libmpc.py 26.2 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
"""
Low-level functions for complex arithmetic.
"""

import sys

from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND

from .libmpf import (\
    round_floor, round_ceiling, round_down, round_up,
    round_nearest, round_fast, bitcount,
    bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps,
    negative_rnd,
    to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int,
    fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone,
    mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul,
    mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot,
    mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac,
    mpf_sign, mpf_hash,
    ComplexResult
)

from .libelefun import (\
    mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int,
    mpf_log_hypot,
    mpf_cos_sin_pi, mpf_phi,
    mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi,
    mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh,
    mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci
)

# An mpc value is a (real, imag) tuple
mpc_one = fone, fzero
mpc_zero = fzero, fzero
mpc_two = ftwo, fzero
mpc_half = (fhalf, fzero)

_infs = (finf, fninf)
_infs_nan = (finf, fninf, fnan)

def mpc_is_inf(z):
    """Check if either real or imaginary part is infinite"""
    re, im = z
    if re in _infs: return True
    if im in _infs: return True
    return False

def mpc_is_infnan(z):
    """Check if either real or imaginary part is infinite or nan"""
    re, im = z
    if re in _infs_nan: return True
    if im in _infs_nan: return True
    return False

def mpc_to_str(z, dps, **kwargs):
    re, im = z
    rs = to_str(re, dps)
    if im[0]:
        return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j"
    else:
        return rs + " + " + to_str(im, dps, **kwargs) + "j"

def mpc_to_complex(z, strict=False, rnd=round_fast):
    re, im = z
    return complex(to_float(re, strict, rnd), to_float(im, strict, rnd))

def mpc_hash(z):
    if sys.version >= "3.2":
        re, im = z
        h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im)
        # Need to reduce either module 2^32 or 2^64
        h = h % (2**sys.hash_info.width)
        return int(h)
    else:
        try:
            return hash(mpc_to_complex(z, strict=True))
        except OverflowError:
            return hash(z)

def mpc_conjugate(z, prec, rnd=round_fast):
    re, im = z
    return re, mpf_neg(im, prec, rnd)

def mpc_is_nonzero(z):
    return z != mpc_zero

def mpc_add(z, w, prec, rnd=round_fast):
    a, b = z
    c, d = w
    return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd)

def mpc_add_mpf(z, x, prec, rnd=round_fast):
    a, b = z
    return mpf_add(a, x, prec, rnd), b

def mpc_sub(z, w, prec=0, rnd=round_fast):
    a, b = z
    c, d = w
    return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd)

def mpc_sub_mpf(z, p, prec=0, rnd=round_fast):
    a, b = z
    return mpf_sub(a, p, prec, rnd), b

def mpc_pos(z, prec, rnd=round_fast):
    a, b = z
    return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd)

def mpc_neg(z, prec=None, rnd=round_fast):
    a, b = z
    return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd)

def mpc_shift(z, n):
    a, b = z
    return mpf_shift(a, n), mpf_shift(b, n)

def mpc_abs(z, prec, rnd=round_fast):
    """Absolute value of a complex number, |a+bi|.
    Returns an mpf value."""
    a, b = z
    return mpf_hypot(a, b, prec, rnd)

def mpc_arg(z, prec, rnd=round_fast):
    """Argument of a complex number. Returns an mpf value."""
    a, b = z
    return mpf_atan2(b, a, prec, rnd)

def mpc_floor(z, prec, rnd=round_fast):
    a, b = z
    return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd)

def mpc_ceil(z, prec, rnd=round_fast):
    a, b = z
    return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd)

def mpc_nint(z, prec, rnd=round_fast):
    a, b = z
    return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd)

def mpc_frac(z, prec, rnd=round_fast):
    a, b = z
    return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd)


def mpc_mul(z, w, prec, rnd=round_fast):
    """
    Complex multiplication.

