tooba_f.py 22.4 KB
Newer Older
Stelios Karozis's avatar
Stelios Karozis committed
1
import os
Stelios Karozis's avatar
Stelios Karozis committed
2
import numpy as np
3 4
#from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
Stelios Karozis's avatar
Stelios Karozis committed
5
import scipy.optimize
Stelios Karozis's avatar
Stelios Karozis committed
6 7
import pickle as pkl
import json
Stelios Karozis's avatar
Stelios Karozis committed
8
from progress.bar import Bar
Stelios Karozis's avatar
Stelios Karozis committed
9

Stelios Karozis's avatar
Stelios Karozis committed
10 11 12 13 14 15
from pytrr import (
    read_trr_header,
    read_trr_data,
    skip_trr_data,
    )

Stelios Karozis's avatar
Stelios Karozis committed
16
def fitPlaneLTSQ(XYZ):
17
    #Source: https://gist.github.com/RustingSword/e22a11e1d391f2ab1f2c
Stelios Karozis's avatar
Stelios Karozis committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    (rows, cols) = XYZ.shape
    G = np.ones((rows, 3))
    G[:, 0] = XYZ[:, 0]  #X
    G[:, 1] = XYZ[:, 1]  #Y
    Z = XYZ[:, 2]
    (a, b, c),resid,rank,s = np.linalg.lstsq(G, Z, rcond=None)
    normal = (a, b, -1)
    nn = np.linalg.norm(normal)
    normal = normal / nn
    return (c, normal)

def angle_between2D(p1, p2):
    #arctan2 is anticlockwise
    ang1 = np.arctan2(*p1[::-1])
    ang2 = np.arctan2(*p2[::-1])
    angle=np.rad2deg((ang1 - ang2) % (2 * np.pi)) #degree
    if angle<180:
        return angle
    else:
        return 360 - angle

def angle_between3D(v1, v2):
# v1 is your firsr vector
# v2 is your second vector
    angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))) #rad
    angle=180*angle/np.pi #degrees
    if angle<180:
        return angle
    else:
        return 360 - angle

Stelios Karozis's avatar
Stelios Karozis committed
49 50 51 52 53 54
def center_gravity(a):
    m=len(a)
    cg = np.sum(a)/m
    return cg

def topickle(fl, sv_name):
55 56
    print(' ')
    print('Save to pickle |################################| 1/1')
Stelios Karozis's avatar
Stelios Karozis committed
57 58 59
    with open(sv_name+'.pkl', 'wb') as handle:
        pkl.dump(fl, handle, protocol=pkl.HIGHEST_PROTOCOL)

Stelios Karozis's avatar
Stelios Karozis committed
60 61 62 63 64 65
def frompickle(fl):
    with open(fl, 'rb') as handle:
        b = pkl.load(handle)
    return b


Stelios Karozis's avatar
Stelios Karozis committed
66
def tojson(fl, sv_name):
67 68
    print(' ')
    print('Save to json |################################| 1/1')
Stelios Karozis's avatar
Stelios Karozis committed
69 70 71
    with open(sv_name+'.json', 'w') as file:
        file.write(json.dumps(str(fl)))

72
def plot_surf(data, normal, c, save_name):
Stelios Karozis's avatar
Stelios Karozis committed
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    #Plot surface
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    # plot fitted plane
    maxx = np.max(data[:,0])
    maxy = np.max(data[:,1])
    minx = np.min(data[:,0])
    miny = np.min(data[:,1])

    point = np.array([0.0, 0.0, c])
    d = -point.dot(normal)

    # plot original points
    ax.scatter(data[:, 0], data[:, 1], data[:, 2])

    # compute needed points for plane plotting
    xx, yy = np.meshgrid([minx, maxx], [miny, maxy])
    z = (-normal[0]*xx - normal[1]*yy - d)*1. / normal[2]

    # plot plane
    ax.plot_surface(xx, yy, z, alpha=0.2)

    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
98 99
    #plt.savefig(save_name+'.png')
    plt.show()
Stelios Karozis's avatar
Stelios Karozis committed
100 101 102
    plt.clf()
    plt.cla()
    plt.close()
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

def points2vector(data):
    """
    Defines the line whose direction vector is the eigenvector 
    of the covariance matrix corresponding to the largest eigenvalue, 
    that passes through the mean of the data. 

