linalg.py 26.4 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
"""
Linear algebra
--------------

Linear equations
................

Basic linear algebra is implemented; you can for example solve the linear
equation system::

      x + 2*y = -10
    3*x + 4*y =  10

using ``lu_solve``::

    >>> from mpmath import *
    >>> mp.pretty = False
    >>> A = matrix([[1, 2], [3, 4]])
    >>> b = matrix([-10, 10])
    >>> x = lu_solve(A, b)
    >>> x
    matrix(
    [['30.0'],
     ['-20.0']])

If you don't trust the result, use ``residual`` to calculate the residual ||A*x-b||::

    >>> residual(A, x, b)
    matrix(
    [['3.46944695195361e-18'],
     ['3.46944695195361e-18']])
    >>> str(eps)
    '2.22044604925031e-16'

As you can see, the solution is quite accurate. The error is caused by the
inaccuracy of the internal floating point arithmetic. Though, it's even smaller
than the current machine epsilon, which basically means you can trust the
result.

If you need more speed, use NumPy. Or choose a faster data type using the
keyword ``force_type``::

    >>> lu_solve(A, b, force_type=float)
    matrix(
    [['30.0'],
     ['-20.0']])

``lu_solve`` accepts overdetermined systems. It is usually not possible to solve
such systems, so the residual is minimized instead. Internally this is done
using Cholesky decomposition to compute a least squares approximation. This means
that that ``lu_solve`` will square the errors. If you can't afford this, use
``qr_solve`` instead. It is twice as slow but more accurate, and it calculates
the residual automatically.


Matrix factorization
....................

The function ``lu`` computes an explicit LU factorization of a matrix::

    >>> P, L, U = lu(matrix([[0,2,3],[4,5,6],[7,8,9]]))
    >>> print(P)
    [0.0  0.0  1.0]
    [1.0  0.0  0.0]
    [0.0  1.0  0.0]
    >>> print(L)
    [              1.0                0.0  0.0]
    [              0.0                1.0  0.0]
    [0.571428571428571  0.214285714285714  1.0]
    >>> print(U)
    [7.0  8.0                9.0]
    [0.0  2.0                3.0]
    [0.0  0.0  0.214285714285714]
    >>> print(P.T*L*U)
    [0.0  2.0  3.0]
    [4.0  5.0  6.0]
    [7.0  8.0  9.0]

Interval matrices
-----------------

Matrices may contain interval elements. This allows one to perform
basic linear algebra operations such as matrix multiplication
and equation solving with rigorous error bounds::

    >>> a = iv.matrix([['0.1','0.3','1.0'],
    ...             ['7.1','5.5','4.8'],
    ...             ['3.2','4.4','5.6']], force_type=mpi)
    >>>
    >>> b = iv.matrix(['4','0.6','0.5'], force_type=mpi)
    >>> c = iv.lu_solve(a, b)
    >>> print(c)
    [   [5.2582327113062568605927528666, 5.25823271130625686059275702219]]
    [[-13.1550493962678375411635581388, -13.1550493962678375411635540152]]
    [  [7.42069154774972557628979076189, 7.42069154774972557628979190734]]
    >>> print(a*c)
    [  [3.99999999999999999999999844904, 4.00000000000000000000000155096]]
    [[0.599999999999999999999968898009, 0.600000000000000000000031763736]]
    [[0.499999999999999999999979320485, 0.500000000000000000000020679515]]
"""

# TODO:
# *implement high-level qr()
# *test unitvector
# *iterative solving

from copy import copy

from ..libmp.backend import xrange

class LinearAlgebraMethods(object):

    def LU_decomp(ctx, A, overwrite=False, use_cache=True):
        """
        LU-factorization of a n*n matrix using the Gauss algorithm.
        Returns L and U in one matrix and the pivot indices.

