differentiation.py 19.8 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
from ..libmp.backend import xrange
from .calculus import defun

try:
    iteritems = dict.iteritems
except AttributeError:
    iteritems = dict.items

#----------------------------------------------------------------------------#
#                                Differentiation                             #
#----------------------------------------------------------------------------#

@defun
def difference(ctx, s, n):
    r"""
    Given a sequence `(s_k)` containing at least `n+1` items, returns the
    `n`-th forward difference,

    .. math ::

        \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k.
    """
    n = int(n)
    d = ctx.zero
    b = (-1) ** (n & 1)
    for k in xrange(n+1):
        d += b * s[k]
        b = (b * (k-n)) // (k+1)
    return d

def hsteps(ctx, f, x, n, prec, **options):
    singular = options.get('singular')
    addprec = options.get('addprec', 10)
    direction = options.get('direction', 0)
    workprec = (prec+2*addprec) * (n+1)
    orig = ctx.prec
    try:
        ctx.prec = workprec
        h = options.get('h')
        if h is None:
            if options.get('relative'):
                hextramag = int(ctx.mag(x))
            else:
                hextramag = 0
            h = ctx.ldexp(1, -prec-addprec-hextramag)
        else:
            h = ctx.convert(h)
        # Directed: steps x, x+h, ... x+n*h
        direction = options.get('direction', 0)
        if direction:
            h *= ctx.sign(direction)
            steps = xrange(n+1)
            norm = h
        # Central: steps x-n*h, x-(n-2)*h ..., x, ..., x+(n-2)*h, x+n*h
        else:
            steps = xrange(-n, n+1, 2)
            norm = (2*h)
        # Perturb
        if singular:
            x += 0.5*h
        values = [f(x+k*h) for k in steps]
        return values, norm, workprec
    finally:
        ctx.prec = orig


@defun
def diff(ctx, f, x, n=1, **options):
    r"""
    Numerically computes the derivative of `f`, `f'(x)`, or generally for
    an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`.
    A few basic examples are::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> diff(lambda x: x**2 + x, 1.0)
        3.0
        >>> diff(lambda x: x**2 + x, 1.0, 2)
        2.0
        >>> diff(lambda x: x**2 + x, 1.0, 3)
        0.0
        >>> nprint([diff(exp, 3, n) for n in range(5)])   # exp'(x) = exp(x)
        [20.0855, 20.0855, 20.0855, 20.0855, 20.0855]

    Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)`
    and order `(n_1, \ldots, n_k)`, the partial derivative
    `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example::

        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1))
        2.75
        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1))
        3.0

    **Options**

    The following optional keyword arguments are recognized:

    ``method``
        Supported methods are ``'step'`` or ``'quad'``: derivatives may be
        computed using either a finite difference with a small step
        size `h` (default), or numerical quadrature.
    ``direction``
        Direction of finite difference: can be -1 for a left
        difference, 0 for a central difference (default), or +1
        for a right difference; more generally can be any complex number.
    ``addprec``
        Extra precision for `h` used to account for the function's
        sensitivity to perturbations (default = 10).
    ``relative``
        Choose `h` relative to the magnitude of `x`, rather than an
        absolute value; useful for large or tiny `x` (default = False).
    ``h``
        As an alternative to ``addprec`` and ``relative``, manually
        select the step size `h`.
    ``singular``
        If True, evaluation exactly at the point `x` is avoided; this is
        useful for differentiating functions with removable singularities.
        Default = False.
    ``radius``
        Radius of integration contour (with ``method = 'quad'``).
        Default = 0.25. A larger radius typically is faster and more
        accurate, but it must be chosen so that `f` has no
        singularities within the radius from the evaluation point.

    A finite difference requires `n+1` function evaluations and must be
    performed at `(n+1)` times the target precision. Accordingly, `f` must
    support fast evaluation at high precision.

    With integration, a larger number of function evaluations is
    required, but not much extra precision is required. For high order
    derivatives, this method may thus be faster if f is very expensive to
    evaluate at high precision.

