible values:

            - A single color format string.
            - A sequence of colors of length n.
            - A sequence of n numbers to be mapped to colors using *cmap* and
              *norm*.
            - A 2-D array in which the rows are RGB or RGBA.

            For more details see the *c* argument of `~.axes.Axes.scatter`.
        depthshade : bool, optional, default: True
            Whether to shade the scatter markers to give the appearance of
            depth. Each call to ``scatter()`` will perform its depthshading
            independently.
        **kwargs
            All other arguments are passed on to `~.axes.Axes.scatter`.

        Returns
        -------
        paths : `~matplotlib.collections.PathCollection`
        """

        had_data = self.has_data()

        xs, ys, zs = np.broadcast_arrays(
            *[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]])
        s = np.ma.ravel(s)  # This doesn't have to match x, y in size.

        xs, ys, zs, s, c = cbook.delete_masked_points(xs, ys, zs, s, c)

        patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs)
        art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,
                                        depthshade=depthshade)

        if self._zmargin < 0.05 and xs.size > 0:
            self.set_zmargin(0.05)

        self.auto_scale_xyz(xs, ys, zs, had_data)

        return patches

    scatter3D = scatter

    def bar(self, left, height, zs=0, zdir='z', *args, **kwargs):
        """
        Add 2D bar(s).

        Parameters
        ----------
        left : 1D array-like
            The x coordinates of the left sides of the bars.
        height : 1D array-like
            The height of the bars.
        zs : scalar or 1D array-like
            Z coordinate of bars; if a single value is specified, it will be
            used for all bars.
        zdir : {'x', 'y', 'z'}
            When plotting 2D data, the direction to use as z ('x', 'y' or 'z');
            defaults to 'z'.
        **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.bar`.

        Returns
        -------
        mpl_toolkits.mplot3d.art3d.Patch3DCollection
        """
        had_data = self.has_data()

        patches = super().bar(left, height, *args, **kwargs)

        zs = np.broadcast_to(zs, len(left))

        verts = []
        verts_zs = []
        for p, z in zip(patches, zs):
            vs = art3d._get_patch_verts(p)
            verts += vs.tolist()
            verts_zs += [z] * len(vs)
            art3d.patch_2d_to_3d(p, z, zdir)
            if 'alpha' in kwargs:
                p.set_alpha(kwargs['alpha'])

        if len(verts) > 0:
            # the following has to be skipped if verts is empty
            # NOTE: Bugs could still occur if len(verts) > 0,
            #       but the "2nd dimension" is empty.
            xs, ys = zip(*verts)
        else:
            xs, ys = [], []

        xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir)
        self.auto_scale_xyz(xs, ys, verts_zs, had_data)

        return patches

    def bar3d(self, x, y, z, dx, dy, dz, color=None,
              zsort='average', shade=True, lightsource=None, *args, **kwargs):
        """Generate a 3D barplot.

        This method creates three dimensional barplot where the width,
        depth, height, and color of the bars can all be uniquely set.

        Parameters
        ----------
        x, y, z : array-like
            The coordinates of the anchor point of the bars.

        dx, dy, dz : scalar or array-like
            The width, depth, and height of the bars, respectively.

        color : sequence of colors, optional
            The color of the bars can be specified globally or
            individually. This parameter can be:

            - A single color, to color all bars the same color.
            - An array of colors of length N bars, to color each bar
              independently.
            - An array of colors of length 6, to color the faces of the
              bars similarly.
            - An array of colors of length 6 * N bars, to color each face
              independently.

            When coloring the faces of the boxes specifically, this is
            the order of the coloring:

              1. -Z (bottom of box)
              2. +Z (top of box)
              3. -Y
              4. +Y
              5. -X
              6. +X

        zsort : str, optional
            The z-axis sorting scheme passed onto `~.art3d.Poly3DCollection`

        shade : bool, optional (default = True)
            When true, this shades the dark sides of the bars (relative
            to the plot's source of light).