    Returns the real and imaginary part of (a+bi)*(c+di), rounded to
    the specified precision. The rounding mode applies to the real and
    imaginary parts separately.
    """
    a, b = z
    c, d = w
    p = mpf_mul(a, c)
    q = mpf_mul(b, d)
    r = mpf_mul(a, d)
    s = mpf_mul(b, c)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_add(r, s, prec, rnd)
    return re, im

def mpc_square(z, prec, rnd=round_fast):
    # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
    a, b = z
    p = mpf_mul(a,a)
    q = mpf_mul(b,b)
    r = mpf_mul(a,b, prec, rnd)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_shift(r, 1)
    return re, im

def mpc_mul_mpf(z, p, prec, rnd=round_fast):
    a, b = z
    re = mpf_mul(a, p, prec, rnd)
    im = mpf_mul(b, p, prec, rnd)
    return re, im

def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast):
    """
    Multiply the mpc value z by I*x where x is an mpf value.
    """
    a, b = z
    re = mpf_neg(mpf_mul(b, x, prec, rnd))
    im = mpf_mul(a, x, prec, rnd)
    return re, im

def mpc_mul_int(z, n, prec, rnd=round_fast):
    a, b = z
    re = mpf_mul_int(a, n, prec, rnd)
    im = mpf_mul_int(b, n, prec, rnd)
    return re, im

def mpc_div(z, w, prec, rnd=round_fast):
    a, b = z
    c, d = w
    wp = prec + 10
    # mag = c*c + d*d
    mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
    # (a*c+b*d)/mag, (b*c-a*d)/mag
    t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp)
    u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp)
    return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd)

def mpc_div_mpf(z, p, prec, rnd=round_fast):
    """Calculate z/p where p is real"""
    a, b = z
    re = mpf_div(a, p, prec, rnd)
    im = mpf_div(b, p, prec, rnd)
    return re, im

def mpc_reciprocal(z, prec, rnd=round_fast):
    """Calculate 1/z efficiently"""
    a, b = z
    m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10)
    re = mpf_div(a, m, prec, rnd)
    im = mpf_neg(mpf_div(b, m, prec, rnd))
    return re, im

def mpc_mpf_div(p, z, prec, rnd=round_fast):
    """Calculate p/z where p is real efficiently"""
    a, b = z
    m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10)
    re = mpf_div(mpf_mul(a,p), m, prec, rnd)
    im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd)
    return re, im

def complex_int_pow(a, b, n):
    """Complex integer power: computes (a+b*I)**n exactly for
    nonnegative n (a and b must be Python ints)."""
    wre = 1
    wim = 0
    while n:
        if n & 1:
            wre, wim = wre*a - wim*b, wim*a + wre*b
            n -= 1
        a, b = a*a - b*b, 2*a*b
        n //= 2
    return wre, wim

def mpc_pow(z, w, prec, rnd=round_fast):
    if w[1] == fzero:
        return mpc_pow_mpf(z, w[0], prec, rnd)
    return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd)

def mpc_pow_mpf(z, p, prec, rnd=round_fast):
    psign, pman, pexp, pbc = p
    if pexp >= 0:
        return mpc_pow_int(z, (-1)**psign * (pman<<pexp), prec, rnd)
    if pexp == -1:
        sqrtz = mpc_sqrt(z, prec+10)
        return mpc_pow_int(sqrtz, (-1)**psign * pman, prec, rnd)
    return mpc_exp(mpc_mul_mpf(mpc_log(z, prec+10), p, prec+10), prec, rnd)

def mpc_pow_int(z, n, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        return mpf_pow_int(a, n, prec, rnd), fzero
    if a == fzero:
        v = mpf_pow_int(b, n, prec, rnd)
        n %= 4
        if n == 0:
            return v, fzero
        elif n == 1:
            return fzero, v
        elif n == 2:
            return mpf_neg(v), fzero
        elif n == 3:
            return fzero, mpf_neg(v)
    if n == 0: return mpc_one
    if n == 1: return mpc_pos(z, prec, rnd)
    if n == 2: return mpc_square(z, prec, rnd)
    if n == -1: return mpc_reciprocal(z, prec, rnd)
    if n < 0: return mpc_reciprocal(mpc_pow_int(z, -n, prec+4), prec, rnd)
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if asign: aman = -aman
    if bsign: bman = -bman
    de = aexp - bexp
    abs_de = abs(de)
    exact_size = n*(abs_de + max(abc, bbc))
    if exact_size < 10000:
        if de > 0:
            aman <<= de
            aexp = bexp
        else:
            bman <<= (-de)
            bexp = aexp
        re, im = complex_int_pow(aman, bman, n)
        re = from_man_exp(re, int(n*aexp), prec, rnd)
        im = from_man_exp(im, int(n*bexp), prec, rnd)
        return re, im
    return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd)

def mpc_sqrt(z, prec, rnd=round_fast):
    """Complex square root (principal branch).