    **Further examples**

    The direction option is useful for computing left- or right-sided
    derivatives of nonsmooth functions::

        >>> diff(abs, 0, direction=0)
        0.0
        >>> diff(abs, 0, direction=1)
        1.0
        >>> diff(abs, 0, direction=-1)
        -1.0

    More generally, if the direction is nonzero, a right difference
    is computed where the step size is multiplied by sign(direction).
    For example, with direction=+j, the derivative from the positive
    imaginary direction will be computed::

        >>> diff(abs, 0, direction=j)
        (0.0 - 1.0j)

    With integration, the result may have a small imaginary part
    even even if the result is purely real::

        >>> diff(sqrt, 1, method='quad')    # doctest:+ELLIPSIS
        (0.5 - 4.59...e-26j)
        >>> chop(_)
        0.5

    Adding precision to obtain an accurate value::

        >>> diff(cos, 1e-30)
        0.0
        >>> diff(cos, 1e-30, h=0.0001)
        -9.99999998328279e-31
        >>> diff(cos, 1e-30, addprec=100)
        -1.0e-30

    """
    partial = False
    try:
        orders = list(n)
        x = list(x)
        partial = True
    except TypeError:
        pass
    if partial:
        x = [ctx.convert(_) for _ in x]
        return _partial_diff(ctx, f, x, orders, options)
    method = options.get('method', 'step')
    if n == 0 and method != 'quad' and not options.get('singular'):
        return f(ctx.convert(x))
    prec = ctx.prec
    try:
        if method == 'step':
            values, norm, workprec = hsteps(ctx, f, x, n, prec, **options)
            ctx.prec = workprec
            v = ctx.difference(values, n) / norm**n
        elif method == 'quad':
            ctx.prec += 10
            radius = ctx.convert(options.get('radius', 0.25))
            def g(t):
                rei = radius*ctx.expj(t)
                z = x + rei
                return f(z) / rei**n
            d = ctx.quadts(g, [0, 2*ctx.pi])
            v = d * ctx.factorial(n) / (2*ctx.pi)
        else:
            raise ValueError("unknown method: %r" % method)
    finally:
        ctx.prec = prec
    return +v

def _partial_diff(ctx, f, xs, orders, options):
    if not orders:
        return f()
    if not sum(orders):
        return f(*xs)
    i = 0
    for i in range(len(orders)):
        if orders[i]:
            break
    order = orders[i]
    def fdiff_inner(*f_args):
        def inner(t):
            return f(*(f_args[:i] + (t,) + f_args[i+1:]))
        return ctx.diff(inner, f_args[i], order, **options)
    orders[i] = 0
    return _partial_diff(ctx, fdiff_inner, xs, orders, options)

@defun
def diffs(ctx, f, x, n=None, **options):
    r"""
    Returns a generator that yields the sequence of derivatives

    .. math ::

        f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots

    With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)`
    function evaluations to generate the first `k` derivatives,
    rather than the roughly `O(k^2)` evaluations
    required if one calls :func:`~mpmath.diff` `k` separate times.

    With `n < \infty`, the generator stops as soon as the
    `n`-th derivative has been generated. If the exact number of
    needed derivatives is known in advance, this is further
    slightly more efficient.

    Options are the same as for :func:`~mpmath.diff`.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15
        >>> nprint(list(diffs(cos, 1, 5)))
        [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471]
        >>> for i, d in zip(range(6), diffs(cos, 1)):
        ...     print("%s %s" % (i, d))
        ...
        0 0.54030230586814
        1 -0.841470984807897
        2 -0.54030230586814
        3 0.841470984807897
        4 0.54030230586814
        5 -0.841470984807897

    """
    if n is None:
        n = ctx.inf
    else:
        n = int(n)
    if options.get('method', 'step') != 'step':
        k = 0
        while k < n + 1:
            yield ctx.diff(f, x, k, **options)
            k += 1
        return
    singular = options.get('singular')
    if singular:
        yield ctx.diff(f, x, 0, singular=True)
    else:
        yield f(ctx.convert(x))
    if n < 1:
        return
    if n == ctx.inf:
        A, B = 1, 2
    else:
        A, B = 1, n+1
    while 1:
        callprec = ctx.prec
        y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options)
        for k in xrange(A, B):
            try:
                ctx.prec = workprec
                d = ctx.difference(y, k) / norm**k
            finally:
                ctx.prec = callprec
            yield +d
            if k >= n:
                return
        A, B = B, int(A*1.4+1)
        B = min(B, n)

def iterable_to_function(gen):
    gen = iter(gen)
    data = []
    def f(k):
        for i in xrange(len(data), k+1):
            data.append(next(gen))
        return data[k]
    return f

@defun
def diffs_prod(ctx, factors):
    r"""
    Given a list of `N` iterables or generators yielding
    `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`,
    generate `g(x), g'(x), g''(x), \ldots` where
    `g(x) = f_1(x) f_2(x) \cdots f_N(x)`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of each `f_k(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> f = lambda x: exp(x)*cos(x)*sin(x)
        >>> u = diffs(f, 1)
        >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)])
        >>> next(u); next(v)
        1.23586333600241
        1.23586333600241
        >>> next(u); next(v)
        0.104658952245596
        0.104658952245596
        >>> next(u); next(v)
        -5.96999877552086
        -5.96999877552086
        >>> next(u); next(v)
        -12.4632923122697
        -12.4632923122697