    parameters:     data = array[[x y z]]

    output:         vector = [X,Y,Z]
    """
    # Calculate the mean of the points, i.e. the 'center' of the cloud
    datamean = data.mean(axis=0)

    # Do an SVD on the mean-centered data.
    uu, dd, vv = np.linalg.svd(data - datamean)

    # Now vv[0] contains the first principal component, i.e. the direction
    # vector of the 'best fit' line in the least squares sense.

    return vv[0]
Stelios Karozis's avatar
Stelios Karozis committed
124 125

def count_frames(trajfile='traj.trr'):
126 127 128 129 130
    """
    Count total frames of .trr file

    parameters:     trajfile = [.trr]
    """
Stelios Karozis's avatar
Stelios Karozis committed
131 132 133 134 135 136 137 138 139 140 141 142
    cnt_fr=0
    with open(trajfile, 'rb') as inputfile:
        for i in range(1000):
            try: 
                header = read_trr_header(inputfile)
                #print('Step: {step}, time: {time}'.format(**header))
                skip_trr_data(inputfile, header)
                cnt_fr=cnt_fr+1
            except EOFError:
                pass
    return cnt_fr

Stelios Karozis's avatar
Stelios Karozis committed
143
def fr_export(trajfile='traj.trr', num_frames=1):
144 145 146 147 148 149 150
    """
    Export frames from gromacs .trr file. 

    parameters:     trajfile = [.trr]
                    num_frames = [number of frames to keep
                                  counting from the end of file]
    """
Stelios Karozis's avatar
Stelios Karozis committed
151 152 153
    print(' ')
    print('Read gmx files progress:')
    print('==============================')
Stelios Karozis's avatar
Stelios Karozis committed
154
    cnt_fr=count_frames(trajfile)
155
    data_all={}
Stelios Karozis's avatar
Stelios Karozis committed
156
    with open(trajfile, 'rb') as inputfile:
Stelios Karozis's avatar
Stelios Karozis committed
157
        bar = Bar('Skipping frames from .trr', max=cnt_fr-num_frames)
Stelios Karozis's avatar
Stelios Karozis committed
158
        for i in range(cnt_fr-num_frames):
Stelios Karozis's avatar
Stelios Karozis committed
159 160 161
            header = read_trr_header(inputfile)
            #print('Step: {step}, time: {time}'.format(**header))
            skip_trr_data(inputfile, header)
Stelios Karozis's avatar
Stelios Karozis committed
162 163 164
            bar.next()
        bar.finish()
        bar = Bar('Read frames from .trr', max=num_frames)
165 166
        for i in range(cnt_fr-num_frames,cnt_fr):
            header = read_trr_header(inputfile)
167
            #print('Step: {step}, time: {time}'.format(**header))
168 169 170
            data = read_trr_data(inputfile, header)
            step='{step}'.format(**header)
            data_all[step]=data
Stelios Karozis's avatar
Stelios Karozis committed
171 172
            bar.next()
        bar.finish()
173
        return data_all
Stelios Karozis's avatar
Stelios Karozis committed
174

Stelios Karozis's avatar
Stelios Karozis committed
175
def read_gro(gro):
176 177 178 179 180 181 182 183 184 185 186 187 188
    """
    Read .gro file and exports 
    1. system name
    2. data number
    3. box size
    4. residue number
    5. residue type
    6. atom type
    7. atom number
    8. free format data (x,y,z,v,u,w)