        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.

        **kwargs
            Any additional keyword arguments are passed onto
            `~.art3d.Poly3DCollection`.

        Returns
        -------
        collection : `~.art3d.Poly3DCollection`
            A collection of three dimensional polygons representing
            the bars.
        """

        had_data = self.has_data()

        x, y, z, dx, dy, dz = np.broadcast_arrays(
            np.atleast_1d(x), y, z, dx, dy, dz)
        minx = np.min(x)
        maxx = np.max(x + dx)
        miny = np.min(y)
        maxy = np.max(y + dy)
        minz = np.min(z)
        maxz = np.max(z + dz)

        # shape (6, 4, 3)
        # All faces are oriented facing outwards - when viewed from the
        # outside, their vertices are in a counterclockwise ordering.
        cuboid = np.array([
            # -z
            (
                (0, 0, 0),
                (0, 1, 0),
                (1, 1, 0),
                (1, 0, 0),
            ),
            # +z
            (
                (0, 0, 1),
                (1, 0, 1),
                (1, 1, 1),
                (0, 1, 1),
            ),
            # -y
            (
                (0, 0, 0),
                (1, 0, 0),
                (1, 0, 1),
                (0, 0, 1),
            ),
            # +y
            (
                (0, 1, 0),
                (0, 1, 1),
                (1, 1, 1),
                (1, 1, 0),
            ),
            # -x
            (
                (0, 0, 0),
                (0, 0, 1),
                (0, 1, 1),
                (0, 1, 0),
            ),
            # +x
            (
                (1, 0, 0),
                (1, 1, 0),
                (1, 1, 1),
                (1, 0, 1),
            ),
        ])

        # indexed by [bar, face, vertex, coord]
        polys = np.empty(x.shape + cuboid.shape)

        # handle each coordinate separately
        for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]:
            p = p[..., np.newaxis, np.newaxis]
            dp = dp[..., np.newaxis, np.newaxis]
            polys[..., i] = p + dp * cuboid[..., i]

        # collapse the first two axes
        polys = polys.reshape((-1,) + polys.shape[2:])

        facecolors = []
        if color is None:
            color = [self._get_patches_for_fill.get_next_color()]

        if len(color) == len(x):
            # bar colors specified, need to expand to number of faces
            for c in color:
                facecolors.extend([c] * 6)
        else:
            # a single color specified, or face colors specified explicitly
            facecolors = list(mcolors.to_rgba_array(color))
            if len(facecolors) < len(x):
                facecolors *= (6 * len(x))

        if shade:
            normals = self._generate_normals(polys)
            sfacecolors = self._shade_colors(facecolors, normals, lightsource)
        else:
            sfacecolors = facecolors

        col = art3d.Poly3DCollection(polys,
                                     zsort=zsort,
                                     facecolor=sfacecolors,
                                     *args, **kwargs)
        self.add_collection(col)

        self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)

        return col

    def set_title(self, label, fontdict=None, loc='center', **kwargs):
        # docstring inherited
        ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs)
        (x, y) = self.title.get_position()
        self.title.set_y(0.92 * y)
        return ret

    def quiver(self, *args,
               length=1, arrow_length_ratio=.3, pivot='tail', normalize=False,
               **kwargs):
        """
        ax.quiver(X, Y, Z, U, V, W, /, length=1, arrow_length_ratio=.3, \
pivot='tail', normalize=False, **kwargs)

        Plot a 3D field of arrows.

        The arguments could be array-like or scalars, so long as they
        they can be broadcast together. The arguments can also be
        masked arrays. If an element in any of argument is masked, then
        that corresponding quiver element will not be plotted.