    We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where
    r = abs(a+bi), when a+bi is not a negative real number."""
    a, b = z
    if b == fzero:
        if a == fzero:
            return (a, b)
        # When a+bi is a negative real number, we get a real sqrt times i
        if a[0]:
            im = mpf_sqrt(mpf_neg(a), prec, rnd)
            return (fzero, im)
        else:
            re = mpf_sqrt(a, prec, rnd)
            return (re, fzero)
    wp = prec+20
    if not a[0]:                               # case a positive
        t  = mpf_add(mpc_abs((a, b), wp), a, wp)  # t = abs(a+bi) + a
        u = mpf_shift(t, -1)                      # u = t/2
        re = mpf_sqrt(u, prec, rnd)               # re = sqrt(u)
        v = mpf_shift(t, 1)                       # v = 2*t
        w  = mpf_sqrt(v, wp)                      # w = sqrt(v)
        im = mpf_div(b, w, prec, rnd)             # im = b / w
    else:                                      # case a negative
        t = mpf_sub(mpc_abs((a, b), wp), a, wp)   # t = abs(a+bi) - a
        u = mpf_shift(t, -1)                      # u = t/2
        im = mpf_sqrt(u, prec, rnd)               # im = sqrt(u)
        v = mpf_shift(t, 1)                       # v = 2*t
        w  = mpf_sqrt(v, wp)                      # w = sqrt(v)
        re = mpf_div(b, w, prec, rnd)             # re = b/w
        if b[0]:
            re = mpf_neg(re)
            im = mpf_neg(im)
    return re, im

def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n*start))
    b1 = int(rshift(b, prec - n*start))
    try:
        r = (a1 + 1j * b1)**(1.0/n)
        re = r.real
        im = r.imag
        re = MPZ(int(re))
        im = MPZ(int(im))
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec+extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n-1)
        re2 = rshift(re2, (n-1)*prevp - p - extra1)
        im2 = rshift(im2, (n-1)*prevp - p - extra1)
        r4 = (re2*re2 + im2*im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n-1)*lshift(re, p-prevp))//n
        im = (imb + (n-1)*lshift(im, p-prevp))//n
        prevp = p
    return re, im

def mpc_nthroot(z, n, prec, rnd=round_fast):
    """
    Complex n-th root.

    Use Newton method as in the real case when it is faster,
    otherwise use z**(1/n)
    """
    a, b = z
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n <= 20:
        prec2 = int(1.2 * (prec + 10))
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        pf = mpc_abs((a,b), prec)
        if pf[-2] + pf[-1] > -10  and pf[-2] + pf[-1] < prec:
            af = to_fixed(a, prec2)
            bf = to_fixed(b, prec2)
            re, im = mpc_nthroot_fixed(af, bf, n, prec2)
            extra = 10
            re = from_man_exp(re, -prec2-extra, prec2, rnd)
            im = from_man_exp(im, -prec2-extra, prec2, rnd)
            return re, im
    fn = from_int(n)
    prec2 = prec+10 + 10
    nth = mpf_rdiv_int(1, fn, prec2)
    re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im

def mpc_cbrt(z, prec, rnd=round_fast):
    """
    Complex cubic root.
    """
    return mpc_nthroot(z, 3, prec, rnd)

def mpc_exp(z, prec, rnd=round_fast):
    """
    Complex exponential function.

    We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
    for the computation. This formula is very nice because it is
    pefectly stable; since we just do real multiplications, the only
    numerical errors that can creep in are single-ulp rounding errors.

    The formula is efficient since mpmath's real exp is quite fast and
    since we can compute cos and sin simultaneously.

    It is no problem if a and b are large; if the implementations of
    exp/cos/sin are accurate and efficient for all real numbers, then
    so is this function for all complex numbers.
    """
    a, b = z
    if a == fzero:
        return mpf_cos_sin(b, prec, rnd)
    if b == fzero:
        return mpf_exp(a, prec, rnd), fzero
    mag = mpf_exp(a, prec+4, rnd)
    c, s = mpf_cos_sin(b, prec+4, rnd)
    re = mpf_mul(mag, c, prec, rnd)
    im = mpf_mul(mag, s, prec, rnd)
    return re, im

def mpc_log(z, prec, rnd=round_fast):
    re = mpf_log_hypot(z[0], z[1], prec, rnd)
    im = mpc_arg(z, prec, rnd)
    return re, im

def mpc_cos(z, prec, rnd=round_fast):
    """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
    sin(a)*sinh(b)*i.