        Use overwrite to specify whether A will be overwritten with L and U.
        """
        if not A.rows == A.cols:
            raise ValueError('need n*n matrix')
        # get from cache if possible
        if use_cache and isinstance(A, ctx.matrix) and A._LU:
            return A._LU
        if not overwrite:
            orig = A
            A = A.copy()
        tol = ctx.absmin(ctx.mnorm(A,1) * ctx.eps) # each pivot element has to be bigger
        n = A.rows
        p = [None]*(n - 1)
        for j in xrange(n - 1):
            # pivoting, choose max(abs(reciprocal row sum)*abs(pivot element))
            biggest = 0
            for k in xrange(j, n):
                s = ctx.fsum([ctx.absmin(A[k,l]) for l in xrange(j, n)])
                if ctx.absmin(s) <= tol:
                    raise ZeroDivisionError('matrix is numerically singular')
                current = 1/s * ctx.absmin(A[k,j])
                if current > biggest: # TODO: what if equal?
                    biggest = current
                    p[j] = k
            # swap rows according to p
            ctx.swap_row(A, j, p[j])
            if ctx.absmin(A[j,j]) <= tol:
                raise ZeroDivisionError('matrix is numerically singular')
            # calculate elimination factors and add rows
            for i in xrange(j + 1, n):
                A[i,j] /= A[j,j]
                for k in xrange(j + 1, n):
                    A[i,k] -= A[i,j]*A[j,k]
        if ctx.absmin(A[n - 1,n - 1]) <= tol:
            raise ZeroDivisionError('matrix is numerically singular')
        # cache decomposition
        if not overwrite and isinstance(orig, ctx.matrix):
            orig._LU = (A, p)
        return A, p

    def L_solve(ctx, L, b, p=None):
        """
        Solve the lower part of a LU factorized matrix for y.
        """
        if L.rows != L.cols:
            raise RuntimeError("need n*n matrix")
        n = L.rows
        if len(b) != n:
            raise ValueError("Value should be equal to n")
        b = copy(b)
        if p: # swap b according to p
            for k in xrange(0, len(p)):
                ctx.swap_row(b, k, p[k])
        # solve
        for i in xrange(1, n):
            for j in xrange(i):
                b[i] -= L[i,j] * b[j]
        return b

    def U_solve(ctx, U, y):
        """
        Solve the upper part of a LU factorized matrix for x.
        """
        if U.rows != U.cols:
            raise RuntimeError("need n*n matrix")
        n = U.rows
        if len(y) != n:
            raise ValueError("Value should be equal to n")
        x = copy(y)
        for i in xrange(n - 1, -1, -1):
            for j in xrange(i + 1, n):
                x[i] -= U[i,j] * x[j]
            x[i] /= U[i,i]
        return x

    def lu_solve(ctx, A, b, **kwargs):
        """
        Ax = b => x

        Solve a determined or overdetermined linear equations system.
        Fast LU decomposition is used, which is less accurate than QR decomposition
        (especially for overdetermined systems), but it's twice as efficient.
        Use qr_solve if you want more precision or have to solve a very ill-
        conditioned system.

        If you specify real=True, it does not check for overdeterminded complex
        systems.
        """
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A nor b
            A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
            if A.rows < A.cols:
                raise ValueError('cannot solve underdetermined system')
            if A.rows > A.cols:
                # use least-squares method if overdetermined
                # (this increases errors)
                AH = A.H
                A = AH * A
                b = AH * b
                if (kwargs.get('real', False) or
                    not sum(type(i) is ctx.mpc for i in A)):
                    # TODO: necessary to check also b?
                    x = ctx.cholesky_solve(A, b)
                else:
                    x = ctx.lu_solve(A, b)
            else:
                # LU factorization
                A, p = ctx.LU_decomp(A)
                b = ctx.L_solve(A, b, p)
                x = ctx.U_solve(A, b)
        finally:
            ctx.prec = prec
        return x

    def improve_solution(ctx, A, x, b, maxsteps=1):
        """
        Improve a solution to a linear equation system iteratively.

        This re-uses the LU decomposition and is thus cheap.
        Usually 3 up to 4 iterations are giving the maximal improvement.
        """
        if A.rows != A.cols:
            raise RuntimeError("need n*n matrix") # TODO: really?
        for _ in xrange(maxsteps):
            r = ctx.residual(A, x, b)
            if ctx.norm(r, 2) < 10*ctx.eps:
                break
            # this uses cached LU decomposition and is thus cheap
            dx = ctx.lu_solve(A, -r)
            x += dx
        return x

    def lu(ctx, A):
        """
        A -> P, L, U

        LU factorisation of a square matrix A. L is the lower, U the upper part.
        P is the permutation matrix indicating the row swaps.