        Parameters
        ----------
        X, Y, Z : array-like
            The x, y and z coordinates of the arrow locations (default is
            tail of arrow; see *pivot* kwarg)

        U, V, W : array-like
            The x, y and z components of the arrow vectors

        length : float
            The length of each quiver, default to 1.0, the unit is
            the same with the axes

        arrow_length_ratio : float
            The ratio of the arrow head with respect to the quiver,
            default to 0.3

        pivot : {'tail', 'middle', 'tip'}
            The part of the arrow that is at the grid point; the arrow
            rotates about this point, hence the name *pivot*.
            Default is 'tail'

        normalize : bool
            When True, all of the arrows will be the same length. This
            defaults to False, where the arrows will be different lengths
            depending on the values of u, v, w.

        **kwargs
            Any additional keyword arguments are delegated to
            :class:`~matplotlib.collections.LineCollection`
        """
        def calc_arrow(uvw, angle=15):
            """
            To calculate the arrow head. uvw should be a unit vector.
            We normalize it here:
            """
            # get unit direction vector perpendicular to (u, v, w)
            norm = np.linalg.norm(uvw[:2])
            if norm > 0:
                x = uvw[1] / norm
                y = -uvw[0] / norm
            else:
                x, y = 0, 1

            # compute the two arrowhead direction unit vectors
            ra = math.radians(angle)
            c = math.cos(ra)
            s = math.sin(ra)

            # construct the rotation matrices
            Rpos = np.array([[c+(x**2)*(1-c), x*y*(1-c), y*s],
                             [y*x*(1-c), c+(y**2)*(1-c), -x*s],
                             [-y*s, x*s, c]])
            # opposite rotation negates all the sin terms
            Rneg = Rpos.copy()
            Rneg[[0, 1, 2, 2], [2, 2, 0, 1]] = \
                -Rneg[[0, 1, 2, 2], [2, 2, 0, 1]]

            # multiply them to get the rotated vector
            return Rpos.dot(uvw), Rneg.dot(uvw)

        had_data = self.has_data()

        # handle args
        argi = 6
        if len(args) < argi:
            raise ValueError('Wrong number of arguments. Expected %d got %d' %
                             (argi, len(args)))

        # first 6 arguments are X, Y, Z, U, V, W
        input_args = args[:argi]

        # extract the masks, if any
        masks = [k.mask for k in input_args
                 if isinstance(k, np.ma.MaskedArray)]
        # broadcast to match the shape
        bcast = np.broadcast_arrays(*input_args, *masks)
        input_args = bcast[:argi]
        masks = bcast[argi:]
        if masks:
            # combine the masks into one
            mask = reduce(np.logical_or, masks)
            # put mask on and compress
            input_args = [np.ma.array(k, mask=mask).compressed()
                          for k in input_args]
        else:
            input_args = [np.ravel(k) for k in input_args]

        if any(len(v) == 0 for v in input_args):
            # No quivers, so just make an empty collection and return early
            linec = art3d.Line3DCollection([], *args[argi:], **kwargs)
            self.add_collection(linec)
            return linec

        shaft_dt = np.array([0., length], dtype=float)
        arrow_dt = shaft_dt * arrow_length_ratio

        cbook._check_in_list(['tail', 'middle', 'tip'], pivot=pivot)
        if pivot == 'tail':
            shaft_dt -= length
        elif pivot == 'middle':
            shaft_dt -= length / 2

        XYZ = np.column_stack(input_args[:3])
        UVW = np.column_stack(input_args[3:argi]).astype(float)

        # Normalize rows of UVW
        norm = np.linalg.norm(UVW, axis=1)

        # If any row of UVW is all zeros, don't make a quiver for it
        mask = norm > 0
        XYZ = XYZ[mask]
        if normalize:
            UVW = UVW[mask] / norm[mask].reshape((-1, 1))
        else:
            UVW = UVW[mask]

        if len(XYZ) > 0:
            # compute the shaft lines all at once with an outer product
            shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1)
            # compute head direction vectors, n heads x 2 sides x 3 dimensions
            head_dirs = np.array([calc_arrow(d) for d in UVW])
            # compute all head lines at once, starting from the shaft ends
            heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs)
            # stack left and right head lines together
            heads.shape = (len(arrow_dt), -1, 3)
            # transpose to get a list of lines
            heads = heads.swapaxes(0, 1)

            lines = [*shafts, *heads]
        else:
            lines = []

        linec = art3d.Line3DCollection(lines, *args[argi:], **kwargs)
        self.add_collection(linec)

        self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data)

        return linec

    quiver3D = quiver

    def voxels(self, *args, facecolors=None, edgecolors=None, shade=True,
               lightsource=None, **kwargs):
        """
        ax.voxels([x, y, z,] /, filled, facecolors=None, edgecolors=None, \
**kwargs)