    The same comments apply as for the complex exp: only real
    multiplications are pewrormed, so no cancellation errors are
    possible. The formula is also efficient since we can compute both
    pairs (cos, sin) and (cosh, sinh) in single stwps."""
    a, b = z
    if b == fzero:
        return mpf_cos(a, prec, rnd), fzero
    if a == fzero:
        return mpf_cosh(b, prec, rnd), fzero
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(c, ch, prec, rnd)
    im = mpf_mul(s, sh, prec, rnd)
    return re, mpf_neg(im)

def mpc_sin(z, prec, rnd=round_fast):
    """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) +
    cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional
    comments."""
    a, b = z
    if b == fzero:
        return mpf_sin(a, prec, rnd), fzero
    if a == fzero:
        return fzero, mpf_sinh(b, prec, rnd)
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(s, ch, prec, rnd)
    im = mpf_mul(c, sh, prec, rnd)
    return re, im

def mpc_tan(z, prec, rnd=round_fast):
    """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i
    where M = cos(2a) + cosh(2b)."""
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero: return mpf_tan(a, prec, rnd), fzero
    if a == fzero: return fzero, mpf_tanh(b, prec, rnd)
    wp = prec + 15
    a = mpf_shift(a, 1)
    b = mpf_shift(b, 1)
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    # TODO: handle cancellation when c ~=  -1 and ch ~= 1
    mag = mpf_add(c, ch, wp)
    re = mpf_div(s, mag, prec, rnd)
    im = mpf_div(sh, mag, prec, rnd)
    return re, im

def mpc_cos_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        return mpf_cos_pi(a, prec, rnd), fzero
    b = mpf_mul(b, mpf_pi(prec+5), prec+5)
    if a == fzero:
        return mpf_cosh(b, prec, rnd), fzero
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(c, ch, prec, rnd)
    im = mpf_mul(s, sh, prec, rnd)
    return re, mpf_neg(im)

def mpc_sin_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        return mpf_sin_pi(a, prec, rnd), fzero
    b = mpf_mul(b, mpf_pi(prec+5), prec+5)
    if a == fzero:
        return fzero, mpf_sinh(b, prec, rnd)
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(s, ch, prec, rnd)
    im = mpf_mul(c, sh, prec, rnd)
    return re, im

def mpc_cos_sin(z, prec, rnd=round_fast):
    a, b = z
    if a == fzero:
        ch, sh = mpf_cosh_sinh(b, prec, rnd)
        return (ch, fzero), (fzero, sh)
    if b == fzero:
        c, s = mpf_cos_sin(a, prec, rnd)
        return (c, fzero), (s, fzero)
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    cre = mpf_mul(c, ch, prec, rnd)
    cim = mpf_mul(s, sh, prec, rnd)
    sre = mpf_mul(s, ch, prec, rnd)
    sim = mpf_mul(c, sh, prec, rnd)
    return (cre, mpf_neg(cim)), (sre, sim)

def mpc_cos_sin_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        c, s = mpf_cos_sin_pi(a, prec, rnd)
        return (c, fzero), (s, fzero)
    b = mpf_mul(b, mpf_pi(prec+5), prec+5)
    if a == fzero:
        ch, sh = mpf_cosh_sinh(b, prec, rnd)
        return (ch, fzero), (fzero, sh)
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    cre = mpf_mul(c, ch, prec, rnd)
    cim = mpf_mul(s, sh, prec, rnd)
    sre = mpf_mul(s, ch, prec, rnd)
    sim = mpf_mul(c, sh, prec, rnd)
    return (cre, mpf_neg(cim)), (sre, sim)

def mpc_cosh(z, prec, rnd=round_fast):
    """Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i)."""
    a, b = z
    return mpc_cos((b, mpf_neg(a)), prec, rnd)

def mpc_sinh(z, prec, rnd=round_fast):
    """Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i)."""
    a, b = z
    b, a = mpc_sin((b, a), prec, rnd)
    return a, b

def mpc_tanh(z, prec, rnd=round_fast):
    """Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i)."""
    a, b = z
    b, a = mpc_tan((b, a), prec, rnd)
    return a, b