        P*A = L*U

        If you need efficiency, use the low-level method LU_decomp instead, it's
        much more memory efficient.
        """
        # get factorization
        A, p = ctx.LU_decomp(A)
        n = A.rows
        L = ctx.matrix(n)
        U = ctx.matrix(n)
        for i in xrange(n):
            for j in xrange(n):
                if i > j:
                    L[i,j] = A[i,j]
                elif i == j:
                    L[i,j] = 1
                    U[i,j] = A[i,j]
                else:
                    U[i,j] = A[i,j]
        # calculate permutation matrix
        P = ctx.eye(n)
        for k in xrange(len(p)):
            ctx.swap_row(P, k, p[k])
        return P, L, U

    def unitvector(ctx, n, i):
        """
        Return the i-th n-dimensional unit vector.
        """
        assert 0 < i <= n, 'this unit vector does not exist'
        return [ctx.zero]*(i-1) + [ctx.one] + [ctx.zero]*(n-i)

    def inverse(ctx, A, **kwargs):
        """
        Calculate the inverse of a matrix.

        If you want to solve an equation system Ax = b, it's recommended to use
        solve(A, b) instead, it's about 3 times more efficient.
        """
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A
            A = ctx.matrix(A, **kwargs).copy()
            n = A.rows
            # get LU factorisation
            A, p = ctx.LU_decomp(A)
            cols = []
            # calculate unit vectors and solve corresponding system to get columns
            for i in xrange(1, n + 1):
                e = ctx.unitvector(n, i)
                y = ctx.L_solve(A, e, p)
                cols.append(ctx.U_solve(A, y))
            # convert columns to matrix
            inv = []
            for i in xrange(n):
                row = []
                for j in xrange(n):
                    row.append(cols[j][i])
                inv.append(row)
            result = ctx.matrix(inv, **kwargs)
        finally:
            ctx.prec = prec
        return result

    def householder(ctx, A):
        """
        (A|b) -> H, p, x, res

        (A|b) is the coefficient matrix with left hand side of an optionally
        overdetermined linear equation system.
        H and p contain all information about the transformation matrices.
        x is the solution, res the residual.
        """
        if not isinstance(A, ctx.matrix):
            raise TypeError("A should be a type of ctx.matrix")
        m = A.rows
        n = A.cols
        if m < n - 1:
            raise RuntimeError("Columns should not be less than rows")
        # calculate Householder matrix
        p = []
        for j in xrange(0, n - 1):
            s = ctx.fsum(abs(A[i,j])**2 for i in xrange(j, m))
            if not abs(s) > ctx.eps:
                raise ValueError('matrix is numerically singular')
            p.append(-ctx.sign(ctx.re(A[j,j])) * ctx.sqrt(s))
            kappa = ctx.one / (s - p[j] * A[j,j])
            A[j,j] -= p[j]
            for k in xrange(j+1, n):
                y = ctx.fsum(ctx.conj(A[i,j]) * A[i,k] for i in xrange(j, m)) * kappa
                for i in xrange(j, m):
                    A[i,k] -= A[i,j] * y
        # solve Rx = c1
        x = [A[i,n - 1] for i in xrange(n - 1)]
        for i in xrange(n - 2, -1, -1):
            x[i] -= ctx.fsum(A[i,j] * x[j] for j in xrange(i + 1, n - 1))
            x[i] /= p[i]
        # calculate residual
        if not m == n - 1:
            r = [A[m-1-i, n-1] for i in xrange(m - n + 1)]
        else:
            # determined system, residual should be 0
            r = [0]*m # maybe a bad idea, changing r[i] will change all elements
        return A, p, x, r

    #def qr(ctx, A):
    #    """
    #    A -> Q, R
    #
    #    QR factorisation of a square matrix A using Householder decomposition.
    #    Q is orthogonal, this leads to very few numerical errors.
    #
    #    A = Q*R
    #    """
    #    H, p, x, res = householder(A)
    # TODO: implement this

    def residual(ctx, A, x, b, **kwargs):
        """
        Calculate the residual of a solution to a linear equation system.

        r = A*x - b for A*x = b
        """
        oldprec = ctx.prec
        try:
            ctx.prec *= 2
            A, x, b = ctx.matrix(A, **kwargs), ctx.matrix(x, **kwargs), ctx.matrix(b, **kwargs)
            return A*x - b
        finally:
            ctx.prec = oldprec

    def qr_solve(ctx, A, b, norm=None, **kwargs):
        """
        Ax = b => x, ||Ax - b||