    parameters:     gro = [.gro]
    """
Stelios Karozis's avatar
Stelios Karozis committed
189 190
    cnt=0
    data_num=0
Stelios Karozis's avatar
Stelios Karozis committed
191 192 193 194 195
    res_num = [] 
    res_type = []  
    atom_type = [] 
    atom_num  = []
    rest_dt = []
196
    cnt_atoms=0
Stelios Karozis's avatar
Stelios Karozis committed
197
    num_lines = sum(1 for line in open(gro))
Stelios Karozis's avatar
Stelios Karozis committed
198
    with open(gro, 'r') as F:
Stelios Karozis's avatar
Stelios Karozis committed
199
        bar = Bar('Read .gro', max=num_lines)
Stelios Karozis's avatar
Stelios Karozis committed
200 201
        for line in F:
            cnt=cnt+1
202 203
            #print(cnt)
            if cnt>2 and cnt<=data_num+2:
Stelios Karozis's avatar
Stelios Karozis committed
204 205
                res_num.append(line[:5])  
                res_type.append(line[5:10])  
206 207 208 209 210 211
                atom_type.append(line[10:15])
                #Compensate for large .gro files
                #ToDo check if data index is the same in the function that follows
                #atom_num.append(line[15:20])
                cnt_atoms=cnt_atoms+1
                atom_num.append(str(cnt_atoms))
Stelios Karozis's avatar
Stelios Karozis committed
212
                rest_dt.append(line[20:])
Stelios Karozis's avatar
Stelios Karozis committed
213 214 215 216
            elif cnt==1:
                system=line[:10]
            elif cnt==2:
                data_num=int(line[:7])
217
            elif cnt>data_num+2:
Stelios Karozis's avatar
Stelios Karozis committed
218
                box_size=line[:50]
Stelios Karozis's avatar
Stelios Karozis committed
219 220
            bar.next()
        bar.finish()
Stelios Karozis's avatar
Stelios Karozis committed
221
        #print(system,data_num,box_size)
Stelios Karozis's avatar
Stelios Karozis committed
222
    return system,data_num,box_size,res_num,res_type,atom_type,atom_num,rest_dt
223 224 225

def domain_decomposition(data,dx,dy,dz):
    """
226 227 228 229 230 231 232 233 234 235 236
    Identify subdomain for each frame of 
    of .trr frame

    parameters:     data = {dictionary input from 'def fr_export'}
                    dx = desired size X of subdomain {units of input}
                    dy = desired size Y of subdomain {units of input}
                    dz = desired size Z of subdomain {units of input}
    
    output:         dictionary of x,y,z grid points per step (frame)
    """
    box_p={}
Stelios Karozis's avatar
Stelios Karozis committed
237 238 239
    print(' ')
    print('Domain decomposition progress:')
    print('==============================')
240
    for step in data.keys():
Stelios Karozis's avatar
Stelios Karozis committed
241
        print('Step: '+step)
242 243 244 245 246 247 248 249
        box_p[step]={}
        xs=int(round(data[step]['box'][0][0]+0.1)) #to round always to bigger number
        ys=int(round(data[step]['box'][1][1]+0.1))
        zs=int(round(data[step]['box'][2][2]+0.1))
        box_x=int(xs/dx)
        box_y=int(ys/dy)
        box_z=int(zs/dz)

Stelios Karozis's avatar
Stelios Karozis committed
250

251
        xx=[]
Stelios Karozis's avatar
Stelios Karozis committed
252
        bar = Bar('X-axis', max=box_x)
Stelios Karozis's avatar
Stelios Karozis committed
253 254
#        for i in range(0,xs+1,dx):
        for i in range(0,box_x):
255
            xx.append(i)
Stelios Karozis's avatar
Stelios Karozis committed
256
            bar.next()
257
        box_p[step]['x']=xx
Stelios Karozis's avatar
Stelios Karozis committed
258
        bar.finish()
259 260

        yy=[]
Stelios Karozis's avatar
Stelios Karozis committed
261
        bar = Bar('Y-axis', max=box_y)
Stelios Karozis's avatar
Stelios Karozis committed
262 263
#        for i in range(0,ys+1,dy):
        for i in range(0,box_y):
264
            yy.append(i)
Stelios Karozis's avatar
Stelios Karozis committed
265
            bar.next()
266
        box_p[step]['y']=yy
Stelios Karozis's avatar
Stelios Karozis committed
267
        bar.finish()
268 269

        zz=[]
Stelios Karozis's avatar
Stelios Karozis committed
270
        bar = Bar('Z-axis', max=box_z)
Stelios Karozis's avatar
Stelios Karozis committed
271 272
#        for i in range(0,zs+1,dz):
        for i in range(0,box_z):
273
            zz.append(i)
Stelios Karozis's avatar
Stelios Karozis committed
274
            bar.next()
275
        box_p[step]['z']=zz
Stelios Karozis's avatar
Stelios Karozis committed
276
        bar.finish()
277 278 279


