functions.py 17.6 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
from ..libmp.backend import xrange

class SpecialFunctions(object):
    """
    This class implements special functions using high-level code.

    Elementary and some other functions (e.g. gamma function, basecase
    hypergeometric series) are assumed to be predefined by the context as
    "builtins" or "low-level" functions.
    """
    defined_functions = {}

    # The series for the Jacobi theta functions converge for |q| < 1;
    # in the current implementation they throw a ValueError for
    # abs(q) > THETA_Q_LIM
    THETA_Q_LIM = 1 - 10**-7

    def __init__(self):
        cls = self.__class__
        for name in cls.defined_functions:
            f, wrap = cls.defined_functions[name]
            cls._wrap_specfun(name, f, wrap)

        self.mpq_1 = self._mpq((1,1))
        self.mpq_0 = self._mpq((0,1))
        self.mpq_1_2 = self._mpq((1,2))
        self.mpq_3_2 = self._mpq((3,2))
        self.mpq_1_4 = self._mpq((1,4))
        self.mpq_1_16 = self._mpq((1,16))
        self.mpq_3_16 = self._mpq((3,16))
        self.mpq_5_2 = self._mpq((5,2))
        self.mpq_3_4 = self._mpq((3,4))
        self.mpq_7_4 = self._mpq((7,4))
        self.mpq_5_4 = self._mpq((5,4))
        self.mpq_1_3 = self._mpq((1,3))
        self.mpq_2_3 = self._mpq((2,3))
        self.mpq_4_3 = self._mpq((4,3))
        self.mpq_1_6 = self._mpq((1,6))
        self.mpq_5_6 = self._mpq((5,6))
        self.mpq_5_3 = self._mpq((5,3))

        self._misc_const_cache = {}

        self._aliases.update({
            'phase' : 'arg',
            'conjugate' : 'conj',
            'nthroot' : 'root',
            'polygamma' : 'psi',
            'hurwitz' : 'zeta',
            #'digamma' : 'psi0',
            #'trigamma' : 'psi1',
            #'tetragamma' : 'psi2',
            #'pentagamma' : 'psi3',
            'fibonacci' : 'fib',
            'factorial' : 'fac',
        })

        self.zetazero_memoized = self.memoize(self.zetazero)

    # Default -- do nothing
    @classmethod
    def _wrap_specfun(cls, name, f, wrap):
        setattr(cls, name, f)

    # Optional fast versions of common functions in common cases.
    # If not overridden, default (generic hypergeometric series)
    # implementations will be used
    def _besselj(ctx, n, z): raise NotImplementedError
    def _erf(ctx, z): raise NotImplementedError
    def _erfc(ctx, z): raise NotImplementedError
    def _gamma_upper_int(ctx, z, a): raise NotImplementedError
    def _expint_int(ctx, n, z): raise NotImplementedError
    def _zeta(ctx, s): raise NotImplementedError
    def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError
    def _ei(ctx, z): raise NotImplementedError
    def _e1(ctx, z): raise NotImplementedError
    def _ci(ctx, z): raise NotImplementedError
    def _si(ctx, z): raise NotImplementedError
    def _altzeta(ctx, s): raise NotImplementedError

def defun_wrapped(f):
    SpecialFunctions.defined_functions[f.__name__] = f, True

def defun(f):
    SpecialFunctions.defined_functions[f.__name__] = f, False

def defun_static(f):
    setattr(SpecialFunctions, f.__name__, f)

@defun_wrapped
def cot(ctx, z): return ctx.one / ctx.tan(z)

@defun_wrapped
def sec(ctx, z): return ctx.one / ctx.cos(z)

@defun_wrapped
def csc(ctx, z): return ctx.one / ctx.sin(z)

@defun_wrapped
def coth(ctx, z): return ctx.one / ctx.tanh(z)

@defun_wrapped
def sech(ctx, z): return ctx.one / ctx.cosh(z)

@defun_wrapped
def csch(ctx, z): return ctx.one / ctx.sinh(z)

@defun_wrapped
def acot(ctx, z):
    if not z:
        return ctx.pi * 0.5
    else:
        return ctx.atan(ctx.one / z)

@defun_wrapped
def asec(ctx, z): return ctx.acos(ctx.one / z)

@defun_wrapped
def acsc(ctx, z): return ctx.asin(ctx.one / z)

@defun_wrapped
def acoth(ctx, z):
    if not z:
        return ctx.pi * 0.5j
    else:
        return ctx.atanh(ctx.one / z)


@defun_wrapped
def asech(ctx, z): return ctx.acosh(ctx.one / z)

@defun_wrapped
def acsch(ctx, z): return ctx.asinh(ctx.one / z)

