tooba_f.py 4.8 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1 2 3 4 5 6
import numpy as np
import scipy.optimize

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

Stelios Karozis's avatar
Stelios Karozis committed
7 8 9 10 11 12
from pytrr import (
    read_trr_header,
    read_trr_data,
    skip_trr_data,
    )

Stelios Karozis's avatar
Stelios Karozis committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
def fitPlaneLTSQ(XYZ):
    (rows, cols) = XYZ.shape
    G = np.ones((rows, 3))
    G[:, 0] = XYZ[:, 0]  #X
    G[:, 1] = XYZ[:, 1]  #Y
    Z = XYZ[:, 2]
    (a, b, c),resid,rank,s = np.linalg.lstsq(G, Z, rcond=None)
    normal = (a, b, -1)
    nn = np.linalg.norm(normal)
    normal = normal / nn
    return (c, normal)

def angle_between2D(p1, p2):
    #arctan2 is anticlockwise
    ang1 = np.arctan2(*p1[::-1])
    ang2 = np.arctan2(*p2[::-1])
    angle=np.rad2deg((ang1 - ang2) % (2 * np.pi)) #degree
    if angle<180:
        return angle
    else:
        return 360 - angle

def angle_between3D(v1, v2):
# v1 is your firsr vector
# v2 is your second vector
    angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))) #rad
    angle=180*angle/np.pi #degrees
    if angle<180:
        return angle
    else:
        return 360 - angle

Stelios Karozis's avatar
Stelios Karozis committed
45
def plot_surf(data, normal, c):
Stelios Karozis's avatar
Stelios Karozis committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    #Plot surface
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    # plot fitted plane
    maxx = np.max(data[:,0])
    maxy = np.max(data[:,1])
    minx = np.min(data[:,0])
    miny = np.min(data[:,1])

    point = np.array([0.0, 0.0, c])
    d = -point.dot(normal)

    # plot original points
    ax.scatter(data[:, 0], data[:, 1], data[:, 2])

    # compute needed points for plane plotting
    xx, yy = np.meshgrid([minx, maxx], [miny, maxy])
    z = (-normal[0]*xx - normal[1]*yy - d)*1. / normal[2]

    # plot plane
    ax.plot_surface(xx, yy, z, alpha=0.2)

    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
    plt.show()

def count_frames(trajfile='traj.trr'):
75 76 77 78 79
    """
    Count total frames of .trr file

    parameters:     trajfile = [.trr]
    """
Stelios Karozis's avatar
Stelios Karozis committed
80 81 82 83 84 85 86 87 88 89 90 91
    cnt_fr=0
    with open(trajfile, 'rb') as inputfile:
        for i in range(1000):
            try: 
                header = read_trr_header(inputfile)
                #print('Step: {step}, time: {time}'.format(**header))
                skip_trr_data(inputfile, header)
                cnt_fr=cnt_fr+1
            except EOFError:
                pass
    return cnt_fr

Stelios Karozis's avatar
Stelios Karozis committed
92
def fr_export(trajfile='traj.trr', num_frames=1):
93 94 95 96 97 98 99
    """
    Export frames from gromacs .trr file. 

    parameters:     trajfile = [.trr]
                    num_frames = [number of frames to keep
                                  counting from the end of file]
    """
Stelios Karozis's avatar
Stelios Karozis committed
100
    cnt_fr=count_frames(trajfile)
101
    data_all={}
Stelios Karozis's avatar
Stelios Karozis committed
102
    with open(trajfile, 'rb') as inputfile:
Stelios Karozis's avatar
Stelios Karozis committed
103
        for i in range(cnt_fr-num_frames):
Stelios Karozis's avatar
Stelios Karozis committed
104 105 106
            header = read_trr_header(inputfile)
            #print('Step: {step}, time: {time}'.format(**header))
            skip_trr_data(inputfile, header)
107 108 109 110 111 112 113 114 115 116
        for i in range(cnt_fr-num_frames,cnt_fr):
            header = read_trr_header(inputfile)
            print('Step: {step}, time: {time}'.format(**header))
            data = read_trr_data(inputfile, header)
            #print(data.keys())
            #print(data['box'])
            #print(data['x'][0])
            step='{step}'.format(**header)
            data_all[step]=data
        return data_all
Stelios Karozis's avatar
Stelios Karozis committed
117

Stelios Karozis's avatar
Stelios Karozis committed
118
def read_gro(gro):
119 120 121 122 123 124 125 126 127 128 129 130 131
    """
    Read .gro file and exports 
    1. system name
    2. data number
    3. box size
    4. residue number
    5. residue type
    6. atom type
    7. atom number
    8. free format data (x,y,z,v,u,w)

    parameters:     gro = [.gro]
    """
Stelios Karozis's avatar
Stelios Karozis committed
132 133
    cnt=0
    data_num=0
Stelios Karozis's avatar
Stelios Karozis committed
134 135 136 137 138
    res_num = [] 
    res_type = []  
    atom_type = [] 
    atom_num  = []
    rest_dt = []
Stelios Karozis's avatar
Stelios Karozis committed
139 140 141 142 143
    with open(gro, 'r') as F:
        for line in F:
            cnt=cnt+1
            print(cnt)
            if cnt>2:
Stelios Karozis's avatar
Stelios Karozis committed
144 145 146 147 148
                res_num.append(line[:5])  
                res_type.append(line[5:10])  
                atom_type.append(line[10:15]) 
                atom_num.append(line[15:20])
                rest_dt.append(line[20:])
Stelios Karozis's avatar
Stelios Karozis committed
149 150 151 152 153 154
            elif cnt==1:
                system=line[:10]
            elif cnt==2:
                data_num=int(line[:7])
            if cnt>data_num:
                box_size=line[:50]
Stelios Karozis's avatar
Stelios Karozis committed
155
        #print(system,data_num,box_size)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        return system,data_num,box_size,res_num,res_type,atom_type,atom_num,rest_dt

def domain_decomposition(data,dx,dy,dz):
    """
    Identify residues that rely inside a subdomain 
    of a rectangular box

    """
    print('xs ys zs x y z')
    for step in data.keys():
        #print(data[step]['box'])
        #data[step]['box'][row][element]
        xs=data[step]['box'][0][0]
        ys=data[step]['box'][1][1]
        zs=data[step]['box'][2][2]
        #data[step]['x'][atom_num][x(0),y(1),z(3)]
        x=data[step]['x'][0][0]
        y=data[step]['x'][0][1]
        z=data[step]['x'][0][2]
        print(xs,ys,zs, x, y, z)
    #Todo: identify points inside box that belong to same residue
    #return