        xyz=[]
Stelios Karozis's avatar
Stelios Karozis committed
280
        bar = Bar('XYZ-axis', max=box_x*box_y*box_z)
Stelios Karozis's avatar
Stelios Karozis committed
281 282 283 284 285 286
#        for ix in range(0,xs+1,dx):
        for ix in range(0,box_x):
#          for iy in range(0,ys+1,dy):
          for iy in range(0,box_y):
#            for iz in range(0,zs+1,dz):
            for iz in range(0,box_z):
287
                xyz.append([ix,iy,iz])
Stelios Karozis's avatar
Stelios Karozis committed
288 289
                bar.next()
        bar.finish()
290 291 292 293
        box_p[step]['xyz']=xyz

    return box_p

Stelios Karozis's avatar
Stelios Karozis committed
294
def atomid_data(res_num, res_type, atom_type, atom_num, group={}):
295 296 297 298
    """
    Finds the index in list that 'def read_gro' returns,
    and correspond to the atom types in group list

299 300 301 302
    parameters:     res_num=[]
                    atom_type=[]
                    atom_num=[]
                    group={}
303

304
    output:         dictionary {resid:{res_type:{atom_type:[atom_num]}}}
305
    """
Stelios Karozis's avatar
Stelios Karozis committed
306 307 308 309 310
    print(' ')
    print('Create index  progress:')
    print('======================')
    #bar = Bar('Create index step', max=len(group.keys()))
    res_ndx={}
311
    for res,atom in group.items():
Stelios Karozis's avatar
Stelios Karozis committed
312
        res_ndx[res]=[]
313
        for element in atom:
Stelios Karozis's avatar
Stelios Karozis committed
314 315 316 317 318 319 320 321 322
            tmp=[res_num[i].strip()  for i, e in enumerate(atom_type) if e.strip() == element.strip()]
        res_ndx[res].append(tmp)
        #bar.next()
    #bar.finish()

    res_ndx_flat={}
    for res in res_ndx.keys():
        res_ndx_flat[res] = [y for x in res_ndx[res] for y in x]

323
    ndx={}
Stelios Karozis's avatar
Stelios Karozis committed
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    for rs in res_ndx_flat.keys():
        bar = Bar(rs, max=len(res_ndx_flat[rs]))
        for resid in res_ndx_flat[rs]:
            ndx[resid.strip()]={}
            for res,atom in group.items():
                ndx[resid][res]={}
                for element in atom:
                    tmp=[atom_num[i].strip()  for i, e in enumerate(atom_type) if e.strip() == element.strip() and resid.strip()==res_num[i].strip() and res.strip()==res_type[i].strip()]
                    if not tmp:
                        ndx[resid].pop(res,None)
                        pass
                    else:
                        ndx[resid][res][element]=tmp
            bar.next()
        bar.finish()
339
    return ndx
340

341
def atom2grid(data, box_p, ndx):
342
    """
343
    Assign atom number that corresponds to ndx (see 'def atomid_data')
344 345 346 347 348
    to sudomains created from 'def domain_decomposition'. The output
    is a the box location (non zero based) in xyz-space for each atom number.

    parameters:     data = {dictionary input from 'def fr_export'}
                    box_p = {dictionary input from 'def domain_decomposition'}
349
                    ndx = {dictionary input from 'def atomid_data'}
350

351 352 353
    output:         dictionaries 
                        1. box_res = {step:{resid:{res_type:{atom_type:{atom_num:(subX,subYsubZ)}}}}}
                        2. box_res_rev = {step:{resid:{res:{(subX,subYsubZ):[atom_num]}}}}
354
    """
Stelios Karozis's avatar
Stelios Karozis committed
355 356 357
    print(' ')
    print('Assing atom to grid progress:')
    print('==============================')
358 359

    box_res={}
360
    box_res_rev = {}
361
    for step in data.keys():
Stelios Karozis's avatar
Stelios Karozis committed
362 363
        #print('Step: '+step)
        bar = Bar('Step: '+step, max=len(ndx.keys()))
364
        box_res[step]={}
365
        box_res_rev[step] = {}
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        for resid in ndx.keys():
            box_res[step][resid]={}
            box_res_rev[step][resid] = {}
            for res in ndx[resid].keys():
                box_res[step][resid][res]={}
                box_res_rev[step][resid][res]={}
                for atom in ndx[resid][res].keys():
                    box_res[step][resid][res][atom]={}
                    box_res_rev[step][resid][res][atom] = {}
                    for atomnum in ndx[resid][res][atom]:
                        #data[step]['x'][atom_num-1][x(0),y(1),z(2)]