@defun
def sign(ctx, x):
    x = ctx.convert(x)
    if not x or ctx.isnan(x):
        return x
    if ctx._is_real_type(x):
        if x > 0:
            return ctx.one
        else:
            return -ctx.one
    return x / abs(x)

@defun
def agm(ctx, a, b=1):
    if b == 1:
        return ctx.agm1(a)
    a = ctx.convert(a)
    b = ctx.convert(b)
    return ctx._agm(a, b)

@defun_wrapped
def sinc(ctx, x):
    if ctx.isinf(x):
        return 1/x
    if not x:
        return x+1
    return ctx.sin(x)/x

@defun_wrapped
def sincpi(ctx, x):
    if ctx.isinf(x):
        return 1/x
    if not x:
        return x+1
    return ctx.sinpi(x)/(ctx.pi*x)

# TODO: tests; improve implementation
@defun_wrapped
def expm1(ctx, x):
    if not x:
        return ctx.zero
    # exp(x) - 1 ~ x
    if ctx.mag(x) < -ctx.prec:
        return x + 0.5*x**2
    # TODO: accurately eval the smaller of the real/imag parts
    return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1)

@defun_wrapped
def log1p(ctx, x):
    if not x:
        return ctx.zero
    if ctx.mag(x) < -ctx.prec:
        return x - 0.5*x**2
    return ctx.log(ctx.fadd(1, x, prec=2*ctx.prec))

@defun_wrapped
def powm1(ctx, x, y):
    mag = ctx.mag
    one = ctx.one
    w = x**y - one
    M = mag(w)
    # Only moderate cancellation
    if M > -8:
        return w
    # Check for the only possible exact cases
    if not w:
        if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)):
            return w
    x1 = x - one
    magy = mag(y)
    lnx = ctx.ln(x)
    # Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2)
    if magy + mag(lnx) < -ctx.prec:
        return lnx*y + (lnx*y)**2/2
    # TODO: accurately eval the smaller of the real/imag part
    return ctx.sum_accurately(lambda: iter([x**y, -1]), 1)

@defun
def _rootof1(ctx, k, n):
    k = int(k)
    n = int(n)
    k %= n
    if not k:
        return ctx.one
    elif 2*k == n:
        return -ctx.one
    elif 4*k == n:
        return ctx.j
    elif 4*k == 3*n:
        return -ctx.j
    return ctx.expjpi(2*ctx.mpf(k)/n)

@defun
def root(ctx, x, n, k=0):
    n = int(n)
    x = ctx.convert(x)
    if k:
        # Special case: there is an exact real root
        if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0):
            return -ctx.root(-x, n)
        # Multiply by root of unity
        prec = ctx.prec
        try:
            ctx.prec += 10
            v = ctx.root(x, n, 0) * ctx._rootof1(k, n)
        finally:
            ctx.prec = prec
        return +v
    return ctx._nthroot(x, n)

@defun
def unitroots(ctx, n, primitive=False):
    gcd = ctx._gcd
    prec = ctx.prec
    try:
        ctx.prec += 10
        if primitive:
            v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1]
        else:
            # TODO: this can be done *much* faster
            v = [ctx._rootof1(k,n) for k in range(n)]
    finally:
        ctx.prec = prec
    return [+x for x in v]

@defun
def arg(ctx, x):
    x = ctx.convert(x)
    re = ctx._re(x)
    im = ctx._im(x)
    return ctx.atan2(im, re)

@defun
def fabs(ctx, x):
    return abs(ctx.convert(x))

@defun
def re(ctx, x):
    x = ctx.convert(x)
    if hasattr(x, "real"):    # py2.5 doesn't have .real/.imag for all numbers
        return x.real
    return x

@defun
def im(ctx, x):
    x = ctx.convert(x)
    if hasattr(x, "imag"):    # py2.5 doesn't have .real/.imag for all numbers
        return x.imag
    return ctx.zero

@defun
def conj(ctx, x):
    x = ctx.convert(x)
    try:
        return x.conjugate()
    except AttributeError:
        return x

@defun
def polar(ctx, z):
    return (ctx.fabs(z), ctx.arg(z))

@defun_wrapped
def rect(ctx, r, phi):
    return r * ctx.mpc(*ctx.cos_sin(phi))

@defun
def log(ctx, x, b=None):
    if b is None:
        return ctx.ln(x)
    wp = ctx.prec + 20
    return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp)

@defun
def log10(ctx, x):
    return ctx.log(x, 10)

@defun
def fmod(ctx, x, y):
    return ctx.convert(x) % ctx.convert(y)