        Solve a determined or overdetermined linear equations system and
        calculate the norm of the residual (error).
        QR decomposition using Householder factorization is applied, which gives very
        accurate results even for ill-conditioned matrices. qr_solve is twice as
        efficient.
        """
        if norm is None:
            norm = ctx.norm
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A nor b
            A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
            if A.rows < A.cols:
                raise ValueError('cannot solve underdetermined system')
            H, p, x, r = ctx.householder(ctx.extend(A, b))
            res = ctx.norm(r)
            # calculate residual "manually" for determined systems
            if res == 0:
                res = ctx.norm(ctx.residual(A, x, b))
            return ctx.matrix(x, **kwargs), res
        finally:
            ctx.prec = prec

    def cholesky(ctx, A, tol=None):
        r"""
        Cholesky decomposition of a symmetric positive-definite matrix `A`.
        Returns a lower triangular matrix `L` such that `A = L \times L^T`.
        More generally, for a complex Hermitian positive-definite matrix,
        a Cholesky decomposition satisfying `A = L \times L^H` is returned.

        The Cholesky decomposition can be used to solve linear equation
        systems twice as efficiently as LU decomposition, or to
        test whether `A` is positive-definite.

        The optional parameter ``tol`` determines the tolerance for
        verifying positive-definiteness.

        **Examples**

        Cholesky decomposition of a positive-definite symmetric matrix::

            >>> from mpmath import *
            >>> mp.dps = 25; mp.pretty = True
            >>> A = eye(3) + hilbert(3)
            >>> nprint(A)
            [     2.0      0.5  0.333333]
            [     0.5  1.33333      0.25]
            [0.333333     0.25       1.2]
            >>> L = cholesky(A)
            >>> nprint(L)
            [ 1.41421      0.0      0.0]
            [0.353553  1.09924      0.0]
            [0.235702  0.15162  1.05899]
            >>> chop(A - L*L.T)
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]

        Cholesky decomposition of a Hermitian matrix::

            >>> A = eye(3) + matrix([[0,0.25j,-0.5j],[-0.25j,0,0],[0.5j,0,0]])
            >>> L = cholesky(A)
            >>> nprint(L)
            [          1.0                0.0                0.0]
            [(0.0 - 0.25j)  (0.968246 + 0.0j)                0.0]
            [ (0.0 + 0.5j)  (0.129099 + 0.0j)  (0.856349 + 0.0j)]
            >>> chop(A - L*L.H)
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]

        Attempted Cholesky decomposition of a matrix that is not positive
        definite::

            >>> A = -eye(3) + hilbert(3)
            >>> L = cholesky(A)
            Traceback (most recent call last):
              ...
            ValueError: matrix is not positive-definite

        **References**

        1. [Wikipedia]_ http://en.wikipedia.org/wiki/Cholesky_decomposition

        """
        if not isinstance(A, ctx.matrix):
            raise RuntimeError("A should be a type of ctx.matrix")
        if not A.rows == A.cols:
            raise ValueError('need n*n matrix')
        if tol is None:
            tol = +ctx.eps
        n = A.rows
        L = ctx.matrix(n)
        for j in xrange(n):
            c = ctx.re(A[j,j])
            if abs(c-A[j,j]) > tol:
                raise ValueError('matrix is not Hermitian')
            s = c - ctx.fsum((L[j,k] for k in xrange(j)),
                absolute=True, squared=True)
            if s < tol:
                raise ValueError('matrix is not positive-definite')
            L[j,j] = ctx.sqrt(s)
            for i in xrange(j, n):
                it1 = (L[i,k] for k in xrange(j))
                it2 = (L[j,k] for k in xrange(j))
                t = ctx.fdot(it1, it2, conjugate=True)
                L[i,j] = (A[i,j] - t) / L[j,j]
        return L

    def cholesky_solve(ctx, A, b, **kwargs):
        """
        Ax = b => x

        Solve a symmetric positive-definite linear equation system.
        This is twice as efficient as lu_solve.