# TODO: avoid loss of accuracy
def mpc_atan(z, prec, rnd=round_fast):
    a, b = z
    # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z))
    # x = 1-I*z = 1 + b - I*a
    # y = 1+I*z = 1 - b + I*a
    wp = prec + 15
    x = mpf_add(fone, b, wp), mpf_neg(a)
    y = mpf_sub(fone, b, wp), a
    l1 = mpc_log(x, wp)
    l2 = mpc_log(y, wp)
    a, b = mpc_sub(l1, l2, prec, rnd)
    # (I/2) * (a+b*I) = (-b/2 + a/2*I)
    v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1)
    # Subtraction at infinity gives correct real part but
    # wrong imaginary part (should be zero)
    if v[1] == fnan and mpc_is_inf(z):
        v = (v[0], fzero)
    return v

beta_crossover = from_float(0.6417)
alpha_crossover = from_float(1.5)

def acos_asin(z, prec, rnd, n):
    """ complex acos for n = 0, asin for n = 1
    The algorithm is described in
    T.E. Hull, T.F. Fairgrieve and P.T.P. Tang
    'Implementing the Complex Arcsine and Arcosine Functions
    using Exception Handling',
    ACM Trans. on Math. Software Vol. 23 (1997), p299
    The complex acos and asin can be defined as
    acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1))
    asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1))
    where z = a + I*b
    alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha
    r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2)
    These expressions are rewritten in different ways in different
    regions, delimited by two crossovers alpha_crossover and beta_crossover,
    and by abs(a) <= 1, in order to improve the numerical accuracy.
    """
    a, b = z
    wp = prec + 10
    # special cases with real argument
    if b == fzero:
        am = mpf_sub(fone, mpf_abs(a), wp)
        # case abs(a) <= 1
        if not am[0]:
            if n == 0:
                return mpf_acos(a, prec, rnd), fzero
            else:
                return mpf_asin(a, prec, rnd), fzero
        # cases abs(a) > 1
        else:
            # case a < -1
            if a[0]:
                pi = mpf_pi(prec, rnd)
                c = mpf_acosh(mpf_neg(a), prec, rnd)
                if n == 0:
                    return pi, mpf_neg(c)
                else:
                    return mpf_neg(mpf_shift(pi, -1)), c
            # case a > 1
            else:
                c = mpf_acosh(a, prec, rnd)
                if n == 0:
                    return fzero, c
                else:
                    pi = mpf_pi(prec, rnd)
                    return mpf_shift(pi, -1), mpf_neg(c)
    asign = bsign = 0
    if a[0]:
        a = mpf_neg(a)
        asign = 1
    if b[0]:
        b = mpf_neg(b)
        bsign = 1
    am = mpf_sub(fone, a, wp)
    ap = mpf_add(fone, a, wp)
    r = mpf_hypot(ap, b, wp)
    s = mpf_hypot(am, b, wp)
    alpha = mpf_shift(mpf_add(r, s, wp), -1)
    beta = mpf_div(a, alpha, wp)
    b2 = mpf_mul(b,b, wp)
    # case beta <= beta_crossover
    if not mpf_sub(beta_crossover, beta, wp)[0]:
        if n == 0:
            re = mpf_acos(beta, wp)
        else:
            re = mpf_asin(beta, wp)
    else:
        # to compute the real part in this region use the identity
        # asin(beta) = atan(beta/sqrt(1-beta**2))
        # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a)
        # alpha + a is numerically accurate; alpha - a can have
        # cancellations leading to numerical inaccuracies, so rewrite
        # it in differente ways according to the region
        Ax = mpf_add(alpha, a, wp)
        # case a <= 1
        if not am[0]:
            # c = b*b/(r + (a+1)); d = (s + (1-a))
            # alpha - a = (1/2)*(c + d)
            # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a)
            # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d)))
            c = mpf_div(b2, mpf_add(r, ap, wp), wp)
            d = mpf_add(s, am, wp)
            re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1)
            if n == 0:
                re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp)
            else:
                re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp)
        else:
            # c = Ax/(r + (a+1)); d = Ax/(s - (1-a))
            # alpha - a = (1/2)*(c + d)
            # case n = 0: re = atan(b*sqrt(c + d)/2/a)
            # case n = 1: re = atan(a/(b*sqrt(c + d)/2)
            c = mpf_div(Ax, mpf_add(r, ap, wp), wp)
            d = mpf_div(Ax, mpf_sub(s, am, wp), wp)
            re = mpf_shift(mpf_add(c, d, wp), -1)
            re = mpf_mul(b, mpf_sqrt(re, wp), wp)
            if n == 0:
                re = mpf_atan(mpf_div(re, a, wp), wp)
            else:
                re = mpf_atan(mpf_div(a, re, wp), wp)
    # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover
    # replace it with 1 + Am1 + sqrt(Am1*(alpha+1)))
    # where Am1 = alpha -1
    # if alpha <= alpha_crossover:
    if not mpf_sub(alpha_crossover, alpha, wp)[0]:
        c1 = mpf_div(b2, mpf_add(r, ap, wp), wp)
        # case a < 1
        if mpf_neg(am)[0]:
            # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a))
            c2 = mpf_add(s, am, wp)
            c2 = mpf_div(b2, c2, wp)
            Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
        else:
            # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a)))
            c2 = mpf_sub(s, am, wp)
            Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
        # im = log(1 + Am1 + sqrt(Am1*(alpha+1)))
        im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp)
        im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp)
    else:
        # im = log(alpha + sqrt(alpha*alpha - 1))
        im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp)
        im = mpf_log(mpf_add(alpha, im, wp), wp)
    if asign:
        if n == 0:
            re = mpf_sub(mpf_pi(wp), re, wp)
        else:
            re = mpf_neg(re)
    if not bsign and n == 0:
        im = mpf_neg(im)
    if bsign and n == 1:
        im = mpf_neg(im)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im