                        xx=data[step]['x'][int(atomnum)-1][0]
                        cnt_x=-1
                        prev=-1
                        for ix in box_p[step]['x']:
                            cnt_x=cnt_x+1
                            if xx<ix and xx>prev:
                                prev=ix
                                break

                        yy=data[step]['x'][int(atomnum)-1][1]
                        cnt_y=-1
                        prev=-1
                        for iy in box_p[step]['y']:
                            cnt_y=cnt_y+1
                            if yy<iy and yy>prev:
                                prev=iy
                                break

                        zz=data[step]['x'][int(atomnum)-1][2]
                        cnt_z=-1
                        prev=-1
                        for iz in box_p[step]['z']:
                            cnt_z=cnt_z+1
                            if zz<iz and zz>prev:
                                prev=iz
                                break

                        box_res[step][resid][res][atom][atomnum]=(cnt_x,cnt_y,cnt_z)

                    #Make subdomain position the key and group the residues
                    for key, value in sorted(box_res[step][resid][res][atom].items()):
                        box_res_rev[step][resid][res].setdefault(value, []).append(key.strip())
                    #Remove  atom_type as key of dictionary
                    box_res_rev[step][resid][res].pop(atom,None)
                    #If atoms of residue lie in more than one subdomain, put the all in the first one
                    if len(box_res_rev[step][resid][res]) > 1:
                        tmp=[]
                        flattened_list=[]
                        kk=[]
                        for sb in box_res_rev[step][resid][res].keys():
                            kk.append(sb)
                            tmp.append(box_res_rev[step][resid][res][sb])
                        #Remove keys
                        for k in kk: 
                            box_res_rev[step][resid][res].pop(k,None)
                        #flatten the lists
                        flattened_list = [y for x in tmp for y in x]
                        #Keep first key and results
                        box_res_rev[step][resid][res][kk[0]]=flattened_list
                    #box_res_rev[step][resid][res]=[i  for i, e in enumerate(box_res_rev[step][resid][res]) if e.strip() != .strip()]
Stelios Karozis's avatar
Stelios Karozis committed
428 429
            bar.next()
        bar.finish()
430 431 432 433 434 435 436 437 438
    return box_res, box_res_rev

def sub_coord(box, data, res_num=[]):
    """
    Use the box_res_rev from 'def atom2grid' and data from 'def fr_export'
    and groups all the XYZ coordinates per subdomain

    parameters:         box = {step:{resid:{res:{(subX,subYsubZ):[atom_num]}}}}
                        data = {step:{obj:[x,y,z]}}
439
    
440 441 442
    output:             norm = {step:{subdomain:[[X1,Y1,Z1] ... [Xn,Yn,Zn]]}}
                        vector = {step:{subdomain:resid:{[[X1,Y1,Z1] ... [Xn,Yn,Zn]]}}}
    """
Stelios Karozis's avatar
Stelios Karozis committed
443 444 445 446
    print(' ')
    print('Groupby subdomain progress:')
    print('==============================')

447 448 449
    coord_norm={}
    coord_vector={}
    for step in box.keys():
Stelios Karozis's avatar
Stelios Karozis committed
450

451 452
        coord_norm[step]={}
        coord_vector[step]={}
Stelios Karozis's avatar
Stelios Karozis committed
453 454 455 456 457 458 459 460
        for resid in box[step].keys():
                for res in box[step][resid].keys():
                    for subdomain in box[step][resid][res].keys():
                        coord_norm[step][subdomain]=[]
                        coord_vector[step][subdomain]={}