        Plot a set of filled voxels

        All voxels are plotted as 1x1x1 cubes on the axis, with
        ``filled[0, 0, 0]`` placed with its lower corner at the origin.
        Occluded faces are not plotted.

        .. versionadded:: 2.1

        Parameters
        ----------
        filled : 3D np.array of bool
            A 3d array of values, with truthy values indicating which voxels
            to fill

        x, y, z : 3D np.array, optional
            The coordinates of the corners of the voxels. This should broadcast
            to a shape one larger in every dimension than the shape of
            `filled`.  These can be used to plot non-cubic voxels.

            If not specified, defaults to increasing integers along each axis,
            like those returned by :func:`~numpy.indices`.
            As indicated by the ``/`` in the function signature, these
            arguments can only be passed positionally.

        facecolors, edgecolors : array-like, optional
            The color to draw the faces and edges of the voxels. Can only be
            passed as keyword arguments.
            This parameter can be:

              - A single color value, to color all voxels the same color. This
                can be either a string, or a 1D rgb/rgba array
              - ``None``, the default, to use a single color for the faces, and
                the style default for the edges.
              - A 3D ndarray of color names, with each item the color for the
                corresponding voxel. The size must match the voxels.
              - A 4D ndarray of rgb/rgba data, with the components along the
                last axis.

        shade : bool
            Whether to shade the facecolors. Defaults to True. Shading is
            always disabled when *cmap* is specified.

            .. versionadded:: 3.1

        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.

            .. versionadded:: 3.1

        **kwargs
            Additional keyword arguments to pass onto
            :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`

        Returns
        -------
        faces : dict
            A dictionary indexed by coordinate, where ``faces[i, j, k]`` is a
            `Poly3DCollection` of the faces drawn for the voxel
            ``filled[i, j, k]``. If no faces were drawn for a given voxel,
            either because it was not asked to be drawn, or it is fully
            occluded, then ``(i, j, k) not in faces``.

        Examples
        --------
        .. plot:: gallery/mplot3d/voxels.py
        .. plot:: gallery/mplot3d/voxels_rgb.py
        .. plot:: gallery/mplot3d/voxels_torus.py
        .. plot:: gallery/mplot3d/voxels_numpy_logo.py
        """

        # work out which signature we should be using, and use it to parse
        # the arguments. Name must be voxels for the correct error message
        if len(args) >= 3:
            # underscores indicate position only
            def voxels(__x, __y, __z, filled, **kwargs):
                return (__x, __y, __z), filled, kwargs
        else:
            def voxels(filled, **kwargs):
                return None, filled, kwargs

        xyz, filled, kwargs = voxels(*args, **kwargs)

        # check dimensions
        if filled.ndim != 3:
            raise ValueError("Argument filled must be 3-dimensional")
        size = np.array(filled.shape, dtype=np.intp)

        # check xyz coordinates, which are one larger than the filled shape
        coord_shape = tuple(size + 1)
        if xyz is None:
            x, y, z = np.indices(coord_shape)
        else:
            x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz)

        def _broadcast_color_arg(color, name):
            if np.ndim(color) in (0, 1):
                # single color, like "red" or [1, 0, 0]
                return np.broadcast_to(color, filled.shape + np.shape(color))
            elif np.ndim(color) in (3, 4):
                # 3D array of strings, or 4D array with last axis rgb
                if np.shape(color)[:3] != filled.shape:
                    raise ValueError(
                        "When multidimensional, {} must match the shape of "
                        "filled".format(name))
                return color
            else:
                raise ValueError("Invalid {} argument".format(name))