@defun
def degrees(ctx, x):
    return x / ctx.degree

@defun
def radians(ctx, x):
    return x * ctx.degree

def _lambertw_special(ctx, z, k):
    # W(0,0) = 0; all other branches are singular
    if not z:
        if not k:
            return z
        return ctx.ninf + z
    if z == ctx.inf:
        if k == 0:
            return z
        else:
            return z + 2*k*ctx.pi*ctx.j
    if z == ctx.ninf:
        return (-z) + (2*k+1)*ctx.pi*ctx.j
    # Some kind of nan or complex inf/nan?
    return ctx.ln(z)

import math
import cmath

def _lambertw_approx_hybrid(z, k):
    imag_sign = 0
    if hasattr(z, "imag"):
        x = float(z.real)
        y = z.imag
        if y:
            imag_sign = (-1) ** (y < 0)
        y = float(y)
    else:
        x = float(z)
        y = 0.0
        imag_sign = 0
    # hack to work regardless of whether Python supports -0.0
    if not y:
        y = 0.0
    z = complex(x,y)
    if k == 0:
        if -4.0 < y < 4.0 and -1.0 < x < 2.5:
            if imag_sign:
                # Taylor series in upper/lower half-plane
                if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j))
                if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j))
                if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j))
                if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j))
            # Taylor series near -1
            if x < -0.5:
                if imag_sign >= 0:
                    return (-0.318+1.34j) + (-0.697-0.593j)*(z+1)
                else:
                    return (-0.318-1.34j) + (-0.697+0.593j)*(z+1)
            # return real type
            r = -0.367879441171442
            if (not imag_sign) and x > r:
                z = x
            # Singularity near -1/e
            if x < -0.2:
                return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
            # Taylor series near 0
            if x < 0.5: return z
            # Simple linear approximation
            return 0.2 + 0.3*z
        if (not imag_sign) and x > 0.0:
            L1 = math.log(x); L2 = math.log(L1)
        else:
            L1 = cmath.log(z); L2 = cmath.log(L1)
    elif k == -1:
        # return real type
        r = -0.367879441171442
        if (not imag_sign) and r < x < 0.0:
            z = x
        if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2:
            return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
        if (not imag_sign) and -0.2 <= x < 0.0:
            L1 = math.log(-x)
            return L1 - math.log(-L1)
        else:
            if imag_sign == -1 and (not y) and x < 0.0:
                L1 = cmath.log(z) - 3.1415926535897932j
            else:
                L1 = cmath.log(z) - 6.2831853071795865j
            L2 = cmath.log(L1)
    return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2)

def _lambertw_series(ctx, z, k, tol):
    """
    Return rough approximation for W_k(z) from an asymptotic series,
    sufficiently accurate for the Halley iteration to converge to
    the correct value.
    """
    magz = ctx.mag(z)
    if (-10 < magz < 900) and (-1000 < k < 1000):
        # Near the branch point at -1/e
        if magz < 1 and abs(z+0.36787944117144) < 0.05:
            if k == 0 or (k == -1 and ctx._im(z) >= 0) or \
                         (k == 1  and ctx._im(z) < 0):
                delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)])
                cancellation = -ctx.mag(delta)
                ctx.prec += cancellation
                # Use series given in Corless et al.
                p = ctx.sqrt(2*(ctx.e*z+1))
                ctx.prec -= cancellation
                u = {0:ctx.mpf(-1), 1:ctx.mpf(1)}
                a = {0:ctx.mpf(2), 1:ctx.mpf(-1)}
                if k != 0:
                    p = -p
                s = ctx.zero
                # The series converges, so we could use it directly, but unless
                # *extremely* close, it is better to just use the first few
                # terms to get a good approximation for the iteration
                for l in xrange(max(2,cancellation)):
                    if l not in u:
                        a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l))
                        u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1)
                    term = u[l] * p**l
                    s += term
                    if ctx.mag(term) < -tol:
                        return s, True
                    l += 1
                ctx.prec += cancellation//2
                return s, False
        if k == 0 or k == -1:
            return _lambertw_approx_hybrid(z, k), False
    if k == 0:
        if magz < -1:
            return z*(1-z), False
        L1 = ctx.ln(z)
        L2 = ctx.ln(L1)
    elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0):
        L1 = ctx.ln(-z)
        return L1 - ctx.ln(-L1), False
    else:
        # This holds both as z -> 0 and z -> inf.
        # Relative error is O(1/log(z)).
        L1 = ctx.ln(z) + 2j*ctx.pi*k
        L2 = ctx.ln(L1)
    return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False

