proj3d.py 5.37 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
"""
Various transforms used for by the 3D code
"""

import numpy as np
import numpy.linalg as linalg

from matplotlib import cbook


@cbook.deprecated("3.1")
def line2d(p0, p1):
    """
    Return 2D equation of line in the form ax+by+c = 0
    """
    # x + x1  = 0
    x0, y0 = p0[:2]
    x1, y1 = p1[:2]
    #
    if x0 == x1:
        a = -1
        b = 0
        c = x1
    elif y0 == y1:
        a = 0
        b = 1
        c = -y1
    else:
        a = y0 - y1
        b = x0 - x1
        c = x0*y1 - x1*y0
    return a, b, c


@cbook.deprecated("3.1")
def line2d_dist(l, p):
    """
    Distance from line to point
    line is a tuple of coefficients a, b, c
    """
    a, b, c = l
    x0, y0 = p
    return abs((a*x0 + b*y0 + c) / np.hypot(a, b))


def _line2d_seg_dist(p1, p2, p0):
    """distance(s) from line defined by p1 - p2 to point(s) p0

    p0[0] = x(s)
    p0[1] = y(s)

    intersection point p = p1 + u*(p2-p1)
    and intersection point lies within segment if u is between 0 and 1
    """

    x21 = p2[0] - p1[0]
    y21 = p2[1] - p1[1]
    x01 = np.asarray(p0[0]) - p1[0]
    y01 = np.asarray(p0[1]) - p1[1]

    u = (x01*x21 + y01*y21) / (x21**2 + y21**2)
    u = np.clip(u, 0, 1)
    d = np.hypot(x01 - u*x21, y01 - u*y21)

    return d


@cbook.deprecated("3.1")
def line2d_seg_dist(p1, p2, p0):
    """distance(s) from line defined by p1 - p2 to point(s) p0

    p0[0] = x(s)
    p0[1] = y(s)

    intersection point p = p1 + u*(p2-p1)
    and intersection point lies within segment if u is between 0 and 1
    """
    return _line2d_seg_dist(p1, p2, p0)


@cbook.deprecated("3.1", alternative="np.linalg.norm")
def mod(v):
    """3d vector length"""
    return np.sqrt(v[0]**2+v[1]**2+v[2]**2)


def world_transformation(xmin, xmax,
                         ymin, ymax,
                         zmin, zmax):
    dx, dy, dz = (xmax-xmin), (ymax-ymin), (zmax-zmin)
    return np.array([[1/dx, 0,    0,    -xmin/dx],
                     [0,    1/dy, 0,    -ymin/dy],
                     [0,    0,    1/dz, -zmin/dz],
                     [0,    0,    0,    1]])


def view_transformation(E, R, V):
    n = (E - R)
    ## new
#    n /= np.linalg.norm(n)
#    u = np.cross(V, n)
#    u /= np.linalg.norm(u)
#    v = np.cross(n, u)
#    Mr = np.diag([1.] * 4)
#    Mt = np.diag([1.] * 4)
#    Mr[:3,:3] = u, v, n
#    Mt[:3,-1] = -E
    ## end new

    ## old
    n = n / np.linalg.norm(n)
    u = np.cross(V, n)
    u = u / np.linalg.norm(u)
    v = np.cross(n, u)
    Mr = [[u[0], u[1], u[2], 0],
          [v[0], v[1], v[2], 0],
          [n[0], n[1], n[2], 0],
          [0,    0,    0,    1]]
    #
    Mt = [[1, 0, 0, -E[0]],
          [0, 1, 0, -E[1]],
          [0, 0, 1, -E[2]],
          [0, 0, 0, 1]]
    ## end old

    return np.dot(Mr, Mt)


def persp_transformation(zfront, zback):
    a = (zfront+zback)/(zfront-zback)
    b = -2*(zfront*zback)/(zfront-zback)
    return np.array([[1, 0, 0, 0],
                     [0, 1, 0, 0],
                     [0, 0, a, b],
                     [0, 0, -1, 0]])


def ortho_transformation(zfront, zback):
    # note: w component in the resulting vector will be (zback-zfront), not 1
    a = -(zfront + zback)
    b = -(zfront - zback)
    return np.array([[2, 0, 0, 0],
                     [0, 2, 0, 0],
                     [0, 0, -2, 0],
                     [0, 0, a, b]])


def _proj_transform_vec(vec, M):
    vecw = np.dot(M, vec)
    w = vecw[3]
    # clip here..
    txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
    return txs, tys, tzs


@cbook.deprecated("3.1")
def proj_transform_vec(vec, M):
    return _proj_transform_vec(vec, M)


def _proj_transform_vec_clip(vec, M):
    vecw = np.dot(M, vec)
    w = vecw[3]
    # clip here.
    txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
    tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1)
    if np.any(tis):
        tis = vecw[1] < 1
    return txs, tys, tzs, tis


@cbook.deprecated("3.1")
def proj_transform_vec_clip(vec, M):
    return _proj_transform_vec_clip(vec, M)


def inv_transform(xs, ys, zs, M):
    iM = linalg.inv(M)
    vec = _vec_pad_ones(xs, ys, zs)
    vecr = np.dot(iM, vec)
    try:
        vecr = vecr / vecr[3]
    except OverflowError:
        pass
    return vecr[0], vecr[1], vecr[2]


def _vec_pad_ones(xs, ys, zs):
    return np.array([xs, ys, zs, np.ones_like(xs)])


@cbook.deprecated("3.1")
def vec_pad_ones(xs, ys, zs):
    return _vec_pad_ones(xs, ys, zs)


def proj_transform(xs, ys, zs, M):
    """
    Transform the points by the projection matrix
    """
    vec = _vec_pad_ones(xs, ys, zs)
    return _proj_transform_vec(vec, M)


transform = proj_transform


def proj_transform_clip(xs, ys, zs, M):
    """
    Transform the points by the projection matrix
    and return the clipping result
    returns txs, tys, tzs, tis
    """
    vec = _vec_pad_ones(xs, ys, zs)
    return _proj_transform_vec_clip(vec, M)


def proj_points(points, M):
    return np.column_stack(proj_trans_points(points, M))


def proj_trans_points(points, M):
    xs, ys, zs = zip(*points)
    return proj_transform(xs, ys, zs, M)


@cbook.deprecated("3.1")
def proj_trans_clip_points(points, M):
    xs, ys, zs = zip(*points)
    return proj_transform_clip(xs, ys, zs, M)


def rot_x(V, alpha):
    cosa, sina = np.cos(alpha), np.sin(alpha)
    M1 = np.array([[1, 0, 0, 0],
                   [0, cosa, -sina, 0],
                   [0, sina, cosa, 0],
                   [0, 0, 0, 1]])
    return np.dot(M1, V)