        Typical use cases:
        * A.T*A
        * Hessian matrix
        * differential equations
        """
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A nor b
            A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
            if A.rows !=  A.cols:
                raise ValueError('can only solve determined system')
            # Cholesky factorization
            L = ctx.cholesky(A)
            # solve
            n = L.rows
            if len(b) != n:
                raise ValueError("Value should be equal to n")
            for i in xrange(n):
                b[i] -= ctx.fsum(L[i,j] * b[j] for j in xrange(i))
                b[i] /= L[i,i]
            x = ctx.U_solve(L.T, b)
            return x
        finally:
            ctx.prec = prec

    def det(ctx, A):
        """
        Calculate the determinant of a matrix.
        """
        prec = ctx.prec
        try:
            # do not overwrite A
            A = ctx.matrix(A).copy()
            # use LU factorization to calculate determinant
            try:
                R, p = ctx.LU_decomp(A)
            except ZeroDivisionError:
                return 0
            z = 1
            for i, e in enumerate(p):
                if i != e:
                    z *= -1
            for i in xrange(A.rows):
                z *= R[i,i]
            return z
        finally:
            ctx.prec = prec

    def cond(ctx, A, norm=None):
        """
        Calculate the condition number of a matrix using a specified matrix norm.

        The condition number estimates the sensitivity of a matrix to errors.
        Example: small input errors for ill-conditioned coefficient matrices
        alter the solution of the system dramatically.

        For ill-conditioned matrices it's recommended to use qr_solve() instead
        of lu_solve(). This does not help with input errors however, it just avoids
        to add additional errors.

        Definition:    cond(A) = ||A|| * ||A**-1||
        """
        if norm is None:
            norm = lambda x: ctx.mnorm(x,1)
        return norm(A) * norm(ctx.inverse(A))

    def lu_solve_mat(ctx, a, b):
        """Solve a * x = b  where a and b are matrices."""
        r = ctx.matrix(a.rows, b.cols)
        for i in range(b.cols):
            c = ctx.lu_solve(a, b.column(i))
            for j in range(len(c)):
                r[j, i] = c[j]
        return r

    def qr(ctx, A, mode = 'full', edps = 10):
        """
        Compute a QR factorization $A = QR$ where
        A is an m x n matrix of real or complex numbers where m >= n

        mode has following meanings:
        (1) mode = 'raw' returns two matrixes (A, tau) in the
            internal format used by LAPACK
        (2) mode = 'skinny' returns the leading n columns of Q
            and n rows of R
        (3) Any other value returns the leading m columns of Q
            and m rows of R

        edps is the increase in mp precision used for calculations

        **Examples**

            >>> from mpmath import *
            >>> mp.dps = 15
            >>> mp.pretty = True
            >>> A = matrix([[1, 2], [3, 4], [1, 1]])
            >>> Q, R = qr(A)
            >>> Q
            [-0.301511344577764   0.861640436855329   0.408248290463863]
            [-0.904534033733291  -0.123091490979333  -0.408248290463863]
            [-0.301511344577764  -0.492365963917331   0.816496580927726]
            >>> R
            [-3.3166247903554  -4.52267016866645]
            [             0.0  0.738548945875996]
            [             0.0                0.0]
            >>> Q * R
            [1.0  2.0]
            [3.0  4.0]
            [1.0  1.0]
            >>> chop(Q.T * Q)
            [1.0  0.0  0.0]
            [0.0  1.0  0.0]
            [0.0  0.0  1.0]
            >>> B = matrix([[1+0j, 2-3j], [3+j, 4+5j]])
            >>> Q, R = qr(B)
            >>> nprint(Q)
            [     (-0.301511 + 0.0j)   (0.0695795 - 0.95092j)]
            [(-0.904534 - 0.301511j)  (-0.115966 + 0.278318j)]
            >>> nprint(R)
            [(-3.31662 + 0.0j)  (-5.72872 - 2.41209j)]
            [              0.0       (3.91965 + 0.0j)]
            >>> Q * R
            [(1.0 + 0.0j)  (2.0 - 3.0j)]
            [(3.0 + 1.0j)  (4.0 + 5.0j)]
            >>> chop(Q.T * Q.conjugate())
            [1.0  0.0]
            [0.0  1.0]

        """

        # check values before continuing
        assert isinstance(A, ctx.matrix)
        m = A.rows
        n = A.cols
        assert n > 1
        assert m >= n
        assert edps >= 0