    """
    N = len(factors)
    if N == 1:
        for c in factors[0]:
            yield c
    else:
        u = iterable_to_function(ctx.diffs_prod(factors[:N//2]))
        v = iterable_to_function(ctx.diffs_prod(factors[N//2:]))
        n = 0
        while 1:
            #yield sum(binomial(n,k)*u(n-k)*v(k) for k in xrange(n+1))
            s = u(n) * v(0)
            a = 1
            for k in xrange(1,n+1):
                a = a * (n-k+1) // k
                s += a * u(n-k) * v(k)
            yield s
            n += 1

def dpoly(n, _cache={}):
    """
    nth differentiation polynomial for exp (Faa di Bruno's formula).

    TODO: most exponents are zero, so maybe a sparse representation
    would be better.
    """
    if n in _cache:
        return _cache[n]
    if not _cache:
        _cache[0] = {(0,):1}
    R = dpoly(n-1)
    R = dict((c+(0,),v) for (c,v) in iteritems(R))
    Ra = {}
    for powers, count in iteritems(R):
        powers1 = (powers[0]+1,) + powers[1:]
        if powers1 in Ra:
            Ra[powers1] += count
        else:
            Ra[powers1] = count
    for powers, count in iteritems(R):
        if not sum(powers):
            continue
        for k,p in enumerate(powers):
            if p:
                powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:]
                if powers2 in Ra:
                    Ra[powers2] += p*count
                else:
                    Ra[powers2] = p*count
    _cache[n] = Ra
    return _cache[n]

@defun
def diffs_exp(ctx, fdiffs):
    r"""
    Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots`
    generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of `f(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

    The derivatives of the gamma function can be computed using
    logarithmic differentiation::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>>
        >>> def diffs_loggamma(x):
        ...     yield loggamma(x)
        ...     i = 0
        ...     while 1:
        ...         yield psi(i,x)
        ...         i += 1
        ...
        >>> u = diffs_exp(diffs_loggamma(3))
        >>> v = diffs(gamma, 3)
        >>> next(u); next(v)
        2.0
        2.0
        >>> next(u); next(v)
        1.84556867019693
        1.84556867019693
        >>> next(u); next(v)
        2.49292999190269
        2.49292999190269
        >>> next(u); next(v)
        3.44996501352367
        3.44996501352367

    """
    fn = iterable_to_function(fdiffs)
    f0 = ctx.exp(fn(0))
    yield f0
    i = 1
    while 1:
        s = ctx.mpf(0)
        for powers, c in iteritems(dpoly(i)):
            s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p)
        yield s * f0
        i += 1

@defun
def differint(ctx, f, x, n=1, x0=0):
    r"""
    Calculates the Riemann-Liouville differintegral, or fractional
    derivative, defined by

    .. math ::

        \,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m}
        \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt

    where `f` is a given (presumably well-behaved) function,
    `x` is the evaluation point, `n` is the order, and `x_0` is
    the reference point of integration (`m` is an arbitrary
    parameter selected automatically).

    With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`,
    the second derivative `f''(x)`, etc. With `n = -1`, it gives
    `\int_{x_0}^x f(t) dt`, with `n = -2`
    it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc.

    As `n` is permitted to be any number, this operator generalizes
    iterated differentiation and iterated integration to a single
    operator with a continuous order parameter.

    **Examples**

    There is an exact formula for the fractional derivative of a
    monomial `x^p`, which may be used as a reference. For example,
    the following gives a half-derivative (order 0.5)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> x = mpf(3); p = 2; n = 0.5
        >>> differint(lambda t: t**p, x, n)
        7.81764019044672
        >>> gamma(p+1)/gamma(p-n+1) * x**(p-n)
        7.81764019044672

    Another useful test function is the exponential function, whose
    integration / differentiation formula easy generalizes
    to arbitrary order. Here we first compute a third derivative,
    and then a triply nested integral. (The reference point `x_0`
    is set to `-\infty` to avoid nonzero endpoint terms.)::

        >>> differint(lambda x: exp(pi*x), -1.5, 3)
        0.278538406900792
        >>> exp(pi*-1.5) * pi**3
        0.278538406900792
        >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf)
        1922.50563031149
        >>> exp(pi*3.5) / pi**3
        1922.50563031149