@defun
def lambertw(ctx, z, k=0):
    z = ctx.convert(z)
    k = int(k)
    if not ctx.isnormal(z):
        return _lambertw_special(ctx, z, k)
    prec = ctx.prec
    ctx.prec += 20 + ctx.mag(k or 1)
    wp = ctx.prec
    tol = wp - 5
    w, done = _lambertw_series(ctx, z, k, tol)
    if not done:
        # Use Halley iteration to solve w*exp(w) = z
        two = ctx.mpf(2)
        for i in xrange(100):
            ew = ctx.exp(w)
            wew = w*ew
            wewz = wew-z
            wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two))
            if ctx.mag(wn-w) <= ctx.mag(wn) - tol:
                w = wn
                break
            else:
                w = wn
        if i == 100:
            ctx.warn("Lambert W iteration failed to converge for z = %s" % z)
    ctx.prec = prec
    return +w

@defun_wrapped
def bell(ctx, n, x=1):
    x = ctx.convert(x)
    if not n:
        if ctx.isnan(x):
            return x
        return type(x)(1)
    if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n):
        return x**n
    if n == 1: return x
    if n == 2: return x*(x+1)
    if x == 0: return ctx.sincpi(n)
    return _polyexp(ctx, n, x, True) / ctx.exp(x)

def _polyexp(ctx, n, x, extra=False):
    def _terms():
        if extra:
            yield ctx.sincpi(n)
        t = x
        k = 1
        while 1:
            yield k**n * t
            k += 1
            t = t*x/k
    return ctx.sum_accurately(_terms, check_step=4)

@defun_wrapped
def polyexp(ctx, s, z):
    if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s):
        return z**s
    if z == 0: return z*s
    if s == 0: return ctx.expm1(z)
    if s == 1: return ctx.exp(z)*z
    if s == 2: return ctx.exp(z)*z*(z+1)
    return _polyexp(ctx, s, z)

@defun_wrapped
def cyclotomic(ctx, n, z):
    n = int(n)
    if n < 0:
        raise ValueError("n cannot be negative")
    p = ctx.one
    if n == 0:
        return p
    if n == 1:
        return z - p
    if n == 2:
        return z + p
    # Use divisor product representation. Unfortunately, this sometimes
    # includes singularities for roots of unity, which we have to cancel out.
    # Matching zeros/poles pairwise, we have (1-z^a)/(1-z^b) ~ a/b + O(z-1).
    a_prod = 1
    b_prod = 1
    num_zeros = 0
    num_poles = 0
    for d in range(1,n+1):
        if not n % d:
            w = ctx.moebius(n//d)
            # Use powm1 because it is important that we get 0 only
            # if it really is exactly 0
            b = -ctx.powm1(z, d)
            if b:
                p *= b**w
            else:
                if w == 1:
                    a_prod *= d
                    num_zeros += 1
                elif w == -1:
                    b_prod *= d
                    num_poles += 1
    #print n, num_zeros, num_poles
    if num_zeros:
        if num_zeros > num_poles:
            p *= 0
        else:
            p *= a_prod
            p /= b_prod
    return p

@defun
def mangoldt(ctx, n):
    r"""
    Evaluates the von Mangoldt function `\Lambda(n) = \log p`
    if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> [mangoldt(n) for n in range(-2,3)]
        [0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321]
        >>> mangoldt(6)
        0.0
        >>> mangoldt(7)
        1.945910149055313305105353
        >>> mangoldt(8)
        0.6931471805599453094172321
        >>> fsum(mangoldt(n) for n in range(101))
        94.04531122935739224600493
        >>> fsum(mangoldt(n) for n in range(10001))
        10013.39669326311478372032

    """
    n = int(n)
    if n < 2:
        return ctx.zero
    if n % 2 == 0:
        # Must be a power of two
        if n & (n-1) == 0:
            return +ctx.ln2
        else:
            return ctx.zero
    # TODO: the following could be generalized into a perfect
    # power testing function
    # ---
    # Look for a small factor
    for p in (3,5,7,11,13,17,19,23,29,31):
        if not n % p:
            q, r = n // p, 0
            while q > 1:
                q, r = divmod(q, p)
                if r:
                    return ctx.zero
            return ctx.ln(p)
    if ctx.isprime(n):
        return ctx.ln(n)
    # Obviously, we could use arbitrary-precision arithmetic for this...
    if n > 10**30:
        raise NotImplementedError
    k = 2
    while 1:
        p = int(n**(1./k) + 0.5)
        if p < 2:
            return ctx.zero
        if p ** k == n:
            if ctx.isprime(p):
                return ctx.ln(p)
        k += 1

@defun
def stirling1(ctx, n, k, exact=False):
    v = ctx._stirling1(int(n), int(k))
    if exact:
        return int(v)
    else:
        return ctx.mpf(v)

@defun
def stirling2(ctx, n, k, exact=False):
    v = ctx._stirling2(int(n), int(k))
    if exact:
        return int(v)
    else:
        return ctx.mpf(v)