        # broadcast and default on facecolors
        if facecolors is None:
            facecolors = self._get_patches_for_fill.get_next_color()
        facecolors = _broadcast_color_arg(facecolors, 'facecolors')

        # broadcast but no default on edgecolors
        edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')

        # scale to the full array, even if the data is only in the center
        self.auto_scale_xyz(x, y, z)

        # points lying on corners of a square
        square = np.array([
            [0, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [0, 1, 0],
        ], dtype=np.intp)

        voxel_faces = defaultdict(list)

        def permutation_matrices(n):
            """Generator of cyclic permutation matrices."""
            mat = np.eye(n, dtype=np.intp)
            for i in range(n):
                yield mat
                mat = np.roll(mat, 1, axis=0)

        # iterate over each of the YZ, ZX, and XY orientations, finding faces
        # to render
        for permute in permutation_matrices(3):
            # find the set of ranges to iterate over
            pc, qc, rc = permute.T.dot(size)
            pinds = np.arange(pc)
            qinds = np.arange(qc)
            rinds = np.arange(rc)

            square_rot_pos = square.dot(permute.T)
            square_rot_neg = square_rot_pos[::-1]

            # iterate within the current plane
            for p in pinds:
                for q in qinds:
                    # iterate perpendicularly to the current plane, handling
                    # boundaries. We only draw faces between a voxel and an
                    # empty space, to avoid drawing internal faces.

                    # draw lower faces
                    p0 = permute.dot([p, q, 0])
                    i0 = tuple(p0)
                    if filled[i0]:
                        voxel_faces[i0].append(p0 + square_rot_neg)

                    # draw middle faces
                    for r1, r2 in zip(rinds[:-1], rinds[1:]):
                        p1 = permute.dot([p, q, r1])
                        p2 = permute.dot([p, q, r2])

                        i1 = tuple(p1)
                        i2 = tuple(p2)

                        if filled[i1] and not filled[i2]:
                            voxel_faces[i1].append(p2 + square_rot_pos)
                        elif not filled[i1] and filled[i2]:
                            voxel_faces[i2].append(p2 + square_rot_neg)

                    # draw upper faces
                    pk = permute.dot([p, q, rc-1])
                    pk2 = permute.dot([p, q, rc])
                    ik = tuple(pk)
                    if filled[ik]:
                        voxel_faces[ik].append(pk2 + square_rot_pos)

        # iterate over the faces, and generate a Poly3DCollection for each
        # voxel
        polygons = {}
        for coord, faces_inds in voxel_faces.items():
            # convert indices into 3D positions
            if xyz is None:
                faces = faces_inds
            else:
                faces = []
                for face_inds in faces_inds:
                    ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]
                    face = np.empty(face_inds.shape)
                    face[:, 0] = x[ind]
                    face[:, 1] = y[ind]
                    face[:, 2] = z[ind]
                    faces.append(face)

            # shade the faces
            facecolor = facecolors[coord]
            edgecolor = edgecolors[coord]
            if shade:
                normals = self._generate_normals(faces)
                facecolor = self._shade_colors(facecolor, normals, lightsource)
                if edgecolor is not None:
                    edgecolor = self._shade_colors(
                        edgecolor, normals, lightsource
                    )

            poly = art3d.Poly3DCollection(
                faces, facecolors=facecolor, edgecolors=edgecolor, **kwargs)
            self.add_collection3d(poly)
            polygons[coord] = poly

        return polygons


def get_test_data(delta=0.05):
    '''
    Return a tuple X, Y, Z with a test data set.
    '''
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)

    Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
    Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
          (2 * np.pi * 0.5 * 1.5))
    Z = Z2 - Z1

    X = X * 10
    Y = Y * 10
    Z = Z * 500
    return X, Y, Z