qfunctions.py 7.45 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
from .functions import defun, defun_wrapped

@defun
def qp(ctx, a, q=None, n=None, **kwargs):
    r"""
    Evaluates the q-Pochhammer symbol (or q-rising factorial)

    .. math ::

        (a; q)_n = \prod_{k=0}^{n-1} (1-a q^k)

    where `n = \infty` is permitted if `|q| < 1`. Called with two arguments,
    ``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)``
    computes `(q;q)_{\infty}`. The special case

    .. math ::

        \phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) =
            \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2}

    is also known as the Euler function, or (up to a factor `q^{-1/24}`)
    the Dedekind eta function.

    **Examples**

    If `n` is a positive integer, the function amounts to a finite product::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qp(2,3,5)
        -725305.0
        >>> fprod(1-2*3**k for k in range(5))
        -725305.0
        >>> qp(2,3,0)
        1.0

    Complex arguments are allowed::

        >>> qp(2-1j, 0.75j)
        (0.4628842231660149089976379 + 4.481821753552703090628793j)

    The regular Pochhammer symbol `(a)_n` is obtained in the
    following limit as `q \to 1`::

        >>> a, n = 4, 7
        >>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1)
        604800.0
        >>> rf(a,n)
        604800.0

    The Taylor series of the reciprocal Euler function gives
    the partition function `P(n)`, i.e. the number of ways of writing
    `n` as a sum of positive integers::

        >>> taylor(lambda q: 1/qp(q), 0, 10)
        [1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0]

    Special values include::

        >>> qp(0)
        1.0
        >>> findroot(diffun(qp), -0.4)   # location of maximum
        -0.4112484791779547734440257
        >>> qp(_)
        1.228348867038575112586878

    The q-Pochhammer symbol is related to the Jacobi theta functions.
    For example, the following identity holds::

        >>> q = mpf(0.5)    # arbitrary
        >>> qp(q)
        0.2887880950866024212788997
        >>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6))
        0.2887880950866024212788997

    """
    a = ctx.convert(a)
    if n is None:
        n = ctx.inf
    else:
        n = ctx.convert(n)
    if n < 0:
        raise ValueError("n cannot be negative")
    if q is None:
        q = a
    else:
        q = ctx.convert(q)
    if n == 0:
        return ctx.one + 0*(a+q)
    infinite = (n == ctx.inf)
    same = (a == q)
    if infinite:
        if abs(q) >= 1:
            if same and (q == -1 or q == 1):
                return ctx.zero * q
            raise ValueError("q-function only defined for |q| < 1")
        elif q == 0:
            return ctx.one - a
    maxterms = kwargs.get('maxterms', 50*ctx.prec)
    if infinite and same:
        # Euler's pentagonal theorem
        def terms():
            t = 1
            yield t
            k = 1
            x1 = q
            x2 = q**2
            while 1:
                yield (-1)**k * x1
                yield (-1)**k * x2
                x1 *= q**(3*k+1)
                x2 *= q**(3*k+2)
                k += 1
                if k > maxterms:
                    raise ctx.NoConvergence
        return ctx.sum_accurately(terms)
    # return ctx.nprod(lambda k: 1-a*q**k, [0,n-1])
    def factors():
        k = 0
        r = ctx.one
        while 1:
            yield 1 - a*r
            r *= q
            k += 1
            if k >= n:
                return
            if k > maxterms:
                raise ctx.NoConvergence
    return ctx.mul_accurately(factors)

@defun_wrapped
def qgamma(ctx, z, q, **kwargs):
    r"""
    Evaluates the q-gamma function

    .. math ::

        \Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}.


    **Examples**

    Evaluation for real and complex arguments::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qgamma(4,0.75)
        4.046875
        >>> qgamma(6,6)
        121226245.0
        >>> qgamma(3+4j, 0.5j)
        (0.1663082382255199834630088 + 0.01952474576025952984418217j)

    The q-gamma function satisfies a functional equation similar
    to that of the ordinary gamma function::

        >>> q = mpf(0.25)
        >>> z = mpf(2.5)
        >>> qgamma(z+1,q)
        1.428277424823760954685912
        >>> (1-q**z)/(1-q)*qgamma(z,q)
        1.428277424823760954685912

    """
    if abs(q) > 1:
        return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5)
    return ctx.qp(q, q, None, **kwargs) / \
        ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z)

@defun_wrapped
def qfac(ctx, z, q, **kwargs):
    r"""
    Evaluates the q-factorial,

    .. math ::

        [n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})

    or more generally

    .. math ::

        [z]_q! = \frac{(q;q)_z}{(1-q)^z}.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qfac(0,0)
        1.0
        >>> qfac(4,3)
        2080.0
        >>> qfac(5,6)
        121226245.0
        >>> qfac(1+1j, 2+1j)
        (0.4370556551322672478613695 + 0.2609739839216039203708921j)

    """
    if ctx.isint(z) and ctx._re(z) > 0:
        n = int(ctx._re(z))
        return ctx.qp(q, q, n, **kwargs) / (1-q)**n
    return ctx.qgamma(z+1, q, **kwargs)

@defun
def qhyper(ctx, a_s, b_s, q, z, **kwargs):
    r"""
    Evaluates the basic hypergeometric series or hypergeometric q-series

    .. math ::

        \,_r\phi_s \left[\begin{matrix}
            a_1 & a_2 & \ldots & a_r \\
            b_1 & b_2 & \ldots & b_s
        \end{matrix} ; q,z \right] =
        \sum_{n=0}^\infty
        \frac{(a_1;q)_n, \ldots, (a_r;q)_n}
             {(b_1;q)_n, \ldots, (b_s;q)_n}
        \left((-1)^n q^{n\choose 2}\right)^{1+s-r}
        \frac{z^n}{(q;q)_n}

    where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`).

    **Examples**

    Evaluation works for real and complex arguments::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qhyper([0.5], [2.25], 0.25, 4)
        -0.1975849091263356009534385
        >>> qhyper([0.5], [2.25], 0.25-0.25j, 4)
        (2.806330244925716649839237 + 3.568997623337943121769938j)
        >>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j)
        (9.112885171773400017270226 - 1.272756997166375050700388j)

    Comparing with a summation of the defining series, using
    :func:`~mpmath.nsum`::

        >>> b, q, z = 3, 0.25, 0.5
        >>> qhyper([], [b], q, z)
        0.6221136748254495583228324
        >>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf])
        0.6221136748254495583228324

    """
    #a_s = [ctx._convert_param(a)[0] for a in a_s]
    #b_s = [ctx._convert_param(b)[0] for b in b_s]
    #q = ctx._convert_param(q)[0]
    a_s = [ctx.convert(a) for a in a_s]
    b_s = [ctx.convert(b) for b in b_s]
    q = ctx.convert(q)
    z = ctx.convert(z)
    r = len(a_s)
    s = len(b_s)
    d = 1+s-r
    maxterms = kwargs.get('maxterms', 50*ctx.prec)
    def terms():
        t = ctx.one
        yield t
        qk = 1
        k = 0
        x = 1
        while 1:
            for a in a_s:
                p = 1 - a*qk
                t *= p
            for b in b_s:
                p = 1 - b*qk
                if not p:
                    raise ValueError
                t /= p
            t *= z
            x *= (-1)**d * qk ** d
            qk *= q
            t /= (1 - qk)
            k += 1
            yield t * x
            if k > maxterms:
                raise ctx.NoConvergence
    return ctx.sum_accurately(terms)