    However, for noninteger `n`, the differentiation formula for the
    exponential function must be modified to give the same result as the
    Riemann-Liouville differintegral::

        >>> x = mpf(3.5)
        >>> c = pi
        >>> n = 1+2*j
        >>> differint(lambda x: exp(c*x), x, n)
        (-123295.005390743 + 140955.117867654j)
        >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n)
        (-123295.005390743 + 140955.117867654j)


    """
    m = max(int(ctx.ceil(ctx.re(n)))+1, 1)
    r = m-n-1
    g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x])
    return ctx.diff(g, x, m) / ctx.gamma(m-n)

@defun
def diffun(ctx, f, n=1, **options):
    r"""
    Given a function `f`, returns a function `g(x)` that evaluates the nth
    derivative `f^{(n)}(x)`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> cos2 = diffun(sin)
        >>> sin2 = diffun(sin, 4)
        >>> cos(1.3), cos2(1.3)
        (0.267498828624587, 0.267498828624587)
        >>> sin(1.3), sin2(1.3)
        (0.963558185417193, 0.963558185417193)

    The function `f` must support arbitrary precision evaluation.
    See :func:`~mpmath.diff` for additional details and supported
    keyword options.
    """
    if n == 0:
        return f
    def g(x):
        return ctx.diff(f, x, n, **options)
    return g

@defun
def taylor(ctx, f, x, n, **options):
    r"""
    Produces a degree-`n` Taylor polynomial around the point `x` of the
    given function `f`. The coefficients are returned as a list.

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nprint(chop(taylor(sin, 0, 5)))
        [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333]

    The coefficients are computed using high-order numerical
    differentiation. The function must be possible to evaluate
    to arbitrary precision. See :func:`~mpmath.diff` for additional details
    and supported keyword options.

    Note that to evaluate the Taylor polynomial as an approximation
    of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed,
    and the point of the Taylor expansion must be subtracted from
    the argument:

        >>> p = taylor(exp, 2.0, 10)
        >>> polyval(p[::-1], 2.5 - 2.0)
        12.1824939606092
        >>> exp(2.5)
        12.1824939607035

    """
    gen = enumerate(ctx.diffs(f, x, n, **options))
    if options.get("chop", True):
        return [ctx.chop(d)/ctx.factorial(i) for i, d in gen]
    else:
        return [d/ctx.factorial(i) for i, d in gen]

@defun
def pade(ctx, a, L, M):
    r"""
    Computes a Pade approximation of degree `(L, M)` to a function.
    Given at least `L+M+1` Taylor coefficients `a` approximating
    a function `A(x)`, :func:`~mpmath.pade` returns coefficients of
    polynomials `P, Q` satisfying

    .. math ::

        P = \sum_{k=0}^L p_k x^k

        Q = \sum_{k=0}^M q_k x^k

        Q_0 = 1

        A(x) Q(x) = P(x) + O(x^{L+M+1})

    `P(x)/Q(x)` can provide a good approximation to an analytic function
    beyond the radius of convergence of its Taylor series (example
    from G.A. Baker 'Essentials of Pade Approximants' Academic Press,
    Ch.1A)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> one = mpf(1)
        >>> def f(x):
        ...     return sqrt((one + 2*x)/(one + x))
        ...
        >>> a = taylor(f, 0, 6)
        >>> p, q = pade(a, 3, 3)
        >>> x = 10
        >>> polyval(p[::-1], x)/polyval(q[::-1], x)
        1.38169105566806
        >>> f(x)
        1.38169855941551

    """
    # To determine L+1 coefficients of P and M coefficients of Q
    # L+M+1 coefficients of A must be provided
    if len(a) < L+M+1:
        raise ValueError("L+M+1 Coefficients should be provided")

    if M == 0:
        if L == 0:
            return [ctx.one], [ctx.one]
        else:
            return a[:L+1], [ctx.one]

    # Solve first
    # a[L]*q[1] + ... + a[L-M+1]*q[M] = -a[L+1]
    # ...
    # a[L+M-1]*q[1] + ... + a[L]*q[M] = -a[L+M]
    A = ctx.matrix(M)
    for j in range(M):
        for i in range(min(M, L+j+1)):
            A[j, i] = a[L+j-i]
    v = -ctx.matrix(a[(L+1):(L+M+1)])
    x = ctx.lu_solve(A, v)
    q = [ctx.one] + list(x)
    # compute p
    p = [0]*(L+1)
    for i in range(L+1):
        s = a[i]
        for j in range(1, min(M,i) + 1):
            s += q[j]*a[i-j]
        p[i] = s
    return p, q