        # check for complex data type
        cmplx = any(type(x) is ctx.mpc for x in A)

        # temporarily increase the precision and initialize
        with ctx.extradps(edps):
            tau = ctx.matrix(n,1)
            A = A.copy()

            # ---------------
            # FACTOR MATRIX A
            # ---------------
            if cmplx:
                one = ctx.mpc('1.0', '0.0')
                zero = ctx.mpc('0.0', '0.0')
                rzero = ctx.mpf('0.0')

                # main loop to factor A (complex)
                for j in xrange(0, n):
                    alpha = A[j,j]
                    alphr = ctx.re(alpha)
                    alphi = ctx.im(alpha)

                    if (m-j) >= 2:
                        xnorm = ctx.fsum( A[i,j]*ctx.conj(A[i,j]) for i in xrange(j+1, m) )
                        xnorm = ctx.re( ctx.sqrt(xnorm) )
                    else:
                        xnorm = rzero

                    if (xnorm == rzero) and (alphi == rzero):
                        tau[j] = zero
                        continue

                    if alphr < rzero:
                        beta = ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)
                    else:
                        beta = -ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)

                    tau[j] = ctx.mpc( (beta - alphr) / beta, -alphi / beta )
                    t = -ctx.conj(tau[j])
                    za = one / (alpha - beta)

                    for i in xrange(j+1, m):
                        A[i,j] *= za

                    A[j,j] = one
                    for k in xrange(j+1, n):
                        y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j, m))
                        temp = t * ctx.conj(y)
                        for i in xrange(j, m):
                            A[i,k] += A[i,j] * temp

                    A[j,j] = ctx.mpc(beta, '0.0')
            else:
                one = ctx.mpf('1.0')
                zero = ctx.mpf('0.0')

                # main loop to factor A (real)
                for j in xrange(0, n):
                    alpha = A[j,j]

                    if (m-j) > 2:
                        xnorm = ctx.fsum( (A[i,j])**2 for i in xrange(j+1, m) )
                        xnorm = ctx.sqrt(xnorm)
                    elif (m-j) == 2:
                        xnorm = abs( A[m-1,j] )
                    else:
                        xnorm = zero

                    if xnorm == zero:
                        tau[j] = zero
                        continue

                    if alpha < zero:
                        beta = ctx.sqrt(alpha**2 + xnorm**2)
                    else:
                        beta = -ctx.sqrt(alpha**2 + xnorm**2)

                    tau[j] = (beta - alpha) / beta
                    t = -tau[j]
                    da = one / (alpha - beta)

                    for i in xrange(j+1, m):
                        A[i,j] *= da

                    A[j,j] = one
                    for k in xrange(j+1, n):
                        y = ctx.fsum( A[i,j] * A[i,k] for i in xrange(j, m) )
                        temp = t * y
                        for i in xrange(j,m):
                            A[i,k] += A[i,j] * temp

                    A[j,j] = beta

            # return factorization in same internal format as LAPACK
            if (mode == 'raw') or (mode == 'RAW'):
                return A, tau

            # ----------------------------------
            # FORM Q USING BACKWARD ACCUMULATION
            # ----------------------------------

            # form R before the values are overwritten
            R = A.copy()
            for j in xrange(0, n):
                for i in xrange(j+1, m):
                    R[i,j] = zero

            # set the value of p (number of columns of Q to return)
            p = m
            if (mode == 'skinny') or (mode == 'SKINNY'):
                p = n

            # add columns to A if needed and initialize
            A.cols += (p-n)
            for j in xrange(0, p):
                A[j,j] = one
                for i in xrange(0, j):
                    A[i,j] = zero

            # main loop to form Q
            for j in xrange(n-1, -1, -1):
                t = -tau[j]
                A[j,j] += t

                for k in xrange(j+1, p):
                    if cmplx:
                        y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j+1, m))
                        temp = t * ctx.conj(y)
                    else:
                        y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j+1, m))
                        temp = t * y
                    A[j,k] = temp
                    for i in xrange(j+1, m):
                        A[i,k] += A[i,j] * temp

                for i in xrange(j+1, m):
                    A[i, j] *= t

            return A, R[0:p,0:n]

        # ------------------
        # END OF FUNCTION QR
        # ------------------