        rs=[]
        bar = Bar('Step: '+step, max=len(box[step].keys()))
461 462 463
        for resid in box[step].keys():
            for res in box[step][resid].keys():
                for subdomain in box[step][resid][res].keys():
Stelios Karozis's avatar
Stelios Karozis committed
464 465 466 467
                    #tmp=[]
                    if (resid,subdomain) not in rs:
                        rs.append((resid,subdomain))
                        coord_vector[step][subdomain][resid]=[]
468 469
                    for atomnum in box[step][resid][res][subdomain]:
                        #tmp_atom=[]
Stelios Karozis's avatar
Stelios Karozis committed
470
                        #tmp.append(data[step]['x'][int(atomnum)-1])
471 472
                        #tmp_atom.append(list(data[step]['x'][int(atomnum)-1])) #not append to previous
                        coord_norm[step][subdomain].append(list(data[step]['x'][int(atomnum)-1]))
Stelios Karozis's avatar
Stelios Karozis committed
473 474 475
                        coord_vector[step][subdomain][resid].append(list(data[step]['x'][int(atomnum)-1]))
            bar.next()
        bar.finish()
476 477 478 479 480 481 482 483 484 485 486 487 488
    return coord_norm, coord_vector

def coord2norm(coord,img=True):
    """
    Use the coord from 'def sub_coord' and replaces XYZ coordinates
    with c, normal of surface that fits the points. Also it can plot
    the surfaces for each subdomain

    parameters:         coord = {step:{subdomain:[[X1,Y1,Z1] ... [Xn,Yn,Zn]]}}
                        img = True or False
    
    output:             dictionary = {step:{subdomain:{c:int, normal:array[]}}}
    """
Stelios Karozis's avatar
Stelios Karozis committed
489 490 491 492
    print(' ')
    print('Finding surface progress:')
    print('==============================')

493 494 495
    surf={}
    for step in coord.keys():
        surf[step]={}
Stelios Karozis's avatar
Stelios Karozis committed
496
        bar = Bar('Step: '+step, max=len(coord[step].keys()))
497 498
        for subdomain in coord[step].keys():
            c,normal = fitPlaneLTSQ(np.array(coord[step][subdomain]))
499
            surf[step][subdomain]={'c':c, 'normal':normal}
500 501 502 503 504 505 506
            #Change save variable if you want to save .png elsewere
            save='png/'+str(subdomain)
            if img==True:
                try:
                    plot_surf(np.array(coord[step][subdomain]), normal, c, save)
                except:
                    print("ERROR: Folder png/ doesn't exist in root")
Stelios Karozis's avatar
Stelios Karozis committed
507 508 509
            bar.next()
        bar.finish()
    return surf
510

Stelios Karozis's avatar
Stelios Karozis committed
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
def coord2norm2cg(coord_vector,img=True):
    """
    Use the coord_vector from 'def sub_coord' and replaces XYZ coordinates
    with c, normal of surface that fits the points and calculates center of gravity
    for each resid. Also it can plot the surfaces for each subdomain

    parameters:         coord = {step:{subdomain:{resid:[[X1,Y1,Z1] ... [Xn,Yn,Zn]]}}
                        img = True or False
    
    output:             dictionary = {step:{subdomain:{c:int, normal:array[], resid:[cgx, cgy, cgz]}}}
    """
    print(' ')
    print('Finding surface and gravity point progress:')
    print('==========================================')

    surf={}
    for step in coord_vector.keys():
        surf[step]={}
        bar = Bar('Step: '+step, max=len(coord_vector[step].keys()))
        for subdomain in coord_vector[step].keys():
            surf[step][subdomain]={}
            #surf_points=[]
            res_cg={}
            cnt=0
            for resid in coord_vector[step][subdomain].keys():
                cnt=cnt+1
                cgx = center_gravity(coord_vector[step][subdomain][resid])
                cgy = center_gravity(coord_vector[step][subdomain][resid])
                cgz = center_gravity(coord_vector[step][subdomain][resid])
                res_cg[resid]=[cgx,cgy,cgz]
                if cnt==1:
                    surf_points=coord_vector[step][subdomain][resid]
                else:
                    surf_points=surf_points+coord_vector[step][subdomain][resid]
            c,normal = fitPlaneLTSQ(np.array(surf_points))
            surf[step][subdomain]={'c':c, 'normal':normal}
            surf[step][subdomain].update(res_cg)
548
    
Stelios Karozis's avatar
Stelios Karozis committed
549
            if img==True:
550 551 552 553
                fl_save='png/'
                save=fl_save+str(subdomain)
                if not os.path.exists(fl_save):
                    os.makedirs(fl_save) 
Stelios Karozis's avatar
Stelios Karozis committed
554 555
                try:
                    plot_surf(np.array(surf_points), normal, c, save)
556 557
                except Exception as e:
                    print(e)
Stelios Karozis's avatar
Stelios Karozis committed
558 559
            bar.next()
        bar.finish()
560 561 562 563 564 565 566
    return surf

def coord2vector(coord_vector):
    """
    Use the coord_vector from 'def sub_coord' and replaces XYZ coordinates
    with vector of best fit line