def mpc_acos(z, prec, rnd=round_fast):
    return acos_asin(z, prec, rnd, 0)

def mpc_asin(z, prec, rnd=round_fast):
    return acos_asin(z, prec, rnd, 1)

def mpc_asinh(z, prec, rnd=round_fast):
    # asinh(z) = I * asin(-I z)
    a, b = z
    a, b =  mpc_asin((b, mpf_neg(a)), prec, rnd)
    return mpf_neg(b), a

def mpc_acosh(z, prec, rnd=round_fast):
    # acosh(z) = -I * acos(z)   for Im(acos(z)) <= 0
    #            +I * acos(z)   otherwise
    a, b = mpc_acos(z, prec, rnd)
    if b[0] or b == fzero:
        return mpf_neg(b), a
    else:
        return b, mpf_neg(a)

def mpc_atanh(z, prec, rnd=round_fast):
    # atanh(z) = (log(1+z)-log(1-z))/2
    wp = prec + 15
    a = mpc_add(z, mpc_one, wp)
    b = mpc_sub(mpc_one, z, wp)
    a = mpc_log(a, wp)
    b = mpc_log(b, wp)
    v = mpc_shift(mpc_sub(a, b, wp), -1)
    # Subtraction at infinity gives correct imaginary part but
    # wrong real part (should be zero)
    if v[0] == fnan and mpc_is_inf(z):
        v = (fzero, v[1])
    return v

def mpc_fibonacci(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        return (mpf_fibonacci(re, prec, rnd), fzero)
    size = max(abs(re[2]+re[3]), abs(re[2]+re[3]))
    wp = prec + size + 20
    a = mpf_phi(wp)
    b = mpf_add(mpf_shift(a, 1), fnone, wp)
    u = mpc_pow((a, fzero), z, wp)
    v = mpc_cos_pi(z, wp)
    v = mpc_div(v, u, wp)
    u = mpc_sub(u, v, wp)
    u = mpc_div_mpf(u, b, prec, rnd)
    return u

def mpf_expj(x, prec, rnd='f'):
    raise ComplexResult

def mpc_expj(z, prec, rnd='f'):
    re, im = z
    if im == fzero:
        return mpf_cos_sin(re, prec, rnd)
    if re == fzero:
        return mpf_exp(mpf_neg(im), prec, rnd), fzero
    ey = mpf_exp(mpf_neg(im), prec+10)
    c, s = mpf_cos_sin(re, prec+10)
    re = mpf_mul(ey, c, prec, rnd)
    im = mpf_mul(ey, s, prec, rnd)
    return re, im

def mpf_expjpi(x, prec, rnd='f'):
    raise ComplexResult

def mpc_expjpi(z, prec, rnd='f'):
    re, im = z
    if im == fzero:
        return mpf_cos_sin_pi(re, prec, rnd)
    sign, man, exp, bc = im
    wp = prec+10
    if man:
        wp += max(0, exp+bc)
    im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp))
    if re == fzero:
        return mpf_exp(im, prec, rnd), fzero
    ey = mpf_exp(im, prec+10)
    c, s = mpf_cos_sin_pi(re, prec+10)
    re = mpf_mul(ey, c, prec, rnd)
    im = mpf_mul(ey, s, prec, rnd)
    return re, im


if BACKEND == 'sage':
    try:
        import sage.libs.mpmath.ext_libmp as _lbmp
        mpc_exp = _lbmp.mpc_exp
        mpc_sqrt = _lbmp.mpc_sqrt
    except (ImportError, AttributeError):
        print("Warning: Sage imports in libmpc failed")