Stelios Karozis's avatar
Stelios Karozis committed
567 568 569
    parameters:         coord = {step:{subdomain:{resid:[[X1,Y1,Z1] ... [Xn,Yn,Zn]]}}
        
    output:             dictionary = {step:{subdomain:{resid:[x, y, z]}}
570
    """
Stelios Karozis's avatar
Stelios Karozis committed
571 572 573
    print(' ')
    print('Finding surface progress:')
    print('==============================')
574 575 576
    vector={}
    for step in coord_vector.keys():
        vector[step]={}
Stelios Karozis's avatar
Stelios Karozis committed
577
        bar = Bar('Step: '+step, max=len(coord_vector[step].keys()))
578 579 580 581 582
        for subdomain in coord_vector[step].keys():
            vector[step][subdomain]={}
            for resid in coord_vector[step][subdomain].keys():
                vv = points2vector(np.array(coord_vector[step][subdomain][resid]))
                vector[step][subdomain][resid]=vv
Stelios Karozis's avatar
Stelios Karozis committed
583 584
            bar.next()
        bar.finish()
Stelios Karozis's avatar
Stelios Karozis committed
585 586 587 588 589 590 591 592 593 594 595 596
    return vector

def SurfVector_angle(surf,vector):
    """
    Use the surf and vector from 'def coord2norm' and 'def coord2vector'
    and calculate the angle between them for every step, sudomain and resid

    parameters:         surf = {step:{subdomain:{c:int, normal:array[]}}}
                        vector = {step:{subdomain:{resid:[x, y, z]}}
    
    output:             angle = {step:{subdomain:{resid:angle}}
    """
597 598 599
    print(' ')
    print('Tilt progress:')
    print('==============================')
Stelios Karozis's avatar
Stelios Karozis committed
600 601 602
    angle={}
    for step in surf.keys():
        angle[step]={}
603
        bar = Bar('Step: '+step, max=len(surf[step].keys()))
Stelios Karozis's avatar
Stelios Karozis committed
604 605 606 607 608 609 610
        for sudomain in surf[step].keys():
            angle[step][sudomain]={}
            for resid in vector[step][sudomain].keys():
                P1=tuple(surf[step][sudomain]['normal'])
                P2=tuple(vector[step][sudomain][resid])
                #print(tbf.angle_between3D(P1,P2))
                angle[step][sudomain][resid]=angle_between3D(P1,P2)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
            bar.next()
        bar.finish()
    return angle

def togmxndx(box_res, fld, sv_name):
    print(' ')
    print('Save to gmx_ndx progress:')
    print('==============================')
    cnt=0
    fl_save=fld+'/gmx_ndx/'
    if not os.path.exists(fl_save):
        os.makedirs(fl_save) 
 
    ndx={}
    for step in box_res.keys():
        if cnt==1:
            break
        for resid in box_res[step].keys():
            for res in box_res[step][resid].keys():
                for subdomain in box_res[step][resid][res].keys():
                    ndx[subdomain]={}

        rs=[]
        bar = Bar('Create format: ', max=len(box_res[step].keys()))
        for resid in box_res[step].keys():
            for res in box_res[step][resid].keys():
                for subdomain in box_res[step][resid][res]:
                    if (res,subdomain) not in rs:
                        rs.append((res,subdomain))
                        ndx[subdomain][res]=[]
                    for atomnum in box_res[step][resid][res][subdomain]:    
                        ndx[subdomain][res].append(atomnum)
            bar.next()
        bar.finish()                 
        cnt=cnt+1

    bar = Bar('Save file: ', max=len(ndx.keys()))
    for subdomain in ndx.keys():
        save=fl_save+sv_name+'_'+str(subdomain)+'.ndx'
        with open(save, "a") as myfile:
            for res in ndx[subdomain].keys():
                myfile.write("["+res+"]\n")
                for atomnum in ndx[subdomain][res]:
                    myfile.write(atomnum+'\n')

        bar.next()
    bar.finish()